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Appendix A Proof of Lemma 2

We will make use of certain facts established in (Esik and Rondogiannis 2014).

Suppose that L is a basic model. For each « € L and « < k, we define z|o = | | {z}. It
was shown in (Esik and Rondogiannis 2014) that & =, 2| and z|o =4 |, 2|a < z|s for
all < B < k. Moreover, x = \/ _,. #|o. Also, for all 2, € L and o < &, it holds z =, y
iff 2o =4 Yla iff 2|a = yla, and © Ty, y iff 2|o Eo ylo- And if 2 T, y, then 2|, < ylo. It
is also not difficult to prove that for all z € L and o, 8 < &, (%|a)ls = Z|min{a,s}- More
generally, whenever X C (2], and 8 < a < &, it holds (||, X)|s = [z X. And if o < 3,
then (| ], X)|g = |, X. Finally, we will make use of the following two results from (Esik
and Rondogiannis 2014):

Proposition 1

Let A, B be basic models and let a < . If f; : A — B is an a-monotonic function for
each j € J, then so is f =\, f; defined by f(z) =V, ; f;(2).

Lemma 2
Let Z be an arbitrary set and L be a basic model. Then, Z — L is a basic model with
the pointwise definition of the order of relations < and C,, for all a < k.

Suppose that A, B are basic models. By Lemma 2 the set A — B is also a model,
where the relations < and C,, a < k, are defined in a pointwise way (see (Esik and
Rondogiannis 2014, Subsection 5.3) for details). It follows that for any set F' of functions
A — B, \/ F can be computed pointwisely. Also, when F' C (f], for some f: A — B,
L], F for a < k can be computed pointwisely.

We want to show that whenever f: A — B, < x and F' C (f]g is a set of functions
such that F C [A & B], then Ls FelA ™ B]. We will make use of a lemma.

Lemma 3
Let L be a basic model. For all z,y € L and o, < k with o # 3, x|g Cq y|s iff either
8 < a and z|g = y|g (or equivalently, z =g y), or > a and z|q Cq Yla-

Proof
Let z[s Co ylg. If B < « then z[g = (z|)lsg = (ylp)ls = ylg- If B > « then z[, =

(@[)la Ca (Ylp)lo = Yla-
Suppose now that 8 < « and z|g = y|g. Then (z[g)|a = z|g = y|g = (¥|g)|a and thus

x|g =a y|g- Finally, let 5 > a and z|q Cq Yla- Then (2]g)]|a = 2o Ca Yla = (¥]8)]« and
thus z[g Co ylg. O

Remark 1
Under the above assumptions, if 3 < a, then z|g Cq y|g iff x| =4 yls iff 2|3 = y|s.

Corollary 1
Forall X, Y CLand a# B, | J; X Ca g Y if B<aand [ [ X =[]zY, or B> and
UQXEOC I_laY'
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Proof

Let = [ |3 X and y = [ |5Y. Then 2 = | |3 X = [[5{lUs X} = z[s and y = yls.
Let 8 < a. Then = C, y iff z = y. Let 8 > «. Then z C, y iff 2|a T4 ylo. But
zlo =, {s X} =L, X and similarly for Y. [

Lemma 4
Let A and B be basic models. Suppose that f: A — B and F C (f]|z (where 8 < ) is a
set of functions in [A 8 B]. Then LIz F is also a-monotonic for all o < k.

Proof
Suppose that o, 8 < k and T, y in A. Then (| |5 F)(2) = [|s{f(z) : f € F'} and
(Us F)(y) = Up{f(y) : f € F}. We have that f(z) Co f(y) for all f € F. Thus, if
a = f3, then clearly (|| F)(z) Ca (g F)(y)-

Suppose that 8 < a. Then | |;{f(z): f € F} = s{f(y) : f € F} since f(z) =5 f(y)
for all f € F. Thus, by Corollary 1, (L5 F)(z) Ea (g £)()-

Suppose that 8 > «. Then (L F)(z) Co (s F)(y) follows by Corollary 1 from
U Af(@): f € F} Co Uuif () : f€ F}. O

We equip [A S B] with the order relations < and C,, inherited from A — B. We have
the following lemma:

Lemma 5
If A and B are basic models, then so is [A % B] with the pointwise definition of the
order of relations < and C, for all a < k.

