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Appendix A

Proof of Proposition 1

If v e (SNS’) T, there exists some v € SNS’, u < v. But then, v € S and u < v implies
v € S 1 and the same applies for v € S/, u < v implying v € S’ 1. The proof for | is
completely analogous. [

Proof of Corollary 1

For left to right, if v € S, | then there exist some u € S;, u > v. But then u is classical
and, by Proposition 2, u = v;. For right to left, if v; € S as v; is classical, v; € S.. Since
v < v, we directly get v € S, . 0O
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Proof of Proposition 3

(i) = (ii). Suppose S is total-closed. This means that if we take any v € S, then v; € S
and, since v, is classical, vy € S.. Moreover, since v < v; we conclude v € S, |.

(ii) = (iii). Suppose S C S, | and, for the C direction, take some v € S 1.. The latter
means that v is classical and there is some u € S such that v < v. Furthermore, by
Proposition 2, u; = v. Now, as u € § C S, |, by Corollary 1, u;(=v) € S and, as u; is
classical, u; € S.. For the O direction, note that S. C S C S 1. But at the same time
Se C€Z. and thus S. C (STNZ.)=5".

(iii) = (i) Assume S .= S. and take any v € S. We will prove that v; € S. As v € S,
it is clear that {v} 1C S 1 and so, {v} 1.C S .. By Proposition 2, {v} t.= {v:} and so
we get {v;} C S 1.= S, that immediately implies v; € S, as we wanted to prove. []

Proof of Lemma 1

Suppose v € (S). J but v € S, |. But now, since both S, and S, are sets of classical
interpretations, by Corollary 1, we respectively get that v; € S.(C S) and v; € S.(C 9)
which is an contradiction. []

Proof of Theorem 1

By structural induction.

e Ifa=1thenv(a)=0and [L]=[L].=[L]. =0 and both equivalences (i)
and (ii) become trivially true, as in each case, the two conditions are false.

o If o is some atom p € ¥ then, (i) is true by definition of [p]. For (ii), we have the
following chain of equivalences: v(p) #0 < v (p) =2 < v, € [p].

o Let a = ¢ V). To prove (i) note that v(pVe) = 2 iff either v(p) = 2 or v(¢p) = 2. By
induction, this is equivalent to v € [ ] or v € [¢ ] which, in its turn, is equivalent
tove[e]Ulv]=[eV]. Toprove (ii), v(p V1) # 0 iff v(p) # 0 or v()) # 0.
By induction v, € [¢] or vy € [¢], that is v, € [e]U[v] =[¢ VY]

e Let @ = ¢ A 4. For proving (i), v(¢ A ) = 2 iff both v(p) = 2 and v(y)) = 2. By
induction, this is equivalent to v € [¢] and v € [¢], that is, v € [N [¥] =
[o A ]. To prove (ii), v(e Ay) # 0 iff both v(p) # 0 and v(¢) # 0. By induction,
vy € [p] and vy € [¢], that is, v € [p]. L N[V] =[e AY].

e Let @ = ¢ — 4. For proving (i), consider the condition v € [ — ¥ ]

ve ([elule])
e vg[plorve[y]
& v(p) #2o0r () =2

On the other hand, v € ([ JU[v¥])c 4 iff vr € ([ ]JU[ % ]) and, using the reasoning
above, this means:

ve(p) £ 2 or v () = 2
& u(p) =0 or v(y) £0



Thus:

veE[p—yY]
ve([elulvD)nTelulyDed
(v(p) # 2 or v(¥) = 2) and (v(p) =0 or v(¥) # 0)
v(p) =0
or v() # 2 and v(y) #
or v(y) =2 and v(p) =
or v(y)) =2
& w(p)=0
or v(p) # 2 and v(¢)) #0
or v(v) =2
& v(p) oY)
& v(p—)=2
For proving (ii), note first that v; € [ — ¢ ] iff v:(¢ — ) = 2 using the proof for
(i) applied to v;. As v is total, the latter is equivalent to v¢(p) = 0 or v () = 2.

This, in its turn, is equivalent to v(p) = 0 or v(¢)) # 0. Finally, looking at the table
for implication, this is the same than v(p — ¥) # 0.

