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Appendix

Proof of Theorem 6

Proof. Let Z be a set of atoms, S ⊆ SZ a set of SE-interpretations that is complete
and closed under here-union, and Y = {Y : (X,Y ) ∈ S}. Consider Ŷ ⊆ Z such that
(Ŷ , Ŷ ) /∈ S. Since S is complete, for every Y ∈ Y , (Y, Y ) ∈ S. Thus, for every Y ∈ Y ,
Y 6= Ŷ . We define

Y ′ = {Y ∈ Y : Y ⊆ Ŷ } and Y ′′ = {Y ∈ Y : Y \ Ŷ 6= ∅}.

Clearly,Y ′′∩Y ′ = ∅ andY ′∪Y ′′ = Y . For each Y ∈ Y ′, we select an element bY ∈ Ŷ \Y
(it is possible, as Y 6= Ŷ ). Similarly, for each Y ∈ Y ′′, we select an element cY ∈ Y \ Ŷ .
We set BŶ = {bY : Y ∈ Y ′} and CŶ = {cY : Y ∈ Y ′′}, and we define

rŶ = ← BŶ ,¬CŶ .

We note that for every (X,Y ) ∈ S, (X,Y ) |=SE rŶ . Indeed, if Y ∈ Y ′, then bY ∈
BŶ \ Y and so, Condition (2) of Lemma 1 holds. Otherwise, Y ∈ Y ′′ and cY ∈ CŶ ∩ Y .
Thus, Condition (1) of that lemma holds. On the other hand, (Ŷ , Ŷ ) 6|=SE rŶ . Indeed,
CŶ ∩ Ŷ = ∅ and BŶ ⊆ Ŷ , so neither Condition (1) nor Condition (2) holds. Moreover,
neither Condition (3) nor Condition (4) holds, as rŶ is a constraint.

Next, let us consider (X̂, Ŷ ) /∈ S, where Ŷ ∈ Y , and let us define X = {X : (X, Ŷ ) ∈
S}. We set

X ′ = {X ∈ X : X ⊆ X̂} and X ′′ = {X ∈ X : X \ X̂ 6= ∅}.



2

If X ′ 6= ∅, let X0 =
⋃
X ′. Since S is closed under here-union, X0 is a proper subset of

X . We select an arbitrary element b ∈ X̂ \X0 and define B = {b}. Otherwise, we define
B = ∅.

IfX ′′ 6= ∅, for each X ∈ X ′′, we select aX ∈ X\X̂ , and we define A = {aX : X ∈ X ′′}.
Otherwise, we select any element a ∈ Ŷ \ X̂ and define A = {a}. We note that by
construction, A ⊆ Ŷ .

Next, we define

Z = {Y ∈ Y \ {Ŷ } : Y \ Ŷ 6= ∅}.

For each Y ∈ Z , we select cY ∈ Y \ Ŷ and set C = {cY : Y ∈ Y ′}.
Finally, we define a rule r(X̂,Ŷ ) as

r(X̂,Ŷ ) = A← B,¬C.

It is easy to see that (X̂, Ŷ ) 6|=SE r(X̂,Ŷ ). Indeed, by construction, Ŷ ∩ C = ∅, B ⊆
X̂ ⊆ Ŷ , and A ∩ X̂ = ∅. The second condition implies that B \ Ŷ = ∅ and B \ X̂ = ∅.
Thus, none of the Conditions (1)–(4) of Lemma 1 holds.

We will show that for every (X,Y ) ∈ S, (X,Y ) |=SE r(X̂,Ŷ ). First, assume that

Y \ Ŷ 6= ∅. It follows that cY ∈ C ∩ Y and so, C ∩ Y 6= ∅. Thus, (X,Y ) |=SE r(X̂,Ŷ ) by
Condition (1).

Assume that Y ⊆ Ŷ . Since (X,Y ) ∈ S and (Ŷ , Ŷ ) ∈ S, (X, Ŷ ) ∈ S. Thus, X ∈ X .
If X \ X̂ 6= ∅, then X ∈ X ′′ and so, X ∩ A 6= ∅. Consequently, (X,Y ) |=SE r(X̂,Ŷ )

by Condition (3). Otherwise, X ∈ X ′ and B = {b}, for some b ∈ X̂ \X0. In particular,
B \ X 6= ∅. Since (X,Y ) ∈ S, (Y, Y ) ∈ S and so, (Y, Ŷ ) ∈ S. Consequently, Y ∈ X .
If Y ∈ X ′′, then Y ∩ A 6= ∅ and (X,Y ) |=SE r(X̂,Ŷ ) by Condition (4). If Y ∈ X ′, then

b ∈ X̂ \ Y and so, B \ Y 6= ∅. Thus, (X,Y ) |=SE r(X̂,Ŷ ) by Condition (2).

