
1

Online appendix for the paper

Proving Correctness of Imperative Programs by

Linearizing Constrained Horn Clauses

published in Theory and Practice of Logic Programming

EMANUELE DE ANGELIS, FABIO FIORAVANTI

DEC, University ‘G. d’Annunzio’, Pescara, Italy

(e-mail: {emanuele.deangelis,fabio.fioravanti}@unich.it)

ALBERTO PETTOROSSI

DICII, Università di Roma Tor Vergata, Roma, Italy

(e-mail: pettorossi@disp.uniroma2.it)

MAURIZIO PROIETTI

CNR-IASI, Roma, Italy

(e-mail: maurizio.proietti@iasi.cnr.it)

submitted 29 April 2015; revised 3 July 2015; accepted 14 July 2015

Appendix A

For the proof of Theorem 1 we need the following lemma.

Lemma 1. (i) The relation rprog defined by OpSem is a functional relation, that is,

M (OpSem) |= ∀p1,. . ., ps , y1, y2.rprog(p1,. . ., ps , y1)∧rprog(p1,. . ., ps , y2)→y1=y2.

(ii) A program prog terminates for an environment δ0 such that δ0(z1)=p1,. . .,

δ0(zs)=ps and pre(p1,. . ., ps) holds, iff

M (OpSem) |= pre(p1,. . ., ps)→ ∃y. rprog(p1,. . ., ps , y).

Proof. Since the program prog is deterministic, the predicate rprog defined by OpSem

is a functional relation (which might not be total on pre, as prog might not ter-

minate). Moreover, a program prog, with variables z1, . . . , zs , terminates for an

environment δ0 such that: (i) δ0(z1)= p1, . . . , δ0(zs)= ps , and (ii) δ0 satisfies pre,

iff ∃y. rprog(p1, . . . , ps , y) holds in M (OpSem). �

Proof of Theorem 1 (Partial Correctness).

Let domr (X1, . . . ,Xs) be a predicate that represents the domain of the functional

relation rprog. We assume that domr (X1, . . . ,Xs) is defined by a set Dom of clauses,

using predicate symbols not in OpSem ∪ Spec, such that

M (OpSem ∪Dom) |= (1)

∀X1, . . . ,Xs .((∃Y .rprog(X1, . . . ,Xs ,Y)↔ domr (X1, . . . ,Xs))

Let us denote by Spec♯ the set of clauses obtained from Spec by replacing each clause

f (X1, . . . ,Xs ,Y) ← B by the clause f (X1, . . . ,Xs ,Y) ← domr (X1, . . . ,Xs),B .

Then, for all integers p1, . . . , ps , y,

2

M (Spec♯ ∪Dom) |= f (p1, . . . , ps , y) implies M (Spec) |= f (p1, . . . , ps , y) (2)

Moreover, let us denote by Spec′ the set of clauses obtained from Spec♯ by replacing

all occurrences of f by rprog. We show that M (OpSem ∪ Aux ∪Dom) |= Spec′.

Let S be any clause in Spec′. If S belongs to Aux, then M (OpSem ∪ Aux) |= S .

Otherwise, S is of the form rprog(X1, . . . ,Xs ,Y) ← domr (X1, . . . ,Xs), B̃ and, by

construction, in Fpcorr there are two goals

G1: false← Y >Z , rprog(X1, . . . ,Xs ,Z), B̃ , and

G2: false← Y <Z , rprog(X1, . . . ,Xs ,Z), B̃

such that OpSem ∪ Aux ∪ {G1,G2} is satisfiable. Then,

M (OpSem ∪ Aux) |= ¬∃(Y 6= Z ∧ rprog(X1, . . . ,Xs ,Z) ∧ B̃)

Since M (OpSem∪Dom) |= rprog(X1, . . . ,Xs ,Z)→ domr (P1, . . . ,Ps), we also have

that

M (OpSem∪Aux∪Dom) |=¬∃(Y 6=Z∧domr (X1, . . . ,Xs)∧rprog(X1, . . . ,Xs ,Z)∧B̃)

