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Appendix A

Proof of Proposition 1

If v ∈ (S ∩ S′) ↑, there exists some u ∈ S ∩ S′, u ≤ v. But then, u ∈ S and u ≤ v implies

v ∈ S ↑ and the same applies for u ∈ S′, u ≤ v implying v ∈ S′ ↑. The proof for ↓ is

completely analogous.

Proof of Corollary 1

For left to right, if v ∈ Sc ↓ then there exist some u ∈ Sc, u ≥ v. But then u is classical

and, by Proposition 2, u = vt. For right to left, if vt ∈ S as vt is classical, vt ∈ Sc. Since

v ≤ vt, we directly get v ∈ Sc ↓.
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Proof of Proposition 3

(i) ⇒ (ii). Suppose S is total-closed. This means that if we take any v ∈ S, then vt ∈ S
and, since vt is classical, vt ∈ Sc. Moreover, since v ≤ vt we conclude v ∈ Sc ↓.
(ii) ⇒ (iii). Suppose S ⊆ Sc ↓ and, for the ⊆ direction, take some v ∈ S ↑c. The latter

means that v is classical and there is some u ∈ S such that u ≤ v. Furthermore, by

Proposition 2, ut = v. Now, as u ∈ S ⊆ Sc ↓, by Corollary 1, ut(= v) ∈ S and, as ut is

classical, ut ∈ Sc. For the ⊇ direction, note that Sc ⊆ S ⊆ S ↑. But at the same time

Sc ⊆ Ic and thus Sc ⊆ (S ↑ ∩ Ic) = S ↑c.
(iii) ⇒ (i) Assume S ↑c= Sc and take any v ∈ S. We will prove that vt ∈ S. As v ∈ S,

it is clear that {v} ↑⊆ S ↑ and so, {v} ↑c⊆ S ↑c. By Proposition 2, {v} ↑c= {vt} and so

we get {vt} ⊆ S ↑c= Sc that immediately implies vt ∈ S, as we wanted to prove.

Proof of Lemma 1

Suppose v ∈ (S)c ↓ but v ∈ Sc ↓. But now, since both Sc and Sc are sets of classical

interpretations, by Corollary 1, we respectively get that vt ∈ Sc(⊆ S) and vt ∈ Sc(⊆ S)

which is an contradiction.

Proof of Theorem 1

By structural induction.

• If α = ⊥ then v(α) = 0 and J⊥ K = J⊥ Kc = J⊥ Kc = ∅ and both equivalences (i)

and (ii) become trivially true, as in each case, the two conditions are false.

• If α is some atom p ∈ Σ then, (i) is true by definition of J p K. For (ii), we have the

following chain of equivalences: v(p) 6= 0 ⇔ vt(p) = 2 ⇔ vt ∈ J p K.
• Let α = ϕ∨ψ. To prove (i) note that v(ϕ∨ψ) = 2 iff either v(ϕ) = 2 or v(ψ) = 2. By

induction, this is equivalent to v ∈ Jϕ K or v ∈ Jψ K which, in its turn, is equivalent

to v ∈ Jϕ K ∪ Jψ K = Jϕ ∨ ψ K. To prove (ii), v(ϕ ∨ ψ) 6= 0 iff v(ϕ) 6= 0 or v(ψ) 6= 0.

By induction vt ∈ Jϕ K or vt ∈ Jψ K, that is vt ∈ Jϕ K ∪ Jψ K = Jϕ ∨ ψ K.
• Let α = ϕ ∧ ψ. For proving (i), v(ϕ ∧ ψ) = 2 iff both v(ϕ) = 2 and v(ψ) = 2. By

induction, this is equivalent to v ∈ Jϕ K and v ∈ Jψ K, that is, v ∈ Jϕ K ∩ Jψ K =

Jϕ∧ψ K. To prove (ii), v(ϕ∧ψ) 6= 0 iff both v(ϕ) 6= 0 and v(ψ) 6= 0. By induction,

vt ∈ Jϕ K and vt ∈ Jψ K, that is, v ∈ Jϕ Kc ↓ ∩Jψ K = Jϕ ∧ ψ K.
• Let α = ϕ→ ψ. For proving (i), consider the condition v ∈ Jϕ→ ψ K

v ∈ (Jϕ K ∪ Jψ K)

