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Appendix A Proof of Lemma 2

We will make use of certain facts established in (Ésik and Rondogiannis 2014).

Suppose that L is a basic model. For each x ∈ L and α < κ, we define x|α =
⊔
α{x}. It

was shown in (Ésik and Rondogiannis 2014) that x =α x|α and x|α =α x|β , x|α ≤ x|β for

all α < β < κ. Moreover, x =
∨
α<κ x|α. Also, for all x, y ∈ L and α < κ, it holds x =α y

iff x|α =α y|α iff x|α = y|α, and x vα y iff x|α vα y|α. And if x vα y, then x|α ≤ y|α. It

is also not difficult to prove that for all x ∈ L and α, β < κ, (x|α)|β = x|min{α,β}. More

generally, whenever X ⊆ (z]α and β ≤ α < κ, it holds (
⊔
αX)|β =

⊔
β X. And if α < β,

then (
⊔
αX)|β =

⊔
αX. Finally, we will make use of the following two results from (Ésik

and Rondogiannis 2014):

Proposition 1

Let A,B be basic models and let α < κ. If fj : A → B is an α-monotonic function for

each j ∈ J , then so is f =
∨
j∈J fj defined by f(x) =

∨
j∈J fj(x).

Lemma 2

Let Z be an arbitrary set and L be a basic model. Then, Z → L is a basic model with

the pointwise definition of the order of relations ≤ and vα for all α < κ.

Suppose that A,B are basic models. By Lemma 2 the set A → B is also a model,

where the relations ≤ and vα, α < κ, are defined in a pointwise way (see (Ésik and

Rondogiannis 2014, Subsection 5.3) for details). It follows that for any set F of functions

A → B,
∨
F can be computed pointwisely. Also, when F ⊆ (f ]α for some f : A → B,⊔

α F for α < κ can be computed pointwisely.

We want to show that whenever f : A→ B, β < κ and F ⊆ (f ]β is a set of functions

such that F ⊆ [A
m→ B], then

⊔
β F ∈ [A

m→ B]. We will make use of a lemma.

Lemma 3

Let L be a basic model. For all x, y ∈ L and α, β < κ with α 6= β, x|β vα y|β iff either

β < α and x|β = y|β (or equivalently, x =β y), or β > α and x|α vα y|α.

Proof

Let x|β vα y|β . If β < α then x|β = (x|β)|β = (y|β)|β = y|β . If β > α then x|α =

(x|β)|α vα (y|β)|α = y|α.

Suppose now that β < α and x|β = y|β . Then (x|β)|α = x|β = y|β = (y|β)|α and thus

x|β =α y|β . Finally, let β > α and x|α vα y|α. Then (x|β)|α = x|α vα y|α = (y|β)|α and

thus x|β vα y|β .

Remark 1

Under the above assumptions, if β < α, then x|β vα y|β iff x|β =α y|β iff x|β = y|β .

Corollary 1

For all X,Y ⊆ L and α 6= β,
⊔
β X vα

⊔
β Y iff β < α and

⊔
β X =

⊔
β Y , or β > α and⊔

αX vα
⊔
α Y .
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Proof

Let x =
⊔
β X and y =

⊔
β Y . Then x =

⊔
β X =

⊔
β{

⊔
β X} = x|β and y = y|β .

Let β < α. Then x vα y iff x = y. Let β > α. Then x vα y iff x|α vα y|α. But

x|α =
⊔
α{

⊔
β X} =

⊔
αX and similarly for Y .

Lemma 4

Let A and B be basic models. Suppose that f : A→ B and F ⊆ (f ]β (where β < κ) is a

set of functions in [A
m→ B]. Then

⊔
β F is also α-monotonic for all α < κ.

Proof

Suppose that α, β < κ and x vα y in A. Then (
⊔
β F )(x) =

⊔
β{f(x) : f ∈ F} and

(
⊔
β F )(y) =

⊔
β{f(y) : f ∈ F}. We have that f(x) vα f(y) for all f ∈ F . Thus, if

α = β, then clearly (
⊔
β F )(x) vα (

⊔
β F )(y).

