
1

Online appendix for the paper

Combining decidability paradigms for existential rules
published in Theory and Practice of Logic Programming

GEORG GOTTLOB
Department of Computer Science, University of Oxford, UK

(e-mail: georg.gottlob@cs.ox.ac.uk)

MARCO MANNA
Department of Mathematics and Informatics, University of Calabria, Italy

(e-mail: manna@mat.unical.it)

ANDREAS PIERIS
Department of Computer Science, University of Oxford, UK

(e-mail: andreas.pieris@cs.ox.ac.uk)

submitted 10 April 2013; revised 23 May 2013; accepted 23 June 2013

Appendix A Definitions and Background

The TGD Chase Procedure

A chase sequence of a database D w.r.t. a set Σ of TGDs is a sequence of chase steps Ii〈σi,hi〉Ii+1,
where i> 0, I0 =D and σi ∈Σ. The chase of D w.r.t. Σ, denoted chase(D,Σ), is defined as follows:

– A finite chase of D w.r.t. Σ is a finite chase sequence Ii〈σi,hi〉Ii+1, where 0 6 i < m, and
there is no σ ∈ Σ which is applicable to Im; let chase(D,Σ) = Im.

– An infinite chase sequence Ii〈σi,hi〉Ii+1, where i > 0, is fair if whenever a TGD σ :
ϕ(X,Y) → ∃Zψ(X,Z) of Σ is applicable to Ii with homomorphism h, then there exists
h′ ⊇ h and k > i such that h′(head(σ))⊆ Ik. An infinite chase of D w.r.t. Σ is a fair infinite
chase sequence Ii〈σi,hi〉Ii+1, where i > 0; let chase(D,Σ) =

⋃∞
i=0 Ii.

Example Appendix A.1
Consider the set Σ constituted by the TGDs

σ1 : r(X ,Y,Z)→ s(Y,X) σ2 : s(X ,Y)→∃Z∃W r(Y,Z,W),

and let D = {r(a,b,c)}. An infinite chase of D w.r.t. Σ is:

D
〈σ1,h1 = {X → a,Y → b,Z → c}〉

D∪{s(b,a)}
〈σ2,h2 = {X → b,Y → a}〉

D∪{s(b,a),r(a,z1,z2)}
〈σ1,h3 = {X → a,Y → z1,Z → z2}〉

2

D

r(z1,z3) s(z3,z2)

p(z4,z2,z3)

r(X,Y),s(Y,Z) → ∃W p(W,Z,Y)

every atom

contains z3

Fig. A 1. Sticky property.

D∪{s(b,a),r(a,z1,z2),s(z1,a)}
...

〈σ2,h2i+2 = {X → z2i−1,Y → a}〉
D∪{s(b,a),r(a,z1,z2)}∪

⋃i
j=1{s(z2 j−1,a),r(a,z2 j+1,z2 j+2)}

...

Clearly, chase(D,Σ) is the infinite instance

{r(a,b,c),s(b,a),r(a,z1,z2)} ∪
∞⋃

j=1

{s(z2 j−1,a),r(a,z2 j+1,z2 j+2)},

where z1,z2, . . . are nulls of ΓN .

The Sticky Property

It is interesting to see that the chase constructed under a sticky set of TGDs enjoys a syntactic
property called the sticky property.

Definition Appendix A.1 (Sticky Property)
Consider a database D for a schema R, and a set Σ of TGDs over R. Suppose that the chase
step chase[k−1](D,Σ)〈σ ,h〉chase[k](D,Σ), where k > 1, is applied during the construction of
chase(D,Σ). Then, chase(D,Σ) is k-sticky if, for each variable V that occurs in body(σ) more
than once, and for each a∈ (chase[k](D,Σ)\chase[k−1](D,Σ)), h(V) occurs in a, and also in every
atom b such that 〈a,b〉 belongs to CR+[D,Σ]. We say that the chase of D w.r.t. Σ has the sticky
property if chase(D,Σ) is k-sticky, for each k > 1.

Generally speaking, the sticky property imposes the following condition: the symbols which
are associated (during the application of a TGD σ) with the body-variables of σ that occur more
than once, appear in the generated atom a, and also in every atom obtained from some chase
derivation which involves a, thus “sticking” to all such atoms.