From the functionality of rprog it follows that

M (OpSem ∪ Aux ∪Dom) |= ¬rprog(X1, . . . ,Xs ,Y)

↔ (¬∃Z · rprog(X1, . . . ,Xs ,Y) ∨ (rprog(X1, . . . ,Xs ,Z) ∧ Y 6=Z))

and hence, by using (1),

M (OpSem ∪ Aux ∪Dom) |= ¬∃(domr (X1, . . . ,Xs) ∧ ¬rprog(X1, . . . ,Xs ,Y) ∧ B̃)

Thus, we have that

M (OpSem ∪ Aux ∪Dom) |= ∀(domr (X1, . . . ,Xs) ∧ B̃ → rprog(X1, . . . ,Xs ,Y))

that is, clause S is true inM (OpSem∪Aux∪Dom). We can conclude thatM (OpSem∪

Aux∪Dom) is a model of Spec′∪Dom, and since M (Spec′∪Dom) is the least model

of Spec′ ∪Dom, we have that

M (Spec′ ∪Dom) ⊆ M (OpSem ∪ Aux ∪Dom) (3)

Next we show that, for all integers p1, . . . , ps , y,

M (Spec♯ ∪Dom) |= f (p1, . . . , ps , y) iff M (OpSem) |= rprog(p1, . . . , ps , y) (4)

Only If Part of (4). Suppose that M (Spec♯ ∪ Dom) |= f (p1, . . . , ps , y). Then, by

construction,

M (Spec′ ∪Dom) |= rprog(p1, . . . , ps , y)

and hence, by (3),

M (OpSem ∪ Aux ∪Dom) |= rprog(p1, . . . , ps , y)

Since rprog does not depend on predicates in Aux ∪Dom,

M (OpSem) |= rprog(p1, . . . , ps , y)

If Part of (4). Suppose that M (OpSem) |= rprog(p1, . . . , ps , y).

Then, by definition of rprog,

M (Dom) |= domr (p1, . . . , ps) (5)

and

M (Spec) |= pre(p1, . . . , ps) (6)

3

Thus, by (6) and Condition (3.1) of Definition 1, there exists z such that

M (Spec) |= f (p1, . . . , ps , z) (7)

By (5) and (7),

M (Spec♯ ∪Dom) |= f (p1, . . . , ps , z) (8)

By the Only If Part of (4),

M (OpSem) |= rprog(p1, . . . , ps , z)

and by the functionality of rprog, z = y. Hence, by (8),

M (Spec♯ ∪Dom) |= f (p1, . . . , ps , y)

Let us now prove partial correctness. If M (Spec) |= pre(p1, . . . , ps) and prog termi-

nates, that is, M (Dom) |= domr (p1, . . . , ps), then for some integer y, M (OpSem) |=

rprog(p1, . . . , ps , y). Thus, by (4), M (Spec♯∪Dom) |= f (p1, . . . , ps , y) and hence, by

(2),M (Spec) |= f (p1, . . . , ps , y). Suppose that the postcondition ψ is f (p1, . . . , ps , zk).

Then, by Condition (3.2) of Definition 1, y = zk .

Thus, {ϕ} prog {ψ}. �

Removal of the Interpreter

Here we report the variant of the transformation presented in (De Angelis et al.

2014a) that we use in this paper to perform the removal of the interpreter. In this

transformation we use the function Unf (C ,A, Cls) defined as the set of clauses

derived by unfolding a clause C with respect to an atom A using the set Cls of

clauses (see the unfolding rule in Section 4.2).

The predicate reach is defined as follows:

reach(X ,X)←

reach(X ,Z)← tr(X ,Y), reach(Y ,Z)

where, as mentioned in Section 2, tr is a (nonrecursive) predicate representing one

transition step according to the operational semantics of the imperative language.