Suppose that β < α. Then
⊔
β{f(x) : f ∈ F} =

⊔
β{f(y) : f ∈ F} since f(x) =β f(y)

for all f ∈ F . Thus, by Corollary 1, (
⊔
β F )(x) vα (

⊔
β F )(y).

Suppose that β > α. Then (
⊔
β F )(x) vα (

⊔
β F )(y) follows by Corollary 1 from⊔

α{f(x) : f ∈ F} vα
⊔
α{f(y) : f ∈ F}.

We equip [A
m→ B] with the order relations ≤ and vα inherited from A→ B. We have

the following lemma:

Lemma 5

If A and B are basic models, then so is [A
m→ B] with the pointwise definition of the

order of relations ≤ and vα for all α < κ.

Proof

It is proved in (Ésik and Rondogiannis 2014) that the set of functions A→ B is a basic

model with the pointwise definition of the relations ≤ and vα, so that for all f, g : A→ B

and α < κ, f ≤ g iff f(x) ≤ g(x) for all x ∈ A and f vα g iff f(x) vα g(x) for all x ∈ A. It

follows that for any F ⊆ BA and α < κ,
∨
F and

⊔
α F can also be computed pointwise:

(
∨
F )(x) =

∨
{f(x) : x ∈ A} and (

⊔
α F )(x) =

⊔
α{f(x) : f ∈ F}. By Proposition 1 and

Lemma 4, for all F ⊆ BA, if F is a set of functions α-monotonic for all α, then
∨
F and⊔

β F are also α-monotonic for all α. Since the relations ≤ and vα, α < κ on [A
m→ B]

are the restrictions of the corresponding relations on BA, in view of Proposition 1 and

Lemma 4, [A
m→ B] also satisfies the axioms in Definition 1, so that [A

m→ B] is a basic

model.

The following lemma is shown in (Ésik and Rondogiannis 2014, Subsection 5.2) and

will be used in the proof of the basis case of the next lemma:

Lemma 6

(V,≤) is a complete lattice and a basic model.

Lemma 2

Let D be a nonempty set and π be a predicate type. Then, ([[π]]D,≤π) is a complete

lattice and a basic model.
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Proof

Let π be a predicate type. We prove that [[π]]D is a basic model by induction on the

structure of π. When π = o, [[π]]D = V , a basic model. Suppose that π is of the sort

ι→ π′. Then [[π]]D = D → [[π′]]D, which is a basic model, since [[π′]]D is a model by the

induction hypothesis. Finally, let π be of the sort π1 → π2. By the induction hypothesis,

[[πi]]D is a model for i = 1, 2. Thus, by Lemma 5, [[π]]D = [[[π1]]D
m→ [[π2]]D] is also a basic

model.

Remark 2

Let C denote the category of all basic models and α-monotonic functions. The above

results show that C is cartesian closed, since for all basic models A,B, the evaluation

function eval : (A×B)×A→ B is α-monotonic (in both arguments) for all α < κ.

Indeed, suppose that f, g ∈ [A
m→ B] and x, y ∈ A with f vα g and x vα y. Then

eval(f, x) = f(x) vα g(x) = eval(g, x) by the pointwise definition of f vα g. Also,

eval(f, x) = f(x) vα f(y) = eval(f, y) since f is α-monotonic.

Since C is cartesian closed, for all f ∈ [B×A m→ C] there is a unique Λf ∈ [B
m→ [A

m→C]]

in with f(y, x) = eval(Λf(y), x) for all x ∈ A and y ∈ B.

Appendix B Proofs of Lemmas 3, 4 and 5

Lemma 3

Let E : ρ be an expression and let D be a nonempty set. Moreover, let s be a state over

D and let I be an interpretation over D. Then, [[E]]s(I) ∈ [[ρ]]D.