⇔ v 6∈ Jϕ K or v ∈ Jψ K

⇔ v(ϕ) 6= 2 or v(ψ) = 2

On the other hand, v ∈ (Jϕ K∪Jψ K)c ↓ iff vt ∈ (Jϕ K∪Jψ K) and, using the reasoning

above, this means:

vt(ϕ) 6= 2 or vt(ψ) = 2

⇔ v(ϕ) = 0 or v(ψ) 6= 0
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Thus:

v ∈ Jϕ→ ψ K

⇔ v ∈ (Jϕ K ∪ Jψ K) ∩ (Jϕ K ∪ Jψ K)c ↓
⇔ (v(ϕ) 6= 2 or v(ψ) = 2) and (v(ϕ) = 0 or v(ψ) 6= 0)

⇔ v(ϕ) = 0

or v(ϕ) 6= 2 and v(ψ) 6= 0

or v(ψ) = 2 and v(ϕ) = 0

or v(ψ) = 2

⇔ v(ϕ) = 0

or v(ϕ) 6= 2 and v(ψ) 6= 0

or v(ψ) = 2

⇔ v(ϕ) ≤ v(ψ)

⇔ v(ϕ→ ψ) = 2

For proving (ii), note first that vt ∈ Jϕ→ ψ K iff vt(ϕ→ ψ) = 2 using the proof for

(i) applied to vt. As vt is total, the latter is equivalent to vt(ϕ) = 0 or vt(ψ) = 2.

This, in its turn, is equivalent to v(ϕ) = 0 or v(ψ) 6= 0. Finally, looking at the table

for implication, this is the same than v(ϕ→ ψ) 6= 0.

Proof of Proposition 5

Jα→ β K =
(
Jα K ∪ Jβ K

)
∩
(

Jα K ∪ Jβ K
)
c
↓ by definition

=
(
Jα K ∪ Jβ K

)
∩
(

Jα Kc ∪ Jβ Kc
)
↓ c/∪-distributivity

=
(
Jα K ∪ Jβ K

)
∩
(

Jα Kc ↓ ∪ Jβ Kc ↓
)
↓ /∪-distributivity

=
(
Jα K ∩ Jα Kc ↓

)
∪
(
Jα K ∩ Jβ Kc ↓

)
∪
(
Jβ K ∩ Jα Kc ↓

)
∪
(
Jβ K ∩ Jβ Kc ↓

)
∩/ ∪ −distributivity

Now, by Proposition 4, Jα Kc ↓⊆ Jα K and, by Proposition 3, Jβ K ⊆ Jβ Kc ↓, so we get:

= Jα Kc ↓ ∪
(
Jα K ∩ Jβ Kc ↓

)
∪
(
Jβ K ∩ Jα Kc ↓

)
∪ Jβ K

= Jα Kc ↓ ∪
(
Jα K ∩ Jβ Kc ↓

)
∪ Jβ K

Proof of Theorem 3

1. “⊆”

From Proposition 5, we know that Jα K ⊆ J (β → α) → α K. It only rests to show

that: Jα K ⊆ J (α→ β)→ β K. Notice that:

Jα K = (Jα K ∩ Jβ K) ∪ (Jα K ∩ Jβ K).

Now

Jα K ∩ Jβ K ⊆ Jβ K ⊆ J (α→ β)→ β K
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and

Jα K ∩ Jβ K ⊆ Jα→ β K ⊆ J (α→ β)→ β K

since

Jα→ β K = (Jα K ∩ Jβ K) ∪ (Jα K ∪ Jβ K)c ↓.
2. “⊇”

First of all, notice that I = Jα→ β K ∪ Jβ → α K since:

I = Jβ K ∪ Jβ K ⊆ Jα→ β K ∪ Jβ → α K

Then, we have that:

J (α→ β)→ β K ∩ J (β → α)→ α K

= (J (α→ β)→ β K ∩ Jα→ β K ∩ J (β → α)→ α K)

∪(J (α→ β)→ β K ∩ J (β → α)→ α K ∩ Jβ → α K)

⊆ Jβ K ∪ Jα K

by using again Proposition 5.