Proof

It is proved in (Esik and Rondogiannis 2014) that the set of functions A — B is a basic
model with the pointwise definition of the relations < and C,, so that for all f,g: A — B
and o < k, f < giff f(z) < g(z)forallz € Aand f C, giff f(x) C, g(x) forall z € A. It
follows that for any F C B4 and a < k, \/ F and | |, F' can also be computed pointwise:
(VF)(z)=V{f(z) 2 € A} and (|, F)(z) = {f(z): f € F}. By Proposition 1 and
Lemma 4, for all F C B4, if F is a set of functions a-monotonic for all o, then \/ F' and
Ll F are also a-monotonic for all a. Since the relations < and C,, o < x on [A 2 B
are the restrictions of the corresponding relations on B4, in view of Proposition 1 and
Lemma 4, [A 3 B] also satisfies the axioms in Definition 1, so that [A %3 B] is a basic
model. [J

The following lemma is shown in (Esik and Rondogiannis 2014, Subsection 5.2) and
will be used in the proof of the basis case of the next lemmas:

Lemma 6
(V,<) is a complete lattice and a basic model.

Lemma 2
Let D be a nonempty set and 7 be a predicate type. Then, ([7],, <) is a complete
lattice and a basic model.
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Proof

Let 7 be a predicate type. We prove that [r] is a basic model by induction on the
structure of 7. When 7 = o, [7], = V, a basic model. Suppose that 7 is of the sort
v — 7. Then [n], = D — [n'] 5, which is a basic model, since [7'], is a model by the
induction hypothesis. Finally, let m be of the sort m; — 75. By the induction hypothesis,
[7i]p is a model for i = 1,2. Thus, by Lemma 5, [], = [[m1], = [m2] ] is also a basic
model. [J

Remark 2
Let C denote the category of all basic models and a-monotonic functions. The above
results show that C is cartesian closed, since for all basic models A, B, the evaluation
function eval : (A x B) x A — B is a-monotonic (in both arguments) for all a < &.
Indeed, suppose that f,g € [A 3 B] and z,y € A with f C, g and 2 C, y. Then
eval(f,x) = f(x) C, g(z) = eval(g,z) by the pointwise definition of f T, g. Also,
eval(f,z) = f(z) C f(y) = eval(f,y) since f is a-monotonic.
Since C is cartesian closed, for all f € [Bx A % C] there is a unique Af €[B 5[4 2]
in with f(y,z) = eval(Af(y),z) for all z € A and y € B.

Appendix B Proofs of Lemmas 3, 4 and 5

Lemma 8
Let E : p be an expression and let D be a nonempty set. Moreover, let s be a state over
D and let I be an interpretation over D. Then, [E], (1) € [p] -

Proof

If p = ¢ then the claim is clear. Let E be of a predicate type m. We prove simultaneously
the following auxiliary statement. Let o < &, V : m, 2,y € [7]p. If # T, y then
[Elsjv/a) (1) Ea [El5y y(I). The proof is by structural induction on E. We will cover
only the nontrivial cases.

Case (E; E3): The main statement follows directly by the induction hypothesis of E;
and E5. There are two cases. Suppose that Ey : m — 7 and Ep : m. Then [E ] (1) €
[m1 = 7lp = [[m1]p = [7]p] and [E2],(I) € [m1],, by the induction hypothesis. Thus,
[E1], (D) ([El,(D)) € [x]p- Suppose now that Ey : « — 7 and Fy : ¢. Then [E;] (1) €
[t = 7], = D — [n], by the induction hypothesis and [Ez], (1) € [], = D. It follows
again that [E;],(1) ([E],(1)) € [7]p.