Proof

If ρ = ι then the claim is clear. Let E be of a predicate type π. We prove simultaneously

the following auxiliary statement. Let α < κ, V : π, x, y ∈ [[π′]]D. If x vα y then

[[E]]s[V/x](I) vα [[E]]s[V/y](I). The proof is by structural induction on E. We will cover

only the nontrivial cases.

Case (E1 E2): The main statement follows directly by the induction hypothesis of E1

and E2. There are two cases. Suppose that E1 : π1 → π and E2 : π1. Then [[E1]]s(I) ∈
[[π1 → π]]D = [[[π1]]D

m→ [[π]]D] and [[E2]]s(I) ∈ [[π1]]D by the induction hypothesis. Thus,

[[E1]]s(I) ([[E]]s(I)) ∈ [[π]]D. Suppose now that E1 : ι → π and E2 : ι. Then [[E1]]s(I) ∈
[[ι→ π]]D = D → [[π]]D by the induction hypothesis and [[E2]]s(I) ∈ [[ι]]D = D. It follows

again that [[E1]]s(I) ([[E]]s(I)) ∈ [[π]]D.

Auxiliary statement: Let x, y ∈ [[π′]]D and assume x vα y. We have by definition

[[(E1 E2)]]s[V/x](I) = [[E1]]s[V/x](I) ([[E2]]s[V/x](I)), and similarly for [[(E1 E2)]]s[V/y](I).

We have E1 : π1 → π and E2 : π1 or E1 : ι → π and E2 : ι. In the first case,

by induction hypothesis [[E1]]s[V/x](I) ∈ [[π1 → π]]D, and thus is α-monotonic. Also,

[[E1]]s[V/x](I) vα [[E1]]s[V/y](I) and [[E2]]s[V/x](I) vα [[E2]]s[V/y](I) by the induction hy-

pothesis. It follows that

[[E1]]s[V/x](I) ([[E2]]s[V/x](I)) vα [[E1]]s[V/x](I) ([[E2]]s[V/y](I)) vα [[E1]]s[V/y](I) ([[E2]]s[V/y](I)).

The second case is similar. We have [[E1]]s[V/x](I) vα [[E1]]s[V/y](I) by the induction hy-

pothesis, moreover, [[E2]]s[V/x](I) = [[E2]]s[V/y](I). Therefore, [[E1]]s[V/x](I) ([[E2]]s[V/x](I)) vα
[[E1]]s[V/y](I) ([[E2]]s[V/y](I)).
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Case (λV.E): Assume V : ρ1 and E : π2. We will show that [[λV.E]]s(I) ∈ [[ρ1 → π2]]D. If

ρ1 = ι then the result follows easily from the induction hypothesis of the first statement.

Assume ρ1 = π1. We show that [[λV.E]]s(I) ∈ [[π1 → π2]]D, that is, λd.[[E]]s[V/d](I) is

α-monotonic for all α < κ. That follows directly by the induction hypothesis of the

auxiliary statement.

Auxiliary statement: It suffices to show that [[(λU.E)]]s[V/x](I) vα [[(λU.E)]]s[V/y](I) and

equivalently for every d, [[E]]s[V/x][U/d](I) vα [[E]]s[V/y][U/d](I) which follows from induction

hypothesis.

Lemma 4

Let P be a program. Then, IP is a complete lattice and a basic model.

Proof

From Lemma 2 we have that for all predicate types π, [[π]]UP
is a complete lattice and a

basic model. It follows, by Lemma 2, that for all predicate types π, Pπ → [[π]]UP
is also a

complete lattice and a model, where Pπ is the set of predicate constants of type π. Then,

IP is
∏
π Pπ → [[π]]UP

which is also a basic model (proved in (Ésik and Rondogiannis

2014)).