In order to perform the Unfolding step, we assume that the atoms occurring in

bodies of clauses are annotated as either unfoldable or not unfoldable. This annota-

tion ensures that any sequence of clauses constructed by unfolding w.r.t. unfoldable

atoms is finite. In particular, the atoms with predicate initCf , finalCf , and tr are

unfoldable. The atoms of the form reach(cf1, cf2) are unfoldable if cf1 is not associ-

ated with a while or goto command. Other annotations based on a different analysis

of program OpSem can be used.

4

Input: Program OpSem.

Output: Program OpSemRI such that, for all integers p1, . . . ,ps ,zk ,

rprog(p1, . . . ,ps ,zk)∈M (OpSem) iff rprog(p1, . . . ,ps ,zk)∈M (OpSemRI).

Initialization:

OpSemRI := ∅; Defs := ∅;

InCls :={rprog(P1,. . .,Ps ,Zk)← initCf (C0,P1,. . .,Ps), reach(C0,Ch), finalCf (Ch ,Zk)};

while in InCls there is a clause C which is not a constrained fact do

Unfolding:

SpC := Unf(C ,A,OpSem), where A is the leftmost atom in the body of C ;

while in SpC there is a clause D whose body contains an occurrence of an

unfoldable atom A do

SpC := (SpC− {D}) ∪ Unf(D ,A,OpSem)

end-while;

Definition & Folding:

while in SpC there is a clause E of the form: H ← e, reach(cf1, cf2)

do
if in Defs there is no clause of the form: newp(V)← reach(cf1, cf2)

where V is the set of variables occurring in reach(cf1, cf2)

then add the clause N : newp(V)← reach(cf1, cf2) to Defs and InCls ;

SpC := (SpC− {E}) ∪ {H ← e, newp(V)}

end-while;

InCls := InCls− {C}; OpSemRI := OpSemRI ∪ SpC;

end-while;

RI: Removal of the Interpreter.

Let us now prove Theorem 3 stating the relevant properties of the RI transforma-

tion.

The RI transformation terminates. The termination of the Unfolding step is guar-

anteed by the unfoldable annotations. Indeed, (i) the repeated unfolding of the un-

foldable atoms with predicates initCf , finalCf , and tr, always terminates because

those atoms have no recursive clauses, (ii) by the definition of the semantics of the

imperative program, the repeated unfolding of an atom of the form reach(cf1, cf2)

eventually derives a new reach(cf3, cf4) atom where cf3 is either a final configura-

tion or a configuration associated with a while or goto command, and in both cases

unfolding terminates. The termination of the Definition & Folding step follows

from the fact that SpC is a finite set of clauses.

The outer while loop terminates because a finite set of new predicate definitions of

the form newp(V) ← reach(cf1, cf2) can be introduced. Indeed, each configuration

cf is represented as a term cf(LC,E)), where LC is a labeled command and E is an

environment (see Example 1). An environment is represented as a list of (v ,X) pairs

where v is a variable identifier and X is its value, that is, a logical variable whose

5

value may be subject to a given constraint. Considering that: (i) the labeled com-

mands and the variable identifiers occurring in an imperative program are finitely

many, and (ii) predicate definitions of the form newp(V)← reach(cf1, cf2) abstract

away from the constraints that hold on the logical variables occurring in cf1 and

cf2, we can conclude that there are only finitely many such clauses (modulo variable

renaming).

Point 1: OpSemRI is a set of linear clauses over the integers. By construction, every

clause inOpSemRI is of the formH ← c,B , where (i) H is either rprog(P1, . . . ,Ps ,Zk)

or newp(V), for some new predicate newp and tuple of variables V , and (ii) B is

either absent or of the form newp(V), for some new predicate newp and tuple of

variables V . Thus, every clause is a linear clause over the integers.

Point 2: OpSem∪Aux∪Fpcorr is satisfiable iff OpSemRI∪Aux∪Fpcorr is satisfiable.