Auziliary statement: Let z,y € [n'], and assume z T, y. We have by definition
[(Ex E2)lspv/e)() = [Exlgpy m () ([E2lspy/q (1)), and similarly for [(Ex E2)[ py (1)-
We have E; : my — w and FEy : my or F1 : « — w and FE5 : . In the first case,
by induction hypothesis [Ei] y /,;(I) € [m1 — 7]p, and thus is a-monotonic. Also,
[Ex]spv/a) () Ea [Exlgyy(1) and [Eo] /() Ea [E2]yy (1) by the induction hy-
pothesis. It follows that

[[El]]s[V/w](I) (IIEQ]]S[V/,’.U](I)) Lo IIEI]]S[V/ZD( )([[EQ]] V/y]( )) Ca [[El]] V/y]( ) ([[E2]]S[V/y]<l))
The second case is similar. We have [E1],y /(1) Ea 1]]5[V/y] I) by the induction hy-

pothesis, moreover, [Ex],y /(1) = [E2] (1) Therefore, [E1] (1) ([E2l v /0 (1)) Ea
[E:0, 0 (1) ([Exlpyyy (D):
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Case (AV.E): Assume V : p; and E : mo. We will show that [AV.E] () € [p1 — m2] . If
p1 = ¢ then the result follows easily from the induction hypothesis of the first statement.
Assume p; = m. We show that [AV.E] (1) € [m — m2]p, that is, Ad.[E[ y ,q(]) is
a-monotonic for all @ < k. That follows directly by the induction hypothesis of the
auxiliary statement.

Augziliary statement: It suffices to show that [(AU.E)] . (1) Ea [(AU.E)[ (1) and
equivalently for every d, [E[ \y /.ju/a) (1) Ea [Elspy/yqu/q (1) which follows from induction
hypothesis. [

Lemma J
Let P be a program. Then, Zp is a complete lattice and a basic model.

Proof

From Lemma 2 we have that for all predicate types m, [7] v, 1s a complete lattice and a
basic model. It follows, by Lemma 2, that for all predicate types 7, Pr — [r] U, 18 also a
complete lattice and a model, where P is the set of predicate constants of type 7. Then,
Zp is [[, Px — [7]y, which is also a basic model (proved in (Esik and Rondogiannis
2014)). 0O

Lemma 5 (a-Monotonicity of Semantics)
Let P be a program and let E : m be an expression. Let I, J be Herbrand interpretations
and s be a Herbrand state of P. For all a < &, if I C,, J then [E] (1) E, [E],(J).

Proof
The proof is by structural induction on E.

Induction Base: The cases V,false, true are straightforward since their meanings do not
depend on I. Let I C,, J. If E is a predicate constant p then we have I(p) C, J(p).

Induction Step: Assume that the statement holds for expressions E; and Eo and let
IC, J.

Case (E; Ez): It holds [(E; E2)] (1) = [E1],(I)([E2],({)). By induction hypothesis we
have [E1], (1) Co [E1],(J) and therefore [Ex], (I)([Es], (1)) Ca [E1], (J)([Ex], (D). We
perform a case analysis on the type of E;. If E5 is of type ¢ and since I, J are Herbrand
interpretations, it is clear that [Ez] (/) = [E2],(J) and therefore [E;],(I)([E2] (1)) Ca
[E1],(J)([E2],(J)). By definition of application we get [(Ey E2)] (1) Ea [(E1 E2)],(J).
If E5 is of type 7 then by induction hypothesis we have [Es] (1) Cq [E2],(J) and since
[E1],(J) is a-monotonic we get that [E1] (J)([E2],(I)) Ea [E1],(J)([E2],(J)). By tran-
sitivity of C, and by the definition of application we conclude that [(E; E2)], (1) Ca
[(E1 E2)],(J).