Lemma 5 (α-Monotonicity of Semantics)

Let P be a program and let E : π be an expression. Let I, J be Herbrand interpretations

and s be a Herbrand state of P. For all α < κ, if I vα J then [[E]]s(I) vα [[E]]s(J).

Proof

The proof is by structural induction on E.

Induction Base: The cases V, false, true are straightforward since their meanings do not

depend on I. Let I vα J . If E is a predicate constant p then we have I(p) vα J(p).

Induction Step: Assume that the statement holds for expressions E1 and E2 and let

I vα J .

Case (E1 E2): It holds [[(E1 E2)]]s(I) = [[E1]]s(I)([[E2]]s(I)). By induction hypothesis we

have [[E1]]s(I) vα [[E1]]s(J) and therefore [[E1]]s(I)([[E2]]s(I)) vα [[E1]]s(J)([[E2]]s(I)). We

perform a case analysis on the type of E2. If E2 is of type ι and since I, J are Herbrand

interpretations, it is clear that [[E2]]s(I) = [[E2]]s(J) and therefore [[E1]]s(I)([[E2]]s(I)) vα
[[E1]]s(J)([[E2]]s(J)). By definition of application we get [[(E1 E2)]]s(I) vα [[(E1 E2)]]s(J).

If E2 is of type π then by induction hypothesis we have [[E2]]s(I) vα [[E2]]s(J) and since

[[E1]]s(J) is α-monotonic we get that [[E1]]s(J)([[E2]]s(I)) vα [[E1]]s(J)([[E2]]s(J)). By tran-

sitivity of vα and by the definition of application we conclude that [[(E1 E2)]]s(I) vα
[[(E1 E2)]]s(J).

Case (λV.E1): It holds by definition that [[(λV.E1)]]s(I) = λd.[[E1]]s[V/d](I). It suffices

to show that λd.[[E1]]s[V/d](I) vα λd.[[E1]]s[V/d](J) and equivalently that for every d,

[[E1]]s[V/d](I) vα [[E1]]s[V/d](J) which holds by induction hypothesis.

Case (E1

∨
π E2): It holds [[(E1

∨
π E2)]]s(I) =

∨
{[[E1]]s(I), [[E2]]s(I)}. It suffices to show

that
∨
{[[E1]]s(I), [[E2]]s(I)} vα

∨
{[[E1]]s(J), [[E2]]s(J)} which holds by induction hypoth-

esis and Axiom 4.

Case (E1

∧
π E2): It holds [[(E1

∧
π E2)]]s(I) =

∧
{[[E1]]s(I), [[E2]]s(I)}. Let π = ρ1 → · · · →
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ρn → o, it suffices to show for all di ∈ [[ρi]]UP
,
∧
{[[E1]]s(I) d1 · · · dn, [[E2]]s(I) d1 · · · dn} vα∧

{[[E1]]s(J) d1 · · · dn, [[E2]]s(J) d1 · · · dn}. We define xi = [[Ei]]s(I) d1 · · · dn and yi =

[[Ei]]s(J) d1 · · · dn for i ∈ {1, 2}. We perform a case analysis on v =
∧
{x1, x2}. If v < Fα

or v > Tα then
∧
{x1, x2} =

∧
{y1, y2} and thus

∧
{x1, x2} vα

∧
{y1, y2}. If v = Fα then

Fα ≤
∧
{y1, y2} ≤ Tα and therefore

∧
{x1, x2} vα

∧
{y1, y2}. If v = Tα then

∧
{y1, y2} =

Tα and thus
∧
{x1, x2} vα

∧
{y1, y2}. If Fα < v < Tα then Fα <

∧
{y1, y2} ≤ Tα and

therefore
∧
{x1, x2} vα

∧
{y1, y2}.

Case (∼ E1): Assume order([[E1]]s(I)) = α. Then, by induction hypothesis [[E1]]s(I) vα
[[E1]]s(J) and thus order([[E1]]s(J)) ≥ α. It follows that order([[(∼ E1)]]s(I)) > α and

order([[(∼E1)]]s(J)) > α and therefore [[(∼E1)]]s(I) vα [[(∼E1)]]s(J).