From the correctness of the unfolding, definition, and folding rules with respect to

the least model semantics of CLP programs (Etalle and Gabbrielli 1996), it follows

that, for all integers p1, . . . ,ps ,zk ,

rprog(p1, . . . ,ps ,zk)∈M (OpSem) iff rprog(p1, . . . ,ps ,zk)∈M (OpSemRI) (†1)

OpSem∪Aux∪Fpcorr is satisfiable iff for every ground instanceG of a goal in Fpcorr,

M (OpSem∪Aux) |= G. Since the only predicate of OpSem on which G may depend

is rprog, by (†1), we have that M (OpSem∪Aux) |= G iff M (OpSemRI ∪Aux) |= G.

Finally, M (OpSemRI ∪Aux) |= G for every ground instance G of a goal in Fpcorr,

iff OpSemRI ∪ Aux ∪ Fpcorr is satisfiable.

Point 3: OpSem ∪ Aux ∪ Fpcorr is LA-solvable iff OpSemRI ∪ Aux ∪ Fpcorr is

LA-solvable.

Suppose that OpSem ∪Aux ∪Fpcorr is LA-solvable, and let Σ be an LA-solution

of OpSem ∪ Aux ∪ Fpcorr. Now we construct an LA-solution ΣRI of OpSemRI ∪

Aux ∪ Fpcorr. To this purpose it is enough to define a symbolic interpretation for

the new predicates introduced by RI.

For any predicate newp introduced by RI via a clause of the form:

newp(V)← reach(cf1, cf2)

we define a symbolic interpretation as follows:

ΣRI(newp(V)) = Σ(reach(cf1, cf2))

Moreover, ΣRI is identical to Σ for the atoms with predicate occurring in OpSem.

Now we have to prove that ΣRI is indeed an LA-solution of OpSemRI ∪ Aux ∪

Fpcorr. This proof is similar to the proof of Theorem 5 (actually, simpler, because

RI introduces new predicates defined by single atoms, while LIN introduces new

predicates defined by conjunctions of atoms), and is omitted.

Vice versa, if ΣRI is an LA-solution of OpSemRI ∪ Aux ∪ Fpcorr, we construct

an LA-solution Σ of OpSem ∪ Aux ∪ Fpcorr by defining

Σ(reach(cf1, cf2)) = ΣRI(newp(V)). �

Proof of Theorem 4

Let LCls be a set of linear clauses and Gls be a set of nonlinear goals. We split the

proof of Theorem 4 in three parts:

6

Termination: The linearization transformation LIN terminates for the input set of

clauses LCls ∪Gls;

Linearity: The output TransfCls of LIN is a set of linear clauses;

Equisatisfiability: LCls ∪Gls is satisfiable iff TransfCls is satisfiable.

(Termination) EachUnfolding andDefinition&Folding step terminates. Thus,

in order to prove the termination of LIN it is enough to show that the while loop

is executed a finite number of times, that is, a finite number of clauses are added

to NLCls. We will establish this finiteness property by showing that there exists an

integer M such that every clause added to NLCls is of the form:

newp(X1, . . . ,Xt)← A1, . . . ,Ak (†2)

where: (i) k ≤ M , (ii) for i = 1, . . . , k , Ai is of the form p(X1, . . . ,Xm), and

(iii) {X1, . . . ,Xt} ⊆ vars(A1, . . . ,Ak).

Indeed, let M be the maximal number of atoms occurring in the body of a goal

in Gls, to which NLCls is initialized. Now let us consider a clause C in NLCls and

assume that in the body of C there are at most M atoms. The clauses in the set

LCls used for unfolding C are linear, and hence in the body of each clause belonging

to the set U (C) obtained after the Unfolding step, there are at most M atoms.

Thus, each clause in U (C) is of the form H ← c,A1, . . . ,Ak , with k ≤ M . Since

the body of every new clause introduced by the subsequent Definition&Folding

step is obtained by dropping the constraint from the body of a clause in U (C), we

have that every clause added to NLCls is of the form (†2), with k ≤ M . Thus, LIN

terminates.

