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Appendix
Proof of Theorem 6

Proof. Let Z be a set of atoms, S C Sz a set of SE-interpretations that is complete
and closed under here-union, and Y = {Y: (X,Y) € S}. Consider Y C Z such that
(Y,}A/) ¢ S. Since S is complete, forevery Y € Y, (Y,Y) € S. Thus, forevery Y € ),
Y # Y. We define

V={Yey:YCY}and V' ={Y eY:Y\YV #0}.

Clearly, Y'NY’ = Band Y'UY" = Y.ForeachY € ), we select an element by € Y\Y
(it is possible, as Y # Y)). Similarly, for each Y € )", we select an element ¢y € Y \ Y.
Weset By = {by: Y € YV'} and Cy = {cy: Y € V"}, and we define

Ty = B{,, —\Cy.

We note that for every (X,Y) € S, (X,Y) =gg ry. Indeed, if Y € ), then by €
By \ 'Y and so, Condition (2) of Lemma 1 holds. Otherwise, Y € " and ¢y € Cy NY.
Thus, Condition (1) of that lemma holds. On the other hand, (Y, 37) ¥se Ty Indeed,
OY NY = () and By C }7, so neither Condition (1) nor Condition (2) holds. Moreover,
neither Condition (3) nor Condition (4) holds, as ry is a constraint.

Next, let us consider (X,Y) ¢ S, where Y € ), and let us define X = {X: (X,Y) €
S}. We set

X ={XeX:XCX}and X' ={XecX: X\X #0}.



If X' # (), let Xy = |J X’. Since S is closed under here-union, Xy is a proper subset of
X. We select an arbitrary element b € X \ Xo and define B = {b}. Otherwise, we define
B =1.

If X" # (b, foreach X € X", we selectay € X\X,andwedcﬁneA ={ax: X € X"}.
Otherwise, we select any element ¢ € Y \ X and define A = {a}. We note that by
construction, A C Y.

Next, we define

Z={Y eY\{V}: Y \Y #£0}.

ForeachY € Z, weselectcy € Y\ Y andset C = {¢y: Y € V'}.
Finally, we define a rule T(%,y) a8

T(X,Y) =A<« B, =C.

It is easy to see that (X,Y) Fgp T(x.y)- Indeed, by construction, Yyne=90B8
X CY,and AN X = (). The second condition implies that B\'Y = () and B\ X =
Thus, none of the Conditions (1)—(4) of Lemma 1 holds.

We will show that for every (X,Y) € S, (X,Y) fsp r(x v First, assume that
Y \ 'Y # 0. It follows that ¢y € C NY and so, C NY # ). Thus, (X,Y) =gz Tx.y) by
Condition (1).

Assume that Y C Y. Since (X,Y) € Sand (YV,Y) € S, (X,Y) € S. Thus, X € X.
If X\ X # 0, then ¥ € X and so, X N A # (). Consequently, (X,Y) sz XY
by Condition (3). Otherwise, X € X’ and B = {b}, for some b € X \ Xo. In particular,
B\ X # 0. Since (X,Y) € S, (Y,Y) € Sand so, (Y,Y) € S. Consequently, Y € X.
IfY € X7 thenY N A # (and (X,Y) [=sp 75 v by Condition (4). If Y € A", then
be X\ Y andso, B\'Y # 0. Thus, (X,Y) Esg r(x y) by Condition (2).

Let P consist of all rules 7y, where Y CZandY ¢ Y and of all rules TR, such that
X,YCZ X CYand(X,Y)¢S.Clearly, S C SE(P). Let (X,Y) ¢ S.IfY ¢ ),
then (Y, Y) g ry. Thus, (X,Y) ¢ SE(P).IfY € Y, then (X,Y) fesp r 5 ¢)- Thus,
(X,Y) ¢ SE(P). It follows that SE(P) = S. |

-
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Proof of Theorem 8
Proof.  For every Z such that (Z, Z) € U, we define
Uz ={X: (X,Y) elU, forsomeY C Z}.

and we denote by cl(Uz) the closure of {7 under union. Finally, we define the SE-closure
U of U by setting

U={(X,2): X €clUz))}.

We note that if (X, Z) € U, then X € cl(Uz). Thus, Uz is defined, that is, (Z, Z) € U.
Consequently, Z € cl(Uz) and (Z,Z) € U.

Next, assume that (X,Y) € U, (Z,Z) € U,and Y C Z. It follows that X € cl(Uy).
Thus, there are sets X1, ..., X such that X = U;L:1 X; and X; € Uy, for every i =



3

1,..., k. Letus consider any such set X;. By definition, there is a set Y’ such that (X;,Y”) €
UandY’' CY.SinceY C Z,Y’ C Z. It follows that X; € Uyz. Thus, Xy,..., X € Uz.
Consequently, X € cl(Uz) and (X, Z) € U.

Thus, U is complete and, by the construction, closed under here-unions. It follows that
there is a dual-normal program P such that SE(P) = U. We will show that UE(P) = U.

First, let (X,Y) € U. It follows that X € Uy. Thus, X € cl(Uy) and (X,Y) €
U. Consequently, (X,Y) € SE(P). Let us assume that for some (X',Y) € SE(P),
X C X' C Y. Since (X',Y) € SE(P), (X',Y) € U and so, X" € cl(Uy). Thus,
X' =X jU...UXy, where X1, ..., Xy €Uy or, equivalently, (X1,Y),..., (X, Y) € U.
Since X’ C Y, it follows by splittability that there is (Y',Y") € U such that Y’ C Y and
X1 U...UX, CY'. Since (X1,Y) € Uand X; C Y’ C Y, it follows that X; = Y.
Consequently, X' = X; U...U X, =Y. Thus, (X',Y) € U, a contradiction. It follows
that (X,Y) € UE(P).

Conversely, let (X,Y) € UE(P). It follows that (X,Y) € SE(P) and, since SE(P) =
U, (X,Y) € U. By the definition, X € cl(Uy ). Since Uy is defined, (Y,Y) € U. Thus, if
X =Y, the assertion follows. Otherwise, X C Y. In this case, we reason as follows. Since
X € cl(Uy), as before we have X = X; U...U X}, for some sets X;, 1 < i < k, such
that (X;,Y’) € U. By splittability, there is Y’ such that X; U.. . UX; CY', Y’ CY and
(Y',Y) € U. Again as before, we obtain that X; = Y’ andso, X = X; U...U X, =Y".
Thus, (X,Y) € U. |