Case (∃V.E1): Assume V is of type ρ. It holds [[(∃V.E1)]]s(I) =
∨
d∈[[ρ]]

UP

[[E1]]s[V/d](I). It

suffices to show
∨
d∈[[ρ]]

UP

[[E1]]s[V/d](I) vα
∨
d∈[[ρ]]

UP

[[E1]]s[V/d](J) which holds by induc-

tion hypothesis and Axiom 4.

Appendix C Proof of Theorem 2

We start by providing some necessary background material from (Ésik and Rondogiannis

2014) on how the
d

operation on a set of interpretations is actually defined.

Let x ∈ V . For every X ⊆ (x]α we define
d
αX as follows: if X = ∅ then

d
αX = Tα,

otherwise

l
α
X =

{∧
X order(

∧
X) ≤ α

Tα+1 otherwise

Let P be a program, I ∈ IP be a Herbrand interpretation of P and X ⊆ (I]α. For all

predicate constants p in P of type ρ1 → · · · → ρn → o and di ∈ [[ρi]]UP
and for all

i = {1, . . . , n}, it holds
d
αX as (

d
αX)(p) d1 · · · dn =

d
α{I(p) d1 · · · dn : I ∈ X}.

Let X be a nonempty set of Herbrand interpretations. By Lemma 4 we have that IP is

a complete lattice with respect to ≤ and a basic model. Moreover, by Lemma 1 it follows

that IP is also a complete lattice with respect to v. Thus, there exist the least upper

bound and greatest lower bound of X for both ≤ and v. We denote the greatest lower

bound of X as
∧
X and

d
X with respect to relations ≤ and v respectively. Then,

d
X

can be constructed in an symmetric way to the least upper bound construction described

in (Ésik and Rondogiannis 2014). More specifically, for each ordinal α < κ we define the

sets Xα, Yα ⊆ X and xα ∈ IP, which are then used in order to obtain
d
X.

Let Y0 = X and x0 =
d

0 Y0. For every α, with 0 < α < κ we define Xα = {x ∈
X : ∀β ≤ α x =α xα}, Yα =

⋂
β<αXβ ; moreover, xα =

d
α Yα if Yα is nonempty and

xα =
∧
β<α xβ if Yα is empty.

Finally, we define x∞ =
∧
α<κ xα. In analogy to the proof of (Ésik and Rondogiannis

2014) for the least upper bound it can be shown that x∞ =
d
X with respect to the

relation v. Moreover, it is easy to prove that by construction it holds xα =α xβ and

xβ ≥ xα for all β < α.

Lemma 7

Let P be a program, α < κ and Mα be a Herbrand model of P. Let M ⊆ (Mα]α be a

nonempty set of Herbrand models of P. Then,
d
αM is also a Herbrand model of P.
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Proof

Assume
d
αM is not a model. Then, there exists a clause p ← E in P and di ∈

[[ρi]]D such that [[E]](
d
αM) d1 · · · dn > (

d
αM)(p) d1 · · · dn. Since for every N ∈ M

we have
d
αM vα N , using Lemma 5 we conclude [[E]](

d
αM) vα [[E]](N). Let x =d

α{N(p) d1 · · · dn : N ∈M}. By definition, x = (
d
αM)(p) d1 · · · dn.

If order(x) = α then x =
∧
{N(p) d1 · · · dn : N ∈ M}. If x = Tα then for all N ∈ M

we have N(p) d1 · · · dn = Tα. Moreover, [[E]](
d
αM) d1 · · · dn > Tα and by α-monotonicity

we have [[E]](N) d1 · · · dn > Tα for all N ∈ M. Then, N(p) d1 · · · dn < [[E]](N) d1 · · · dn
and therefore N is not a model (contradiction). If x = Fα then there exists N ∈M such

that N(p) d1 · · · dn = Fα and since N is a model we have [[E]](N) d1 · · · dn ≤ Fα. But

then, it follows [[E]](
d
αM) d1 · · · dn ≤ Fα and [[E]](

d
αM) d1 · · · dn ≤ x (contradiction).