(Linearity) TransfCls is initialized to the set LCls of linear clauses. Moreover, each

clause added to TransfCls is of the form H ← c, newp(X1, . . . ,Xt), and hence is

linear.

(Equisatisfiability) In order to prove that LIN ensures equisatisfiability, let us adapt

to our context the basic notions about the unfold/fold transformation rules for CLP

programs presented in (Etalle and Gabbrielli 1996).

Besides the unfolding rule of Section 4.2, we also introduce the following definition

and folding rules.

Definition Rule. By definition we introduce a clause of the form newp(X)← G,

where newp is a new predicate symbol and X is a tuple of variables occurring in G.

Folding Rule. Given a clause E : H ← c,G and a clause D : newp(X)← G intro-

duced by the definition rule. Suppose that, X = vars(G) ∩ vars(H,c). Then by

folding E using D we derive H ← c, newp(X).

From a set Cls of clauses we can derive a new set TransfCls of clauses either by

adding a new clause to Cls using the definition rule or by: (i) selecting a clause C

in Cls, (ii) deriving a new set TransfC of clauses using one or more transformation

rules among unfolding and folding, and (iii) replacing C by TransfC in Cls. We can

apply a new sequence of transformation rules starting from TransfCls and iterate

this process at will.

The following theorem is an immediate consequence of the correctness results for

the unfold/fold transformation rules of CLP programs (Etalle and Gabbrielli 1996).

7

Theorem 6 (Correctness of the Transformation Rules)

Let the set TransfCls be derived from Cls by a sequence of applications of the

unfolding, definition and folding transformation rules. Suppose that every clause

introduced by the definition rule is unfolded at least once in this sequence. Then,

Cls is satisfiable iff TransfCls is satisfiable.

Now, equisatisfiability easily follows from Theorem 6. Indeed, the Unfolding

and Definition & Folding steps of LIN are applications of the unfolding, defi-

nition, and folding rules (strictly speaking, the rewriting performed after unfolding

is not included among the transformation rules, but obviously preserves all LA-

models). Moreover, every clause introduced during the Definition & Folding

step is added to NCls and unfolded in a subsequent step of the transformation.

Thus, the hypotheses of Theorem 6 are fulfilled, and hence we have that LCls ∪Gls

is satisfiable iff TransfCls is satisfiable. �

Linearized clauses for Fibonacci.

The set of linear constrained Horn clauses obtained after applying LIN is made out

of clauses E1, E2, E3, and C3, together with the following clauses:

new1(N1,U,V,U,N2,U,N3,U):- N1=<0, N2=<0, N3=<0.

new1(N1,U,V,U,N2,U,N3,F3):- N1=<0, N2=<0, N4=N3-1, W=U+V, N3>=1,new2(N4,W,U,F3).

new1(N1,U,V,U,N2,F2,N3,U):- N1=<0, N4=N2-1, W=U+V, N2>=1, N3=<0,new2(N4,W,U,F2).

new1(N1,U,V,U,N2,F2,N3,F3):- N1=<0, N4=N2-1, N2>=1, N5=N3-1, N3>=1,

new3(N4,W,U,F2,N5,F3).

new1(N1,U,V,F1,N2,U,N3,U):- N4=N1-1, W=U+V, N1>=1, N2=<0, N3=<0,new2(N4,W,U,F1).

new1(N1,U,V,F1,N2,U,N3,F3):- N4=N1-1, N1>=1, N2=<0, N5=N3-1, W=U+V, N3>=1,

new3(N4,W,U,F1,N5,F3).

new1(N1,U,V,F1,N2,F2,N3,U):- N4=N1-1, N1>=1, N5=N2-1, W=U+V, N2>=1, N3=<0,

new3(N4,W,U,F1,N5,F2).