Case (AV.Ey): It holds by definition that [(AV.E1)[ (1) = Ad.[E1], 4 (1)- It suffices
to show that Ad.[Ei],y, (1) Ca Ad[Ei] y,q(J) and equivalently that for every d,
[Erlspv/a (1) Ea [Eilsy/q(J) which holds by induction hypothesis.

Case (E1 'V, E2): It holds [(E1V, E2)],(I) = V{[E1],(I),[E2],(1)}. It suffices to show
that \/{[E1], (1), [E2],(])} Ta V{[E1],(J), [E2],(J)} which holds by induction hypoth-
esis and Axiom 4.

Case (E1 A\, E2): It holds [(E1 A, E2)],(I) = A{[E:l,(1),[E2],(I)}. Let 1 = p1 — --- —
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pn — 0, it suffices to show for all d; € [pi]y,, A{[E1l,(I) di---dn, [E2], (1) di---dn} Ea
/\{[[El]]s(J) d1 s dn, [[EQ]]S(J) dl s dn} We define Tr; = [[EZ]]S(I) dl s dn and Yi =
[Ei](J) di---d, for i € {1,2}. We perform a case analysis on v = A{z1,z2}. If v < F,
or v > T, then A{x1,22} = A{y1,y2} and thus A{z1,22} Ty A{v1,y2}. If v = F, then
F, < Ny1,y2} < Ty, and therefore A{x1, 22} T4 A{y1,y2}. If v =T, then A{y1,y2} =
T, and thus A{z1,22} Ty A{y1, 92} If Fy < v < T, then Fy, < A{y1,92} < Ty, and
therefore A{z1,z2} Co A{y1,v2}

Case (~Ej): Assume order([E1],(I)) = a. Then, by induction hypothesis [E;] () Ca

[E1],(J) and thus order([Ei],(J)) > a. It follows that order([(~ E1)],(I)) > a and
order([(~E1)],(J)) > a and therefore [(~E1)],(I) Eq [(~E1)],(J).

Case (3V.E;): Assume V is of type p. It holds [(IV.E1)],(I) = \/de[[p]] [Exlspyaq(D)- It
Up
suffices to show vde[[p]] [Eilsv/q (1) Ca vde[[p]] [E1lspv/q(J) which holds by induc-

Up

tion hypothesis and Axiom 4. [

Appendix C Proof of Theorem 2

We start by providing some necessary background material from (Esik and Rondogiannis
2014) on how the [ ] operation on a set of interpretations is actually defined.
Let z € V. For every X C (z], we define [], X as follows: if X = ) then [], X = T,,

otherwise

|—| ¥ — {/\X order(AX) < «

Th41 otherwise

Let P be a program, I € Zp be a Herbrand interpretation of P and X C (I],. For all
predicate constants p in P of type py — -+ = p, — o0 and d; € [[pi]]UP and for all
i={1,...,n}, it holds [], X as ([, X)(p) d1--- dn =[] {I(p) d1--- dy, : I € X}.

Let X be a nonempty set of Herbrand interpretations. By Lemma 4 we have that Zp is
a complete lattice with respect to < and a basic model. Moreover, by Lemma 1 it follows
that Zp is also a complete lattice with respect to C. Thus, there exist the least upper
bound and greatest lower bound of X for both < and . We denote the greatest lower
bound of X as A X and [ ] X with respect to relations < and C respectively. Then, [ X
can be constructed in an symmetric way to the least upper bound construction described
in (Esik and Rondogiannis 2014). More specifically, for each ordinal a@ < k we define the
sets Xy, Yy € X and z, € Zp, which are then used in order to obtain []X.

Let Yy = X and zg = [, Yo. For every a, with 0 < o < k we define X, = {z €
X :V8<ax=4x4}, Yo = ﬂ5<a Xg; moreover, xo = [ |, Ys if Y, is nonempty and
Ty = /\,8<a zg if Y, is empty.