If order(x) < α then x = Mα(p) d1 · · · dn. If x = Tβ then [[E]](
d
αM) d1 · · · dn > Tβ and

[[E]](Mα) d1 · · · dn > Tβ . Then, we have Mα(p) d1 · · · dn < [[E]](Mα) and thus Mα is not a

model of P (contradiction). If x = Fβ then [[E]](Mα) d1 · · · dn ≤ Fβ and by α-monotonicity

[[E]](
d
αM) d1 · · · dn ≤ Fβ . Therefore, [[E]](

d
αM) d1 · · · dn ≤ x (contradiction).

If order(x) > α then x = Tα+1 and there exists modelN ∈M such thatN(p) d1 · · · dn <
Tα. Moreover, we have [[E]](

d
αM) d1 · · · dn ≥ Tα and by α-monotonicity we conclude

[[E]](N) d1 · · · dn ≥ Tα. But then, [[E]](N) d1 · · · dn > N(p) d1 · · · dn and therefore N is not

a model of P (contradiction).

In the following, we will make use of the following lemma that has been shown in (Ésik

and Rondogiannis 2014, Lemma 3.18):

Lemma 8

If α ≤ κ is an ordinal and (xβ)β<α is a sequence of elements of L such that xβ =β xγ
and xβ ≤ xγ (xβ ≥ xγ) whenever β < γ < α, and if x =

∨
β<α xβ (x =

∧
β<α xβ), then

xβ =β x holds for all β < α.

Lemma 9

Let (Mα)α<κ be a sequence of Herbrand models of P such that Mα =α Mβ and Mβ ≤Mα

for all α < β < κ. Then,
∧
α<κMα is also a Herbrand model of P.

Proof

Let M∞ =
∧
α<κMα and assume M∞ is not a model of P. Then, there is a clause

p ← E and di ∈ [[ρi]]D such that [[E]](M∞) d1 · · · dn > M∞(p) d1 · · · dn. We define xα =

Mα(p) d1 · · · dn, x∞ = M∞(p) d1 · · · dn, yα = [[E]](Mα) d1 · · · dn and y∞ = [[E]](M∞) d1 · · · dn
for all α < κ. It follows from Lemma 8 that M∞ =α Mα and thus x∞ =α xα for all

α < κ. Moreover, using α-monotonicity we also have [[E]](M∞) =α [[E]](Mα) and thus

y∞ =α yα for all α < κ. We distinguish cases based on the value of x∞.

Assume x∞ = Tδ for some δ < κ. It follows by assumption that y∞ > Tδ. Then, since

x∞ =δ xδ it follows xδ = Tδ. Moreover, since y∞ =δ yδ and order(y∞) < δ it follows

yδ = y∞ > Tδ. But then, yδ > xδ (contradiction since Mδ is a model by assumption).

Assume x∞ = Fδ for some δ < κ. Then, since x∞ =δ xδ it follows xδ = Fδ. Then,

since Mδ is a model it follows yδ ≤ xδ and thus yδ ≤ Fδ. But then, since y∞ =δ yδ it

follows yδ = y∞ ≤ Fδ. Therefore, y∞ ≤ x∞ that is a contradiction to our assumption

that y∞ > x∞.

Assume x∞ = 0. Then, y∞ > x∞ = 0. Let y∞ = Tβ for some β < κ. Then, since
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yβ =β y∞ it follows yβ = Tβ . Since Mβ is a model of P it holds Tβ = yβ ≤ xβ , that is

xβ = Tγ for some γ ≤ β. Moreover, since x∞ =β xβ it follows that x∞ = Tγ that is a

contradiction to our assumption that x∞ = 0.