new1(N1,U,V,F1,N2,F2,N3,F3):- N4=N1-1, N1>=1, N5=N2-1, N2>=1, N6=N3-1, W=U+V,

N3>=1, new1(N4,W,U,F1,N5,F2,N6,F3).

new2(N,U,V,U):- N=<0.

new2(N,U,V,F):- N2=N-1, W=U+V, N>=1, new2(N2,W,U,F).

new3(N1,U,V,U,N2,U):- N1=<0, N2=<0.

new3(N1,U,V,U,N2,F2):- N1=<0, N3=N2-1, W=U+V, N2>=1, new2(N3,W,U,F2).

new3(N1,U,V,F1,N2,F2):- N3=N1-1, N1>=1, N4=N2-1, W=U+V, N2>=1,

new3(N3,W,U,F1,N4,F2).

new3(N1,U,V,F1,N2,U):- N3=N1-1, W=U+V, N1>=1, N2=<0, new2(N3,W,U,F1).

Proof of Theorem 5 (Monotonicity with respect to LA-Solvability).

Suppose that the set LCls∪Gls of constrained Horn clauses is LA-solvable, and let

TransfCls be obtained by applying LIN to LCls ∪Gls. Let Σ be an LA-solution of

LCls∪Gls. We now construct an LA-solution of TransfCls. For any predicate newp

introduced by LIN via a clause of the form:

newp(X1, . . . ,Xt)← A1, . . . ,Ak

we define a symbolic interpretation Σ′ as follows:

Σ′(newp(X1, . . . ,Xt)) = Σ(A1) ∧ . . . ∧ Σ(Ak)

8

Now, we are left with the task of proving that Σ′ is indeed an LA-solution of

TransfCls. The clauses in TransfCls are either of the form

false← c, newq(X1, . . . ,Xu)

or of the form

newp(X1, . . . ,Xt)← c, newq(X1, . . . ,Xu)

where newp and newq are predicates introduced by LIN. We will only consider the

more difficult case where the conclusion is not false.

The clause newp(X1, . . . ,Xt) ← c, newq(X1, . . . ,Xu) has been derived (see the

linearization transformation LIN in Figure 2) in the following two steps.

(Step i) Unfolding newp(X1, . . . ,Xt)← A1, . . . ,Ak w.r.t. all atoms in its body using

k clauses in LCls :

A1 ← c1,B1 . . . Ak ← ck ,Bk

where some of the Bi ’s can be the true and c ≡ c1, . . . , ck , thereby deriving

newp(X1, . . . ,Xt)← c1, . . . , ck ,B1, . . . ,Bk

(Without loss of generality we assume that the atoms in the body of the clauses

are equal to, instead of unifiable with, the heads of the clauses in LCls.)

(Step ii) Folding newp(X1, . . . ,Xt) ← c1, . . . , ck ,B1, . . . ,Bk using a clause of the

form:

newq(X1, . . . ,Xu)← B1, . . . ,Bk

Thus, for newq(X1, . . . ,Xu)) we have the following symbolic interpretation:

Σ′(newq(X1, . . . ,Xu)) = Σ(B1) ∧ . . . ∧ Σ(Bk)

To prove that Σ′ is an LA-solution of TransfCls, we have to show that

LA |= ∀(c ∧ Σ′(newq(X1, . . . ,Xu))→ Σ′(newp(X1, . . . ,Xt)))

Assume that

LA |= c ∧Σ′(newq(X1, . . . ,Xu))

Then, by definition of Σ′,

LA |= c ∧Σ(B1) ∧ . . . ∧ Σ(Bk)

Since Σ is an LA-solution of LCls, we have that:

LA |= ∀(c1 ∧Σ(B1)→ Σ(A1)) . . . LA |= ∀(ck ∧Σ(Bk)→ Σ(Ak))

and hence

LA |= Σ(A1) ∧ . . . ∧ Σ(Ak)

Thus, by definition of Σ′,

LA |= Σ′(newp(X1, . . . ,Xt))· �

