Online appendix for the paper A Denotational Semantics for Equilibrium Logic published in Theory and Practice of Logic Programming

FELICIDAD AGUADO

Department of Computer Science University of Corunna, Spain (e-mail: aguado@udc.es)

PEDRO CABALAR

Department of Computer Science University of Corunna, Spain (e-mail: cabalar@udc.es)

DAVID PEARCE

Department of Artificial Intelligence Universidad Politécnica de Madrid, SPAIN (e-mail: david.pearce@upm.es)

GILBERTO PÉREZ

Department of Computer Science University of Corunna, Spain (e-mail: gperez@udc.es)

CONCEPCIÓN VIDAL

Department of Computer Science University of Corunna, Spain (e-mail: concepcion.vidalm@udc.es)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Appendix A

Proof of Proposition 1

If $v \in (S \cap S') \uparrow$, there exists some $u \in S \cap S'$, $u \leq v$. But then, $u \in S$ and $u \leq v$ implies $v \in S \uparrow$ and the same applies for $u \in S'$, $u \leq v$ implying $v \in S' \uparrow$. The proof for \downarrow is completely analogous. \Box

Proof of Corollary 1

For left to right, if $v \in S_c \downarrow$ then there exist some $u \in S_c$, $u \ge v$. But then u is classical and, by Proposition 2, $u = v_t$. For right to left, if $v_t \in S$ as v_t is classical, $v_t \in S_c$. Since $v \le v_t$, we directly get $v \in S_c \downarrow$. \Box

Proof of Proposition 3

(i) \Rightarrow (ii). Suppose S is total-closed. This means that if we take any $v \in S$, then $v_t \in S$ and, since v_t is classical, $v_t \in S_c$. Moreover, since $v \leq v_t$ we conclude $v \in S_c \downarrow$.

(ii) \Rightarrow (iii). Suppose $S \subseteq S_c \downarrow$ and, for the \subseteq direction, take some $v \in S \uparrow_c$. The latter means that v is classical and there is some $u \in S$ such that $u \leq v$. Furthermore, by Proposition 2, $u_t = v$. Now, as $u \in S \subseteq S_c \downarrow$, by Corollary 1, $u_t(=v) \in S$ and, as u_t is classical, $u_t \in S_c$. For the \supseteq direction, note that $S_c \subseteq S \subseteq S \uparrow$. But at the same time $S_c \subseteq \mathcal{I}_c$ and thus $S_c \subseteq (S \uparrow \cap \mathcal{I}_c) = S \uparrow_c$.

(iii) \Rightarrow (i) Assume $S \uparrow_c = S_c$ and take any $v \in S$. We will prove that $v_t \in S$. As $v \in S$, it is clear that $\{v\} \uparrow \subseteq S \uparrow$ and so, $\{v\} \uparrow_c \subseteq S \uparrow_c$. By Proposition 2, $\{v\} \uparrow_c = \{v_t\}$ and so we get $\{v_t\} \subseteq S \uparrow_c = S_c$ that immediately implies $v_t \in S$, as we wanted to prove. \Box

Proof of Lemma 1

Suppose $v \in (\overline{S})_c \downarrow$ but $v \in S_c \downarrow$. But now, since both \overline{S}_c and S_c are sets of classical interpretations, by Corollary 1, we respectively get that $v_t \in \overline{S}_c (\subseteq \overline{S})$ and $v_t \in S_c (\subseteq S)$ which is an contradiction. \Box

Proof of Theorem 1

By structural induction.

- If α = ⊥ then v(α) = 0 and [[⊥]] = [[⊥]]_c = [[⊥]]_c = Ø and both equivalences (i) and (ii) become trivially true, as in each case, the two conditions are false.
- If α is some atom $p \in \Sigma$ then, (i) is true by definition of $\llbracket p \rrbracket$. For (ii), we have the following chain of equivalences: $v(p) \neq 0 \Leftrightarrow v_t(p) = 2 \Leftrightarrow v_t \in \llbracket p \rrbracket$.
- Let $\alpha = \varphi \lor \psi$. To prove (i) note that $v(\varphi \lor \psi) = 2$ iff either $v(\varphi) = 2$ or $v(\psi) = 2$. By induction, this is equivalent to $v \in \llbracket \varphi \rrbracket$ or $v \in \llbracket \psi \rrbracket$ which, in its turn, is equivalent to $v \in \llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket = \llbracket \varphi \lor \psi \rrbracket$. To prove (ii), $v(\varphi \lor \psi) \neq 0$ iff $v(\varphi) \neq 0$ or $v(\psi) \neq 0$. By induction $v_t \in \llbracket \varphi \rrbracket$ or $v_t \in \llbracket \psi \rrbracket$, that is $v_t \in \llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket = \llbracket \varphi \lor \psi \rrbracket$.
- Let $\alpha = \varphi \land \psi$. For proving (i), $v(\varphi \land \psi) = 2$ iff both $v(\varphi) = 2$ and $v(\psi) = 2$. By induction, this is equivalent to $v \in \llbracket \varphi \rrbracket$ and $v \in \llbracket \psi \rrbracket$, that is, $v \in \llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket = \llbracket \varphi \land \psi \rrbracket$. To prove (ii), $v(\varphi \land \psi) \neq 0$ iff both $v(\varphi) \neq 0$ and $v(\psi) \neq 0$. By induction, $v_t \in \llbracket \varphi \rrbracket$ and $v_t \in \llbracket \psi \rrbracket$, that is, $v \in \llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket = \llbracket \varphi \land \psi \rrbracket$.
- Let $\alpha = \varphi \to \psi$. For proving (i), consider the condition $v \in \llbracket \varphi \to \psi \rrbracket$