Theorem 2 (Model Intersection Theorem)

Let P be a program and M be a nonempty set of Herbrand models of P. Then,
d
M is

also a Herbrand model of P.

Proof

We use the construction for
d
M described in the beginning of this appendix. More

specifically, we define sets Mα, Yα ⊆ M and Mα ∈ IP. Let Y0 = M and M0 =
d

0 Y0.

For every α > 0, let Mα = {M ∈ M : ∀β ≤ α M =α Mα} and Yα =
⋂
β<αMβ ;

moreover, Mα =
d
α Yα if Yα is nonempty and Mα =

∧
β<αMβ if Yα is empty. Then,d

M =
∧
α<κMα. It is easy to see that Mα =α Mβ and Mβ ⊇Mα for all β < α.

We distinguish two cases. First, consider the case when Yα is nonempty for all α < κ.

Then, Mα =
d
α Yα and by Lemma 7 it follows that Mα is a model of P. Moreover, by

Lemma 9 we get that M∞ =
∧
α<κMα is also a model of P.

Consider now the case that there exists a least ordinal δ < κ such that Yδ is empty.

It holds (see (Ésik and Rondogiannis 2014)) that M∞ =
∧
α<δMδ. Suppose M∞ is

not a model of P. Then, there is a clause p ← E, a Herbrand state s and di ∈ [[ρi]]D
such that [[E]](M∞) d1 · · · dn > M∞(p) d1 · · · dn. We define xα = Mα(p) d1 · · · dn, x∞ =

M∞(p) d1 · · · dn, yα = [[E]](Mα) d1 · · · dn, and y∞ = [[E]](M∞) d1 · · · dn for all β ≤ α. We

distinguish cases based on the value of x∞.

Assume x∞ = Tβ for some β < δ. It follows by assumption that y∞ > x∞ = Tβ .

Then, by Lemma 8 it holds that M∞ =β Mβ and we get x∞ =β xβ and therefore

xβ = Tβ . Moreover, by α-monotonicity we get [[E]](M∞) d1 · · · dn =β [[E]](Mβ) d1 · · · dn
and it follows that y∞ =β yβ . Moreover, since y∞ > Tβ it follows yβ = y∞ > Tβ and

yβ > xβ . Since Yβ is not empty by assumption we have that Mβ =
d
β Yβ and by Lemma 7

we get that Mβ is a model of P (contradiction since yβ > xβ).

Assume x∞ = Fβ for some β < δ. Then, by Lemma 8 it holds M∞ =β Mβ and

therefore x∞ =β xβ . It follows xβ = Fβ . Moreover, since Yβ is nonempty by assumption

and by Lemma 7 it follows that Mβ =
d
β Yβ is a model of P and thus yβ ≤ xβ = Fβ . By

α-monotonicity we get [[E]](M∞) =β [[E]](Mβ) and therefore y∞ =β yβ ≤ Fβ . It follows

y∞ ≤ Fβ = x∞ (contradiction to the initial assumption y∞ > x∞).

Assume x∞ = Tδ. By assumption we have y∞ > x∞ = Tδ. Then, let y∞ = Tγ
for some γ < δ. By Lemma 8 it holds M∞ =γ Mγ and by α-monotonicity it follows

[[E]](M∞) =γ [[E]](Mγ) and thus y∞ =γ yγ . It follows that yγ = Tγ . Moreover, since

γ < δ we know by assumption that Yγ is nonempty and therefore Mγ =
d
Yγ and by

Lemma 7 Mγ is a model of P. It follows Tγ = yγ ≤ xγ , that is, xγ = Tβ for some

β ≤ γ < δ. Moreover, since x∞ =γ xγ it follows x∞ = Tβ that is a contradiction (since

by assumption x∞ = Tδ).