Let P consist of all rules rŶ , where Ŷ ⊆ Z and Y /∈ Y and of all rules r(X̂,Ŷ ) such that

X̂, Ŷ ⊆ Z, X̂ ⊆ Ŷ and (X̂, Ŷ ) /∈ S. Clearly, S ⊆ SE(P ). Let (X̂, Ŷ ) /∈ S. If Ŷ /∈ Y ,
then (Ŷ , Ŷ ) 6|=SE rŶ . Thus, (X̂, Ŷ ) /∈ SE(P ). If Ŷ ∈ Y , then (X̂, Ŷ ) 6|=SE r(X̂,Ŷ ). Thus,

(X̂, Ŷ ) /∈ SE(P ). It follows that SE (P ) = S.

Proof of Theorem 8

Proof. For every Z such that (Z,Z) ∈ U , we define

UZ = {X : (X,Y ) ∈ U , for some Y ⊆ Z}.

and we denote by cl(UZ) the closure of UZ under union. Finally, we define the SE-closure
U of U by setting

U = {(X,Z) : X ∈ cl(UZ)}.

We note that if (X,Z) ∈ U , then X ∈ cl(UZ). Thus, UZ is defined, that is, (Z,Z) ∈ U .
Consequently, Z ∈ cl(UZ) and (Z,Z) ∈ U .

Next, assume that (X,Y ) ∈ U , (Z,Z) ∈ U , and Y ⊂ Z. It follows that X ∈ cl(UY ).
Thus, there are sets X1, . . . , Xk such that X =

⋃n
i=1 Xi and Xi ∈ UY , for every i =
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1, . . . , k. Let us consider any such set Xi. By definition, there is a set Y ′ such that (Xi, Y
′) ∈

U and Y ′ ⊆ Y . Since Y ⊆ Z, Y ′ ⊆ Z. It follows that Xi ∈ UZ . Thus, X1, . . . , Xk ∈ UZ .
Consequently, X ∈ cl(UZ) and (X,Z) ∈ U .

Thus, U is complete and, by the construction, closed under here-unions. It follows that
there is a dual-normal program P such that SE (P ) = U . We will show that UE (P ) = U .

First, let (X,Y ) ∈ U . It follows that X ∈ UY . Thus, X ∈ cl(UY ) and (X,Y ) ∈
U . Consequently, (X,Y ) ∈ SE (P ). Let us assume that for some (X ′, Y ) ∈ SE (P ),
X ⊂ X ′ ⊂ Y . Since (X ′, Y ) ∈ SE (P ), (X ′, Y ) ∈ U and so, X ′ ∈ cl(UY ). Thus,
X ′ = X1∪ . . .∪Xk, where X1, . . . , Xk ∈ UY or, equivalently, (X1, Y ), . . . , (Xk, Y ) ∈ U .
Since X ′ ⊂ Y , it follows by splittability that there is (Y ′, Y ) ∈ U such that Y ′ ⊂ Y and
X1 ∪ . . . ∪ Xk ⊆ Y ′. Since (X1, Y ) ∈ U and X1 ⊆ Y ′ ⊂ Y , it follows that X1 = Y ′.
Consequently, X ′ = X1 ∪ . . . ∪Xk = Y ′. Thus, (X ′, Y ) ∈ U , a contradiction. It follows
that (X,Y ) ∈ UE (P ).

Conversely, let (X,Y ) ∈ UE (P ). It follows that (X,Y ) ∈ SE (P ) and, since SE (P ) =

U , (X,Y ) ∈ U . By the definition, X ∈ cl(UY ). Since UY is defined, (Y, Y ) ∈ U . Thus, if
X = Y , the assertion follows. Otherwise, X ⊂ Y . In this case, we reason as follows. Since
X ∈ cl(UY ), as before we have X = X1 ∪ . . . ∪Xk, for some sets Xi, 1 ≤ i ≤ k, such
that (Xi, Y ) ∈ U . By splittability, there is Y ′ such that X1 ∪ . . . ∪Xk ⊆ Y ′, Y ′ ⊂ Y and
(Y ′, Y ) ∈ U . Again as before, we obtain that X1 = Y ′ and so, X = X1 ∪ . . . ∪Xk = Y ′.
Thus, (X,Y ) ∈ U .