$$v \in (\overline{\llbracket \varphi \rrbracket} \cup \llbracket \psi \rrbracket)$$

$$\Leftrightarrow \quad v \notin \llbracket \varphi \rrbracket \text{ or } v \in \llbracket \psi \rrbracket$$

$$\Leftrightarrow \quad v(\varphi) \neq 2 \text{ or } v(\psi) = 2$$

On the other hand, $v \in (\overline{\llbracket \varphi \rrbracket} \cup \llbracket \psi \rrbracket)_c \downarrow$ iff $v_t \in (\overline{\llbracket \varphi \rrbracket} \cup \llbracket \psi \rrbracket)$ and, using the reasoning above, this means:

$$v_t(\varphi) \neq 2 \text{ or } v_t(\psi) = 2$$

 $\Leftrightarrow \quad v(\varphi) = 0 \text{ or } v(\psi) \neq 0$

 $\mathbf{2}$

Thus:

$$\begin{array}{l} v \in \llbracket \varphi \rightarrow \psi \rrbracket \\ \Leftrightarrow \quad v \in (\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket) \cap (\overline{\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket)}_c \downarrow \\ \Leftrightarrow \quad (v(\varphi) \neq 2 \text{ or } v(\psi) = 2) \text{ and } (v(\varphi) = 0 \text{ or } v(\psi) \neq 0) \\ \Leftrightarrow \quad v(\varphi) = 0 \\ \text{ or } v(\varphi) \neq 2 \text{ and } v(\psi) \neq 0 \\ \text{ or } v(\psi) = 2 \text{ and } v(\varphi) = 0 \\ \text{ or } v(\psi) = 2 \\ \Leftrightarrow \quad v(\varphi) = 0 \\ \text{ or } v(\varphi) \neq 2 \text{ and } v(\psi) \neq 0 \\ \text{ or } v(\varphi) \neq 2 \text{ and } v(\psi) \neq 0 \\ \text{ or } v(\psi) = 2 \\ \Leftrightarrow \quad v(\varphi) \leq 2 \text{ and } v(\psi) \neq 0 \\ \text{ or } v(\psi) = 2 \\ \Leftrightarrow \quad v(\varphi) \leq v(\psi) \\ \Leftrightarrow \quad v(\varphi \rightarrow \psi) = 2 \end{array}$$

For proving (ii), note first that $v_t \in \llbracket \varphi \to \psi \rrbracket$ iff $v_t(\varphi \to \psi) = 2$ using the proof for (i) applied to v_t . As v_t is total, the latter is equivalent to $v_t(\varphi) = 0$ or $v_t(\psi) = 2$. This, in its turn, is equivalent to $v(\varphi) = 0$ or $v(\psi) \neq 0$. Finally, looking at the table for implication, this is the same than $v(\varphi \to \psi) \neq 0$.