Assume x∞ = Fδ. This case is not possible. Recall that Yα is not empty for all α < δ

and thus Mα =
d
Yα. By the definition of

d
α we observe that either

d
α Yα ≤ Fα ord

α Yα ≥ Tα+1. Then, since M∞ =
∧
α<δMα it is not possible to have x∞ = Fδ.

Assume x∞ = 0. This case does not arise. Again, Yα is not empty for all α < δ and
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thus Mα =
d
α Yα. Moreover, by definition of

d
α, xα 6= 0 for all α < δ. Moreover, since

M∞ =
∧
α<δMα and since δ < κ it follows that the limit can be at most Tδ.

Appendix D Proofs of Lemmas 6, 7 and Theorem 3

Lemma 6

Let P be a program. For every predicate constant p : π in P and I ∈ IP, TP (I)(p) ∈ [[π]]UP
.

Proof

It follows from the fact that [[π]]UP
is a complete lattice (Lemma 2).

Lemma 7

Let P be a program. Then, TP is α-monotonic for all α < κ.

Proof

Follows directly from Lemma 5 and Proposition 1.

Lemma 10

Let P be a program. Then, M ∈ IP is a model of P if and only if TP(M) ≤IP M .

Proof

An interpretation I ∈ IP is a model of P iff [[E]](I) ≤π I(p) for all clauses p←π E in P iff∨
(p←E)∈P [[E]](I) ≤IP I(p) iff TP(I) ≤IP I.

Proposition 11

Let D be a nonempty set, π be a predicate type and x, y ∈ [[π]]D. If x ≤π y and x =β y

for all β < α then x vα y.

Proof

The proof is by structural induction on π.

Induction Basis: If x =β y for all β < α then either x = y or order(x), order(y) ≥ α. If

x = y then x vα y. Suppose x 6= y. If order(x), order(y) > α then x =α y. If x = Fα
then clearly x vα y. If x = Tα then Tα ≤ y and therefore y = Tα. The case analysis for

y is similar.

Induction Step: Assume that the statement holds for π. Let f, g ∈ [[ρ→ π]]D and α < κ.

For all x ∈ [[ρ]]D and β < α, f(x) ≤ g(x) and f(x) =β g(x). It follows that f(x) vα g(x).

Therefore, f vα g.

Proposition 12

Let P be a program and I, J be Herbrand interpretations of P . If I ≤IP J and I =β J

for all β < α then I vα J .

Proof

Let I, J ∈ IP and α < κ. For all predicate constants p and β < α, I(p) ≤ J(p) and

I(p) =β J(p). It follows by Proposition 11 that I(p) vα J(p) and therefore, I vα J .
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Lemma 13

Let P be a program. If M is a model of P then TP(M) vM .

Proof

It follows from Lemma 10 that if M is a Herbrand model of P then TP(M) ≤IP M . If

TP(M) = M then the statement is immediate. Suppose TP(M) <IP M and let α denote

the least ordinal such that TP(M) =α M does not hold. Then, TP(M) =β M for all

β < α. Since TP(M) <IP M , by Proposition 12 it follows that TP(M) vα M . Since

TP(M) =α M does not hold, it follows that TP(M) <α M . Therefore TP(M) vM .

Theorem 3 (Least Fixed Point Theorem)

Let P be a program and let M be the set of all its Herbrand models. Then, TP has a

least fixed point MP. Moreover, MP =
d
M.

Proof

It follows from Lemma 7 and Theorem 1 that TP has a least pre-fixed point with respect

to v that is also a least fixed point. Let MP be that least fixed point of TP, i.e., TP(MP) =

MP. It is clear from Lemma 10 that MP is a model of P, i.e., MP ∈ M. Then, it followsd
M v MP. Moreover, from Theorem 2 it is implied that

d
M is a model and thus

from Lemma 13,
d
M is a pre-fixed point of TP with respect to v. Since MP is the least

pre-fixed point of P, MP v
d
M and thus MP =

d
M.