Proof of Lemma 2

By structural induction. Let us call P
def
=
⋃n

i=1J pi K. Obviously, J⊥ K = ∅ ⊆ P and

J pj K ⊆ P for any j = 1, . . . , n. Then, if subformulas α, β satisfy the lemma, i.e. Jα K ⊆ P
and Jβ K ⊆ P , then their intersection and union too, i.e. Jα ∧ β K = Jα K ∩ Jβ K ⊆ P and

Jα ∨ β K = Jα K ∪ Jβ K ⊆ P .

Proof of Theorem 4
Suppose it is representable in that language. Take the interpretation u(pi) = 0 for any

atom pi ∈ Σ. It is easy to see that u ∈ J p1 → p2 K. However, u 6∈ J pi K for all pi ∈ Σ and

this contradicts Lemma 2.

Proof of Lemma 3
We proceed by structural induction on δ.

1. δ = ⊥. It is straightforward since J⊥ K = ∅.
2. δ = p. Any interpretation of the form v = 22 . . . belongs to J p K. Now, for any of

those v, take u equal to v but for u(q) = 1. By definition of the order relation,

u < v, whereas u ∈ J p K because u(p) = 2.
3. δ = q. Analogous to the previous case.
4. δ = α ∨ β. If v = 22 . . . and v ∈ Jα ∨ β K = Jα K∪ Jβ K, then suppose that v ∈ Jα K.

By induction we deduce that there exists u < v that coincides with v excepting for

p, q and such that u ∈ Jα K ⊆ J δ K. The same happens if v ∈ Jβ K.
5. δ = α → β. Suppose that v = 22 . . ., v ∈ J δ K. We know by Proposition 5, that

v ∈ Jα K ∪ Jβ K. So first suppose that v ∈ Jβ K. Since β is a subformula of δ, we

know that there exists u < v ∈ Jβ K ⊆ J δ K such that u is equal to v excepting for

p, q. In the other case, when v ∈ Jα K ⊆ Jα Kc, we can take u = 11 . . . equal to v

excepting for u(p) = u(q) = 1. We have that u < v and so, u ∈ Jα Kc ↓⊆ J δ K which

completes the proof.
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Proof of Theorem 5

It is easy to see that elements of J p1 ∧ p2 K are exactly those v of the form v = 22 . . .

and that this set is not empty, i.e., we have at least some v in that set. Suppose p1 ∧ p2

were representable in LΣ{⊥,∨,→}. Then, Lemma 3 would imply that there exists some

u ∈ J p1 ∧ p2 K, such that u < v and u coincides with v excepting for p1, p2. But then,

either u(p1) 6= 2 or u(p2) 6= 2 and u could not be a model of p1 ∧ p2.

Proof of Theorem 6

The fixpoint condition means that the only interpretation in Jα K∩{v} ↓ is v. This is the

same than saying that the only interpretation that is both model of α and smaller than

or equal to v is v itself.

Proof of Theorem 7

It amounts to observe that a classical model v of α is not in equilibrium iff v ∈ (Jα K\I c) ↑.
The former means that there is some u < v, u ∈ Jα K. Since v is classical, any u < v must

be non-classical. Thus, v is not in equilibrium iff there is some u < v, u ∈ (Jα K \ I c).
But then, this is equivalent to: v ∈ (Jα K \ I c) ↑.

Proof of Lemma 4

Note that v ∈ Jα Kc ⊆ Jα K and that trivially v ∈ J γv K by definition of γv. Moreover,

as v is classical, v ∈ Jα ∧ γv Kc. To see that v is in equilibrium, note that u < v should

assign u(p) = 1 to some atom such that v(p) = 2. But then, u 6∈ J γv K and so it cannot

be a model of α ∧ γv either.

Proposition 7

For any α, α′, β, β′:

(i) Jα→ β K ⊆ Jα→ β′ K if Jβ K ⊆ Jβ′ K
(ii) Jα→ β K ⊆ Jα′ → β K if Jα′ K ⊆ Jα K

Proof

(i) is an immediate consequence of Proposition 5. As for (ii), we can also use that propo-

sition and the fact that Jα K ⊆ Jα′ K, and so, Jα Kc ↓⊆ Jα′ Kc ↓ too.
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