Example Appendix A.2
Consider a database D and a set Σ which contains (among others) the TGD σ : r(X ,Y),s(Y,Z)→
∃W p(W,Z,Y). Suppose that the atoms r(z1,z3) and s(z3,z2), where z1, z2 and z3 are nulls, occur

3

in the chase of D w.r.t. Σ. Clearly, σ is triggered and the atom p(z4,z2,z3), where z4 is a null,
is generated. The sticky property requires the null z3, which is associated to the variable Y that
occurs more than once in the body of σ , to appear in p(z4,z2,z3), and also in every atom obtained
from some chase derivation which involves p(z4,z2,z3); see Figure A 1.

As shown in (Calı̀ et al. 2012), stickiness is a sufficient condition for the sticky property of
the chase. In other words, given a set Σ ∈ sticky over a schema R, chase(D,Σ) enjoys the sticky
property, for every database D for R.

Appendix B Tameness

Theorem 3.1
BCQ answering is undecidable under: (1) linear|sticky, even for a single linear TGD and a single
sticky TGD, and (2)linear|sticky, even for sticky rules where each variable occurs only once.

Proof
Part 1. It is well-known that there exists a single TGD σ such that BCQ answering under {σ}
is already undecidable (Baget et al. 2011). It is easy to transform σ into an equivalent (for query
answering purposes) set Σ constituted by a single linear rule and a single sticky rule. In par-
ticular, assuming that {X1, . . . ,Xk} is the set of body-variables of σ , Σ is constituted by the
sticky rule body(σ)→ p(X1, . . . ,Xk), where p is an auxiliary n-ary predicate, and the linear rule
p(X1, . . . ,Xk)→ head(σ).

Part 2. The proof is by reduction from the problem of BCQ answering under arbitrary TGDs.
Consider a set Σ of TGDs. For each σ ∈ Σ, if {X1, . . . ,Xk} is the set of the body-variables of σ ,
and ni is the number of occurrences of Xi in body(σ), then let

τ1(σ) = pσ (X1, . . . ,X1︸ ︷︷ ︸
n1

, . . . ,Xk, . . . ,Xk︸ ︷︷ ︸
nk

)→ head(σ),

τ2(σ) = body(σ)→ pσ (X1
1 , . . . ,X

n1
1 , . . . ,X1

k , . . . ,X
nk
k),

where body(σ) is obtained from body(σ) by replacing the j-th occurrence of Xi with X j
i , and pσ

is an auxiliary predicate. Let Σi = {τi(σ) | σ ∈ Σ}i∈{1,2}. Finally, let Σ′ = Σ1 ∪Σ2. It is easy to
verify that Σ1 ∈ linear and Σ2 ∈ sticky; thus, Σ′ ∈ linear|sticky. Observe that, except for the atoms
with an auxiliary predicate, chase(D,Σ) and chase(D,Σ′) coincide, for each database D. Since
the auxiliary predicates do not match any predicate symbol in any BCQ q, chase(D,Σ) |= q iff
chase(D,Σ′) |= q, and the claim follows.

Proposition 3.1
The problem of deciding whether a set Σ ∈ guarded|sticky is predicate-tame is in PTIME.

Proof
Let R be the set of predicates occurring in Σ, and cover(σ), where σ ∈ Σ, be the set of atoms of
body(σ) which contain all the body-variables. The unprotected predicates of R are defined in-
ductively as follows. A predicate r is unprotected if there exists σ ∈ Σ such that cover(σ) =

∅ and r ∈ pred(head(σ)). Moreover, for each σ ∈ Σ such that all the predicates occurring
in pred(cover(σ)) are unprotected, each predicate of pred(head(σ)) is unprotected. A pred-
icate of R is protected if it is not unprotected; let Rp be the set of protected predicates of
R. The protected part of Σ, denoted Σp, is defined as the set {σ | σ ∈ Σ and there exists a ∈
cover(σ) such that pred(a) ∈ Rp}, while the unprotected part of Σ, denoted Σu, is the set Σ\Σp.

4

The next auxiliary lemma shows the connection between predicate-tameness and the unprotected
part of a set of TGDs.

Lemma Appendix B.1
Σ is predicate-tame iff Σu =∅ or Σu ∈ sticky.