Finally, we define o, = A, Za. In analogy to the proof of (Esik and Rondogiannis
2014) for the least upper bound it can be shown that x. = []X with respect to the
relation C. Moreover, it is easy to prove that by construction it holds z, =, zg and
T3 > xo for all f < a.

Lemma 7
Let P be a program, a < x and M, be a Herbrand model of P. Let M C (M,], be a
nonempty set of Herbrand models of P. Then, ], M is also a Herbrand model of P.
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Proof

Assume |_|a M is not a model. Then, there exists a clause p « E in P and d; €
[pil p such that [E[([], M)di---dn > (], M)(p)di---dy. Since for every N € M
we have [], M C, N, using Lemma 5 we conclude [E]([], M) Ca [E[(N). Let =
M AN(p)di---d, : N € M}. By definition, z = ([, M)(p)di - - - d,.

If order(z) = o then x = A{N(p)dy---d, : N € M}. If = T, then for all N ¢ M
we have N(p)d, - - - d,, = T,. Moreover, [E]([], M)d; ---d,, > T, and by a-monotonicity
we have [E}(N)dy---d, > T, for all N € M. Then, N(p)dy---d, < [E}(N)d;---dy,
and therefore N is not a model (contradiction). If z = F,, then there exists N € M such
that N(p)dy---d, = F, and since N is a model we have [E](N)d;---d, < F,. But
then, it follows [E]([], M) d: ---d, < F, and [E[([], M)d; ---d, < 2 (contradiction).

If order(x) < a then x = My (p)dy ---d,. If & = T then [E[([], M) d; ---d,, > T and
[E](My) dy - - - dy, > Tg. Then, we have My (p)ds - - - dp, < [E](M,) and thus M, is not a
model of P (contradiction). If x = Fg then [E](M,) d; - - - d,, < Fz and by a-monotonicity
[E]( ], M) di---dy < Fg. Therefore, [E]([], M) d; ---d, < x (contradiction).

If order(x) > o then x = T, and there exists model N € M such that N(p)d; ---d, <
T,. Moreover, we have [E]([], M)d;---d, > T, and by a-monotonicity we conclude
[EN(N)dy---dn > T,. But then, [E[(N)dy---d, > N(p)dy - --d, and therefore N is not
a model of P (contradiction). [J

In the following, we will make use of the following lemma that has been shown in (Esik
and Rondogiannis 2014, Lemma 3.18):

Lemma 8

If o < k is an ordinal and (2)s<a is a sequence of elements of L such that zg =3 z,
and x5 <z (x5 > x,) whenever 3 <y < a, and if v = \/5_, 25 (¥ = Ay, 5), then
x3 =g « holds for all 8 < a.

Lemma 9

Let (My)a<x be a sequence of Herbrand models of P such that M, =, Mg and Mgz < M,
for all @ < < k. Then, A\, M, is also a Herbrand model of P.

Proof

Let M = /\a<,{ M, and assume M, is not a model of P. Then, there is a clause
p < E and d; € [p;]p such that [E](Mu)dy---dp > Moo(p)dy ---dy,. We define z, =
My(p)dy---dn, Too = MOO(p) dy-dp, Yo = [[E]](Ma) dy - dpand yoo = [[E]](MOO) dy---dy
for all a < k. It follows from Lemma 8 that M., =, M, and thus x, =, z., for all
a < k. Moreover, using a-monotonicity we also have [E](Ms) =4 [E](M,) and thus
Yoo =a Yo for all @ < k. We distinguish cases based on the value of .

Assume zo, = Ty for some § < k. It follows by assumption that y., > Ts. Then, since
ZToo =g x5 it follows x5 = Ts. Moreover, since Yoo, =g ys and order(ys) < 9 it follows
Ys = Yoo > Ts. But then, ys > x5 (contradiction since My is a model by assumption).