Proof of Proposition 5

Now, by Proposition 4, $\llbracket \alpha \rrbracket_c \downarrow \subseteq \llbracket \alpha \rrbracket$ and, by Proposition 3, $\llbracket \beta \rrbracket \subseteq \llbracket \beta \rrbracket_c \downarrow$, so we get:

$$= \overline{\llbracket \alpha \rrbracket}_{c} \downarrow \cup \left(\overline{\llbracket \alpha \rrbracket} \cap \llbracket \beta \rrbracket_{c} \downarrow \right) \cup \left(\llbracket \beta \rrbracket \cap \overline{\llbracket \alpha \rrbracket}_{c} \downarrow \right) \cup \llbracket \beta \rrbracket$$
$$= \overline{\llbracket \alpha \rrbracket}_{c} \downarrow \cup \left(\overline{\llbracket \alpha \rrbracket} \cap \llbracket \beta \rrbracket_{c} \downarrow \right) \cup \llbracket \beta \rrbracket$$

Proof of Theorem 3

1. "⊆"

From Proposition 5, we know that $\llbracket \alpha \rrbracket \subseteq \llbracket (\beta \to \alpha) \to \alpha \rrbracket$. It only rests to show that: $\llbracket \alpha \rrbracket \subseteq \llbracket (\alpha \to \beta) \to \beta \rrbracket$. Notice that:

$$\llbracket \alpha \rrbracket = (\llbracket \alpha \rrbracket \cap \llbracket \beta \rrbracket) \cup (\llbracket \alpha \rrbracket \cap \overline{\llbracket \beta \rrbracket}).$$

Now

$$\llbracket \alpha \rrbracket \cap \llbracket \beta \rrbracket \subseteq \llbracket \beta \rrbracket \subseteq \llbracket (\alpha \to \beta) \to \beta \rrbracket$$

and

$$\llbracket \alpha \rrbracket \cap \overline{\llbracket \beta \rrbracket} \subseteq \overline{\llbracket \alpha \to \beta \rrbracket} \subseteq \llbracket (\alpha \to \beta) \to \beta \rrbracket$$

since

$$\overline{\llbracket \alpha \to \beta \rrbracket} = (\llbracket \alpha \rrbracket \cap \overline{\llbracket \beta \rrbracket}) \cup (\overline{\llbracket \alpha \rrbracket} \cup \llbracket \beta \rrbracket)_c \downarrow$$

2. "⊃"

First of all, notice that $\mathcal{I} = \llbracket \alpha \to \beta \rrbracket \cup \llbracket \beta \to \alpha \rrbracket$ since:

$$\mathcal{I} = \llbracket \beta \rrbracket \cup \overline{\llbracket \beta \rrbracket} \subseteq \llbracket \alpha \to \beta \rrbracket \cup \llbracket \beta \to \alpha \rrbracket$$

Then, we have that:

$$\begin{bmatrix} (\alpha \to \beta) \to \beta \end{bmatrix} \cap \begin{bmatrix} (\beta \to \alpha) \to \alpha \end{bmatrix}$$

= $(\begin{bmatrix} (\alpha \to \beta) \to \beta \end{bmatrix} \cap \begin{bmatrix} \alpha \to \beta \end{bmatrix} \cap \begin{bmatrix} (\beta \to \alpha) \to \alpha \end{bmatrix})$
 $\cup (\begin{bmatrix} (\alpha \to \beta) \to \beta \end{bmatrix} \cap \begin{bmatrix} (\beta \to \alpha) \to \alpha \end{bmatrix} \cap \begin{bmatrix} \beta \to \alpha \end{bmatrix})$
 $\subseteq [[\beta]] \cup [\alpha]$

by using again Proposition 5.

Proof of Lemma 2

By structural induction. Let us call $P \stackrel{\text{def}}{=} \bigcup_{i=1}^{n} \llbracket p_i \rrbracket$. Obviously, $\llbracket \bot \rrbracket = \emptyset \subseteq P$ and $\llbracket p_j \rrbracket \subseteq P$ for any $j = 1, \ldots, n$. Then, if subformulas α, β satisfy the lemma, i.e. $\llbracket \alpha \rrbracket \subseteq P$ and $\llbracket \beta \rrbracket \subseteq P$, then their intersection and union too, i.e. $\llbracket \alpha \land \beta \rrbracket = \llbracket \alpha \rrbracket \cap \llbracket \beta \rrbracket \subseteq P$ and $\llbracket \alpha \lor \beta \rrbracket = \llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket \subseteq P$. \Box

Proof of Theorem 4

Suppose it is representable in that language. Take the interpretation $u(p_i) = 0$ for any atom $p_i \in \Sigma$. It is easy to see that $u \in [\![p_1 \rightarrow p_2]\!]$. However, $u \notin [\![p_i]\!]$ for all $p_i \in \Sigma$ and this contradicts Lemma 2. \Box

Proof of Lemma 3

We proceed by structural induction on δ .