Proof
(⇒) Assume first that Σ is predicate-tamed. By definition, there exists {Σg,Σs} ∈ Pguarded|C(Σ)
and a guard function g ∈ Guard(Σg) such that, for each σ ∈ Σs, there is no σ ′ ∈ Σg for which
pred(g(σ ′)) ∈ pred(head(σ)). Observe that each subset of a set of C is still in C; this holds
since, by removing a TGD from a sticky (resp., shy) set of TGDs, stickiness (resp., shyness) is
preserved. Hence, it suffices to show that Σu ⊆ Σs. By contradiction, assume that Σu 6⊆ Σs. This
implies that there exists σ ∈ Σ such that σ ∈ Σu and σ 6∈ Σs. Since Σg = Σ\Σs, σ ∈ Σg. Therefore,
σ is a guarded TGD such that, for each σ ′ ∈ Σs, pred(g(σ)) 6∈ pred(head(σ ′)). It is not difficult
to see that g(σ) ∈ cover(σ) and pred(g(σ)) ∈Rp, and thus σ ∈ Σp. But, since Σp∩Σu =∅, this
contradicts the fact that σ ∈ Σu.

(⇐) If Σu =∅, then Σ∈ guarded, and the claim follows immediately. Suppose now that Σu ∈C.
It is easy to see that {Σp,Σu} ∈ Pguarded|C(Σ). Moreover, a guard function g ∈ Guard(Σp), which
satisfies the condition of Definition 3.4, can be constructed. In particular, for each σ ∈ Σp, let
g(σ) be an arbitrary atom of the (non-empty) set cover(σ). Consequently, Σ is predicate-tamed,
and the claim follows.

Clearly, the unprotected part of Σ can be constructed in polynomial time. The claim follows
from the above lemma and the fact that the problem of deciding whether a set of TGDs belongs
to sticky is in PTIME (Calı̀ et al. 2012). The latter follows by observing that at each application
of the propagation step at least one body-variable is marked; thus, after polynomially many steps
the SMarking procedure terminates.

Appendix C Querying the Tame Fragment

Technical Results

Lemma 4.1
It holds that, Sin ∩Sout ⊆ terms(a).

Proof
Towards a contradiction, assume that Sin ∩Sout contains a term t 6∈ terms(a). Due to guardedness
and by Definition 4.3, t is a null. This fact immediately implies that there exists an atom b ∈
reachgs(a, I,Σ), generated from a rule of Σg, in which t is invented, and also implies that there
exists an atom c ∈ atype(a, I,Σ) such that t ∈ terms(c). Hence, c belongs to reach(b, I,Σ). Since
b is reachable from a, it also holds that c ∈ reach(a, I,Σ). This means, by Definition 4.2, that
c ∈ reach(a, I,Σ) \ reacht(a, I,Σ). Moreover, by Definition 4.1, c is invented from a rule of Σg

and has a parent, say d, which is not reachable from a. However, this immediately implies that
d is not reachable from b and, therefore, that t 6∈ terms(d). But this is not possible because c is
generated from a guarded rule and t is not invented in c. Thus, t does not occur in Sout which is
a contradiction, and the claim follows.

5

Lemma Appendix C.1
Consider a BCQ q over a schema R, a database D for R, and a set Σ of TGDs over R. A set Σ′ of
TGDs over a schema R ′, where each TGD has only one head-atom with at most one existentially
quantified variable which occurs once, can be constructed in LOGSPACE such that D∪Σ |= q iff
D∪Σ′ |= q. Moreover, if Σ is tame, then Σ′ is also tame.

Proof
We obtain Σ′ from Σ by applying the following: for each σ ∈ Σ, if σ is already in the desired syn-
tactic form, then τ(σ) = {σ}; otherwise, assuming that {a1, . . . ,ak}= head(σ), {X1, . . . ,Xn}=
var(body(σ))∩ var(head(σ)), and Z1, . . . ,Zm are the existentially quantified variables of σ , let
τ(σ) be the set

body(σ) → ∃Z1 p1
σ (X1, . . . ,Xn,Z1)

p1
σ (X1, . . . ,Xn,Z1) → ∃Z2 p2

σ (X1, . . . ,Xn,Z1,Z2)

p2
σ (X1, . . . ,Xn,Z1,Z2) → ∃Z3 p3

σ (X1, . . . ,Xn,Z1,Z2,Z3)
...