Assume x,, = Fs for some § < k. Then, since xo, =s xs it follows x5 = Fs. Then,
since M;s is a model it follows ys < zs and thus ys < Fs. But then, since yo =5 ys it
follows ys = Yoo < Fj. Therefore, yo, < T that is a contradiction to our assumption
that Yoo > Too-

Assume =, = 0. Then, yoo > oo = 0. Let yoo = Tp for some § < k. Then, since



Minimum Model Semantics for Extensional Higher-order LP with Negation 7

Y =8 Yoo it follows yg = T}3. Since Mg is a model of P it holds T3 = yg < zg, that is
xg = T, for some v < 3. Moreover, since T, =g x5 it follows that z, = T, that is a
contradiction to our assumption that z., =0. [

Theorem 2 (Model Intersection Theorem)
Let P be a program and M be a nonempty set of Herbrand models of P. Then, [ | M is
also a Herbrand model of P.

Proof

We use the construction for []M described in the beginning of this appendix. More
specifically, we define sets M,,Y, € M and M, € Ip. Let Yy = M and M = [, Yo.
For every av > 0, let My = {M € M : V8 < a M =, M} and Y, = (5, Mp;
moreover, M, =[], Yy if Y, is nonempty and M, = /\/3<0c Mg if Y, is empty. Then,
[IM = A, <. Ma. It is easy to see that M, =4 Mg and Mg D M, for all 3 < a.

We distinguish two cases. First, consider the case when Y, is nonempty for all a < k.
Then, M, =[], Y. and by Lemma 7 it follows that M, is a model of P. Moreover, by
Lemma 9 we get that M., = /\a<,{ M, is also a model of P.

Consider now the case that there exists a least ordinal § < x such that Ys is empty.
It holds (see (Esik and Rondogiannis 2014)) that M., = Nacs Ms. Suppose My, is
not a model of P. Then, there is a clause p < E, a Herbrand state s and d; € [p;]
such that [E](Mso)dy---dp > Moo(p)dy -+ dy. We define zq = My (p)dy -+ dn, Too =
Mo (p)dy - dp, Yo = [E](My)dy -+ dp, and yoo = [E](Mso)dy - -+ d, for all 5 < a. We
distinguish cases based on the value of z.

Assume z,, = T for some 8 < §. It follows by assumption that yo > 2o = Tj.
Then, by Lemma 8 it holds that M., =g Mp and we get xoo =p g and therefore
xg = Tp. Moreover, by a-monotonicity we get [E](Moo)dy---d, =g [E](Mg)d;---d,
and it follows that y., = ys. Moreover, since yo > T3 it follows y3 = yoo > T and
ys > x3. Since Yz is not empty by assumption we have that Mg =[] 5 Y and by Lemma 7
we get that Mg is a model of P (contradiction since yz > z3).

Assume z., = Fj for some 8 < 6. Then, by Lemma 8 it holds M. =g Mgz and
therefore zo, =g xg. It follows x5 = Fj3. Moreover, since Y3 is nonempty by assumption
and by Lemma 7 it follows that Mg =[5 Y} is a model of P and thus ys < x5 = Fj. By
a-monotonicity we get [E](Ms) =s [E](Mp) and therefore yoo =g yg < Fjs. It follows
Yoo < Fjg = 25 (contradiction to the initial assumption Yoo > Zoo).

Assume z, = T5. By assumption we have yoo > %o = T5. Then, let yoo = T},
for some v < §. By Lemma 8 it holds M, =, M, and by a-monotonicity it follows
[E](Ms) =~ [E](M,) and thus yo =, y,. It follows that y, = T,. Moreover, since
7 < 6 we know by assumption that Y, is nonempty and therefore M, = []Y, and by
Lemma 7 M, is a model of P. It follows 1), = y, < x,, that is, z, = T for some
B < < 0. Moreover, since o, =, - it follows o, = Tp that is a contradiction (since
by assumption z., = Ty).