- 1. $\delta = \bot$. It is straightforward since $\llbracket \bot \rrbracket = \emptyset$.
- 2. $\delta = p$. Any interpretation of the form v = 22... belongs to $[\![p]\!]$. Now, for any of those v, take u equal to v but for u(q) = 1. By definition of the order relation, u < v, whereas $u \in [\![p]\!]$ because u(p) = 2.
- 3. $\delta = q$. Analogous to the previous case.
- 4. $\delta = \alpha \lor \beta$. If $v = \underline{22...}$ and $v \in [\![\alpha \lor \beta]\!] = [\![\alpha]\!] \cup [\![\beta]\!]$, then suppose that $v \in [\![\alpha]\!]$. By induction we deduce that there exists u < v that coincides with v excepting for p, q and such that $u \in [\![\alpha]\!] \subseteq [\![\delta]\!]$. The same happens if $v \in [\![\beta]\!]$.
- 5. $\delta = \alpha \to \beta$. Suppose that $v = \underline{22...}, v \in \llbracket \delta \rrbracket$. We know by Proposition 5, that $v \in \llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket$. So first suppose that $v \in \llbracket \beta \rrbracket$. Since β is a subformula of δ , we know that there exists $u < v \in \llbracket \beta \rrbracket \subseteq \llbracket \delta \rrbracket$ such that u is equal to v excepting for p, q. In the other case, when $v \in \llbracket \alpha \rrbracket \subseteq \llbracket \alpha \rrbracket_c$, we can take $u = \underline{11...}$ equal to v excepting for u(p) = u(q) = 1. We have that u < v and so, $u \in \llbracket \alpha \rrbracket_c \downarrow \subseteq \llbracket \delta \rrbracket$ which completes the proof.

4

Proof of Theorem 5

It is easy to see that elements of $\llbracket p_1 \wedge p_2 \rrbracket$ are exactly those v of the form $v = \underline{22...}$ and that this set is not empty, i.e., we have at least some v in that set. Suppose $p_1 \wedge p_2$ were representable in $\mathcal{L}_{\Sigma}\{\perp, \lor, \rightarrow\}$. Then, Lemma 3 would imply that there exists some $u \in \llbracket p_1 \wedge p_2 \rrbracket$, such that u < v and u coincides with v excepting for p_1, p_2 . But then, either $u(p_1) \neq 2$ or $u(p_2) \neq 2$ and u could not be a model of $p_1 \wedge p_2$. \Box

Proof of Theorem 6

The fixpoint condition means that the only interpretation in $[\![\alpha]\!] \cap \{v\} \downarrow$ is v. This is the same than saying that the only interpretation that is both model of α and smaller than or equal to v is v itself. \Box

Proof of Theorem 7

It amounts to observe that a classical model v of α is not in equilibrium iff $v \in (\llbracket \alpha \rrbracket \backslash \mathcal{I}_c) \uparrow$. The former means that there is some $u < v, u \in \llbracket \alpha \rrbracket$. Since v is classical, any u < v must be non-classical. Thus, v is not in equilibrium iff there is some $u < v, u \in (\llbracket \alpha \rrbracket \backslash \mathcal{I}_c)$. But then, this is equivalent to: $v \in (\llbracket \alpha \rrbracket \backslash \mathcal{I}_c) \uparrow$. \Box

Proof of Lemma 4

Note that $v \in \llbracket \alpha \rrbracket_c \subseteq \llbracket \alpha \rrbracket$ and that trivially $v \in \llbracket \gamma_v \rrbracket$ by definition of γ_v . Moreover, as v is classical, $v \in \llbracket \alpha \land \gamma_v \rrbracket_c$. To see that v is in equilibrium, note that u < v should assign u(p) = 1 to some atom such that v(p) = 2. But then, $u \notin \llbracket \gamma_v \rrbracket$ and so it cannot be a model of $\alpha \land \gamma_v$ either. \Box

Proposition 7

For any $\alpha, \alpha', \beta, \beta'$:

 $\begin{array}{ll} (\mathrm{i}) & \llbracket \alpha \to \beta \rrbracket \subseteq \llbracket \alpha \to \beta' \rrbracket & \mathrm{if} & \llbracket \beta \rrbracket \subseteq \llbracket \beta' \rrbracket \\ (\mathrm{ii}) & \llbracket \alpha \to \beta \rrbracket \subseteq \llbracket \alpha' \to \beta \rrbracket & \mathrm{if} & \llbracket \alpha' \rrbracket \subseteq \llbracket \alpha \rrbracket \end{array}$

Proof

(i) is an immediate consequence of Proposition 5. As for (ii), we can also use that proposition and the fact that $\overline{[\![\alpha]\!]} \subseteq \overline{[\![\alpha']\!]}$, and so, $\overline{[\![\alpha]\!]}_c \downarrow \subseteq \overline{[\![\alpha']\!]}_c \downarrow$ too. \Box

5

#