pm−1
σ (X1, . . . ,Xn,Z1, . . . ,Zm−1) → ∃Zm pm

σ (X1, . . . ,Xn,Z1, . . . ,Zm)

pm
σ (X1, . . . ,Xn,Z1, . . . ,Zm) → a1

...
pm

σ (X1, . . . ,Xn,Z1, . . . ,Zm) → ak,

where pi
σ is an (n+ i)-ary auxiliary predicate not occurring in R, for each i∈{1, . . . ,m}. Let Σ′ =⋃

σ∈Σ τ(σ), and R ′ be the schema obtained by adding to R the auxiliary predicates introduced
above. It is easy to see that Σ′ can be constructed in LOGSPACE. The auxiliary predicates, being
introduced only during the above construction, do not match any predicate symbol in q, and
hence chase(D,Σ) |= q iff chase(D,Σ′) |= q, or, equivalently, D∪Σ |= q iff D∪Σ′ |= q. The fact
that, if Σ is tame, then Σ′ is also tame, can be established easily and we leave the proof as a simple
exercise to the interested reader.

The Algorithm TameQAns

The first step of the algorithm guesses some auxiliary structures that will be used in the rest
of the execution. More precisely, the algorithm first guesses an image of the query q, namely a
homomorphism h that maps q into chase(D,Σ); for convenience, h(q) is stored in Q, while the
set of nulls occurring in terms(Q) is stored in N. Next, TameQAns guesses a partition {Ng,Ns}
of N, where Ng are the nulls invented by guarded rules, while Ns are the ones invented by sticky
rules. Then, the algorithm guesses a poset P on Ng, with M being the minimal elements of P, and
each element of M is the root of a rooted tree. Finally, the shapes of the atoms where the nulls
of Q are invented are guessed, and also, for every atom where a null of Ng is invented, a finite
segment of its active type is guessed. We now proceed with the following universal steps:

Guarded Resolution Steps. The atoms in which the minimal elements of P are invented, as
well as their (finite) active type, can be proved independently. This is done, for each minimal
element of P, in a universal branch of the computation of TameQAns. Notice that, for a mini-
mal element z, it is not enough to consider az together with the guessed finite segment T (az) of
its active type as a new query and prove it independently by starting again TameQAns, since
the information that z has been invented in az may be lost. Therefore, the algorithm performs

6

Fig. C 1. Guarded chase steps.

a resolution step via a guarded rule in order to bypass the chase step where az is generated.
We assume that a most general unifier is always the identity on N. After this resolution step,
the obtained set of atoms θ(body(σ)) together with T (az) are considered as a new conjunctive
query which can be now proved independently.

Guarded Chase Steps. For each pair z−̇→z̃∈P, the algorithm attempts to reach az̃ starting from
az by applying guarded chase steps. During each chase step, it generates the child of az̃, say b,
by trusting the finite active type T (az), guesses a finite active type T (b) for b, and assigns to
Q the side atoms that have been used to generate b together with T (b), but without the atoms
that are already in T (az) since we do not need to prove them again. Then, az and T (az) are
replaced, respectively, by b and T (b). Finally, in universal branches of the computation (at
step 13), the algorithm proceeds with a chase step in order to reach az̃ (step 7), and also proves
Q (step 14). An example which explains the above description follows.

Example Appendix C.1
Let Σ be the tame set of TGDs:

σ1 : r(X ,Y)→∃Z g0(X ,Y,Z)
σ2 : g0(X ,Y,Z), p10(X ,Y), p4(Y)→∃W g1(X ,Z,W)

σ3 : g0(X ,Y,Z)→ p9(X ,Y)
σ4 : g0(X ,Y,Z), p2(Y,X)→ p8(X ,Z)
σ5 : p8(X ,Y), p1(X)→ p7(X ,Y)
σ6 : g1(X ,Y,Z), p8(X ,Y), p11(X ,Z), p12(X ,Y), p6(X)→ g2(X ,Y)
σ7 : g2(X ,Y), p13(X)→∃Z g3(X ,Y,Z)
σ8 : g0(X ,Y,Z), p3(W),→ p10(X ,Y)
σ9 : g1(X ,Y,Z), p9(X ,W)→ p11(X ,Z)