Assume z, = Fy. This case is not possible. Recall that Y, is not empty for all a < §
and thus M, = []Y,. By the definition of [], we observe that either [] Y, < F, or
[y Ye = Taq1. Then, since Mo = A5 Mo it is not possible to have xo, = Fj.

Assume zo, = 0. This case does not arise. Again, Y, is not empty for all & < ¢ and
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thus M, =[], Ya. Moreover, by definition of [, 2o # 0 for all @ < 6. Moreover, since
Mo = /\a<(S M, and since ¢ < & it follows that the limit can be at most T5. [

Appendix D Proofs of Lemmas 6, 7 and Theorem 3

Lemma 6
Let P be a program. For every predicate constant p : 7 in P and I € Zp, Tp(I)(p) € [[w]]UP.

Proof
It follows from the fact that [7];;, is a complete lattice (Lemma 2). [

Lemma 7
Let P be a program. Then, Tp is a-monotonic for all a < k.

Proof
Follows directly from Lemma 5 and Proposition 1. []

Lemma 10
Let P be a program. Then, M € Zp is a model of P if and only if Tp(M) <z, M.

Proof
An interpretation I € Zp is a model of P iff [E](I) <, I(p) for all clauses p <, E in P iff

Vperyer [EI() <z I(p) iff Tp(I) <z, 1. O

Proposition 11
Let D be a nonempty set, 7 be a predicate type and z,y € [7],. If © <; y and z =g y
for all 8 < a then x C, y.

Proof
The proof is by structural induction on .

Induction Basis: If x =g y for all § < « then either x = y or order(x),order(y) > a. If
x =y then x T, y. Suppose = # y. If order(z),order(y) > « then © =, y. If x = F,
then clearly x C,, y. If x = T, then T, < y and therefore y = T,,. The case analysis for
y is similar.

Induction Step: Assume that the statement holds for 7. Let f,g € [p — 7], and o < k.
For all z € [p], and 8 < o, f(z) < g(x) and f(z) =g g(z). It follows that f(z) T, g(x).
Therefore, f T, g. [

Proposition 12
Let P be a program and I, .J be Herbrand interpretations of P. If I <z, J and [ =g J
for all 8 < a then I C, J.

Proof
Let I,J € Zp and a < k. For all predicate constants p and § < «, I(p) < J(p) and
I(p) = J(p). It follows by Proposition 11 that I(p) C, J(p) and therefore, I C, J. [
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Lemma 13
Let P be a program. If M is a model of P then Tp(M) C M.

Proof

It follows from Lemma 10 that if M is a Herbrand model of P then Tp(M) <z, M. If
Tp(M) = M then the statement is immediate. Suppose Tp(M) <z, M and let o denote
the least ordinal such that Tp(M) =, M does not hold. Then, Tp(M) =g M for all
B < a. Since Tp(M) <z, M, by Proposition 12 it follows that Tp(M) T, M. Since
Tp(M) =, M does not hold, it follows that Tp(M) C, M. Therefore Tp(M) T M. [J

Theorem 8 (Least Fized Point Theorem)
Let P be a program and let M be the set of all its Herbrand models. Then, 7p has a
least fixed point Mp. Moreover, Mp = [ | M.

Proof

It follows from Lemma 7 and Theorem 1 that Tp has a least pre-fixed point with respect
to C that is also a least fixed point. Let Mp be that least fixed point of Tp, i.e., Tp(Mp) =
Mp. Tt is clear from Lemma 10 that Mp is a model of P, i.e., Mp € M. Then, it follows
[]M C Mp. Moreover, from Theorem 2 it is implied that [|M is a model and thus
from Lemma 13, [ | M is a pre-fixed point of Tp with respect to C. Since Mp is the least
pre-fixed point of P, Mp C [ | M and thus Mp =[| M. [