O

t ¢

0
0

Proof of Proposition 5

[a — B8] = (aﬂuﬂﬂﬂ)ﬁ(ﬂ ﬂﬂ]]) by definition
= ([eJulBD)Nn([al.VlBl.) ¢/U-distributivity
= ([eJulBD) n(lal.+ulBlcd) 1 /u-distributivity
= ([a]nlal. d)u(alnisled)

u([BInTal, +)u([BIN[BI.+) N/ U —distributivity
Now, by Proposition 4, me 1C [a] and, by Proposition 3, [3] € [ B8] 4, so we get:
= [al.du([eln[B8led) u ([8]NTal, L) u 18]
= [al.d U (aln[Blc4) U [8]
O
Proof of Theorem 3
1. “«C”

From Proposition 5, we know that [a] C [(8 — «) — «a]. It only rests to show
that: [a] C [ (e = B) — B]. Notice that:

[al={aln[BDU(alnB])-
Now

[eln[BlcIB] Cl(a—p8)— 8]



and
[a]n[B] CTa— Bl C[(a—pB)— B8]
[a—=B]={alnBD U {alUlB]). i

2. “D”

First of all, notice that Z = [a — B] U [ 8 — «] since:

I=[BlulB]cla—=BlUlB—a]
Then, we have that:

[(a=B8)=BIN[(E—=a)—a]
([(a=p)=B]n[a—=BIn[(E—=a)—=al)

U([(a—B) = BIN[(B—=a)=a]Nn][B—a])
[Alulal

by using again Proposition 5.
O

N

Proof of Lemma 2

By structural induction. Let us call P % Ur_,[p:]. Obviously, [L] = @ C P and
[p;] € P forany j =1,...,n. Then, if subformulas «, 3 satisfy the lemma, i.e. [a] C P
and [ 8] C P, then their intersection and union too, i.e. [a A B3] = [a]N[B] € P and
[avB]=[a]ulplcpr. O

Proof of Theorem 4

Suppose it is representable in that language. Take the interpretation u(p;) = 0 for any
atom p; € ¥. Tt is easy to see that u € [p; — p2]. However, u & [p;] for all p; € ¥ and
this contradicts Lemma 2. [

Proof of Lemma 3
We proceed by structural induction on 4.

1. § = L. Tt is straightforward since [ L] = 0.

2. § = p. Any interpretation of the form v =
those v, take u equal to v but for u(g) = 1. By definition of the order relation,
u < v, whereas u € [p] because u(p) = 2.

3. 0 = q. Analogous to the previous case.

4. d=aVvp. lfv=22...andveaVi]=[a]U[A], then suppose that v € [«].
By induction we deduce that there exists u < v that coincides with v excepting for
p,q and such that u € [a] C [d]. The same happens if v € [ 3].

5. = a — . Suppose that v = 22..., v € [§]. We know by Proposition 5, that
v € [a] U[B]. So first suppose that v € [8]. Since 3 is a subformula of J, we
know that there exists u < v € [ 8] C [ 4] such that u is equal to v excepting for
p,q. In the other case, when v € m C mc, we can take u = 11... equal to v
excepting for u(p) = u(q) = 1. We have that u < v and so, u € [a], {C [§] which
completes the proof.

22... belongs to [p]. Now, for any of



O

Proof of Theorem 5

It is easy to see that elements of [p; A pa] are exactly those v of the form v = 22...
and that this set is not empty, i.e., we have at least some v in that set. Suppose p1 A ps
were representable in Ls{1,V,—}. Then, Lemma 3 would imply that there exists some
u € [p1 A p2], such that u < v and w coincides with v excepting for p;,ps. But then,
either u(py) # 2 or u(p2) # 2 and u could not be a model of p; Aps. [

Proof of Theorem 6

The fixpoint condition means that the only interpretation in [aJN{v} | is v. This is the
same than saying that the only interpretation that is both model of @ and smaller than
or equal to v is v itself. [

Proof of Theorem 7

It amounts to observe that a classical model v of « is not in equilibrium iff v € (Ja[J\Z.) 1
The former means that there is some v < v, u € [« ]. Since v is classical, any u < v must
be non-classical. Thus, v is not in equilibrium iff there is some u < v, u € (Ja] \ Z.).
But then, this is equivalent to: v € (Ja]\Z.) . O

Proof of Lemma 4

Note that v € [a]. C [a] and that trivially v € [, ] by definition of 7,. Moreover,
as v is classical, v € [a A 7y ] To see that v is in equilibrium, note that v < v should
assign u(p) = 1 to some atom such that v(p) = 2. But then, u & [v, ] and so it cannot
be a model of a A 7y, either. []

Proposition 7
For any a,d/, 3, 8’

(i) [a=p]Cla—=p] it [BICP]
(i) [a =Bl C[o/ = B] it [o]C[e]

Proof
(i) is an immediate consequence of Proposition 5. As for (ii), we can also use that propo-
sition and the fact that [a] C [/ ], and so, [a]. {C [¢/], | too. [
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