σ10 : g1(X ,Y,Z), p5(X ,W)→ p12(X ,Y)
σ11 : p7(X ,Y)→ p13(X),

7

where Σs = {σ8, . . . ,σ11} and Σg = Σ \Σs, and D = {r(c,d), p1(c), p2(d,c), p3(e), p4(d),
p5(c, f), p6(c)}. The chase of D and Σ is depicted in Figure C 1. As in Figure 2, bold and
continuous arrows denote guarded and sticky chase derivations, respectively; dashed arrows
denote the contribution from side atoms in guarded derivations only. Our intention is to show
how to reach az̃ from az and its (finite) active type. The active type T (az) of az is D\{r(c,d)}∪
{az}, while the active type T (b1) of b1 is the set {p5(c, f), p6(c), p7(c,z), p8(c,z), p9(c,d)}∪
{b1}. The application of σ2 requires the side atoms p4(d) and p10(c,d). The former is in
the active type of az; the latter, even if it is not in T (az), it belongs to reachgs(az,D,Σ) and,
therefore, it can be proven from the pair az and T (az). The application of σ6 requires the side
atoms p6(c), p8(c,z), p11(c,z1) and p12(c,z). The first two atoms are in the active type of
T (b1), while the remaining two atoms belong to reachgs(b1,D,Σ). Since we trust T (az), to
apply σ2 and to build T (b1) we need to prove only the atoms p7(c,z), p8(c,z) p9(c,d) and
p10(c,d). These atoms, by Proposition 4.1, can be proven from the pair 〈az,T (az)〉 (step 13).

Hybrid Steps. For each atom a ∈ Q in which no null of Ng is invented, TameQAns applies
resolution steps (via sticky rules) to reach either the given database, or some active type, or
some atom generated from a guarded rule. In the first and second case, the algorithm proves a
by resolution steps via sticky rules, without involving any guarded rule. In the third case, the
algorithm transforms a in a number of atoms that are generated by rules of Σg, which in turn
have to be proved forward from an atom also generated by a guarded rule and its finite active
type. (This is the case, for example, of s5(z5,z4) and s4(y4,z5,z7,z6) that are first transformed
in some anonymous atoms, which in turn are proved from g4(z4,z3, . . .) and g5(z5,z3,z1, . . .)).

Theorem 4.1
BCQ answering under tame sets of TGDs is 2EXPTIME-complete in combined complexity, EX-
PTIME-complete in case of bounded arity, NP-complete in case of fixed TGDs, and PTIME-
complete in data complexity.

Proof
Consider a (non-normalized) tame set Σ over a schema R, and let Σ′ be the normalized version
of Σ. Let w be the maximum arity over all predicates occurring in R, and w′ be the maximum
arity over all auxiliary predicates, introduced during the normalization procedure, occurring in
Σ′; in general, w 6 w′. During the construction of the chase under Σ′, none of the side atoms
of a guarded rule can be mapped to an atom with an auxiliary predicate. Moreover, none of
the atoms of a sticky rule, with at least two body-atoms, can be mapped to an atom with an
auxiliary predicate. Therefore, none of the auxiliary predicates have outgoing arrows crossing the
boundary of reacht(a,D,Σ). Consequently, the size of a (finite) active type T (as identified in the
proof of Proposition 4.1) is at most |R| ·(w+1)w. In fact, by construction, we have that |T | ≤ |T?|,
and that |T?| ≤ |R| · (w+ 1)w, where w+ 1 comes from the fact that we need to consider the
terms of terms(a) plus the symbol ?. At each step of the computation, the alternating algorithm
TameQAns needs to remember, for each variable in the query, at most one type. The upper bounds
follow since AEXPSPACE = 2EXPTIME, APSPACE = EXPTIME and ALOGSPACE = PTIME, and
from the fact that the number of different terms occurring in T are no more than w · |R| ·(w+1)w.
Actually, assuming that q contains n variables, TameQAns can be equipped with a finite subset
of ΓN having size n ·w · |R| · (w+ 1)w + 1, since at each step of the computation we can reuse
symbols that in other steps (or branches) of the computation have a different semantic meaning.
Notice that in the case of a fixed set of TGDs we need to perform a nondeterministic guessing in

8

polynomial time (step 1), and then prove the minimal elements of M, the pairs of P, and the atoms
of Q\{az | z ∈ Ng}, in a sequential manner by calling a PTIME oracle (which is our algorithm).
Therefore, the overall procedure runs in NPPTIME = NP. The lower bounds are inherited from BCQ
answering under guarded TGDs (Calı̀ et al. 2008).

