
Theory and Practice of Logic Programming 1

Appendix A of the Introduction to the

31st International Conference on Logic

Programming Special Issue:

Abstracts of Technical Communications

submitted 27 April 2015; accepted 5 June 2015; revised 21 July 2015



2

Parallel Bottom-Up Evaluation of Logic Programs: DeALS on Shared-

Memory Multicore Machines

M. Yang, A. Shkapsky and C. Zaniolo

University of California, Los Angeles, USA

(e-mail: {yang,shkapsky,zaniolo}@cs.ucla.edu)

Delivering superior expressive power over RDBMS, while maintaining competitive

performance, has represented the main goal and technical challenge for deductive

database research since its inception forty years ago. Signi�cant progress toward

this ambitious goal is being achieved by the DeALS system through the parallel

bottom-up evaluation of logic programs, including recursive programs with mono-

tonic aggregates, on a shared-memory multicore machine.

In DeALS, a program is represented as an AND/OR tree, where the parallel evalu-

ation instantiates multiple copies of the same AND/OR tree that access the tables

in the database concurrently. Synchronization methods such as locks are used to

ensure the correctness of the evaluation. We describe a technique which �nds an

e�cient hash partitioning strategy of the tables that minimizes the use of locks

during the evaluation. Experimental results demonstrate the e�ectiveness of the

proposed technique � DeALS achieves competitive performance on non-recursive

programs compared with commercial RDBMSs and superior performance on recur-

sive programs compared with other existing systems.

KEYWORDS: Parallel, Bottom-up Evaluation, Datalog, Multicore, AND/OR Tree



Appendix A 3

Grid Mind: Prolog-Based Simulation Environment for Future Energy

Grids

Jan Rosecky1,2, Filip Prochazka2 and Barbora Buhnova1

1Faculty of Informatics, Masaryk University, Brno, Czech Republic

(e-mail: {j.rosecky,buhnova}@mail.muni.cz)
2Mycroft Mind, a. s., Brno, Czech Republic

(e-mail: {jan.rosecky,filip.prochazka}@mycroftmind.com)

Fundamental changes in the current energy grids, towards the so called smart grids,

initiated a range of projects involving extensive deployment of metering and control

devices into the grid infrastructure. Since in many countries, the choice of supportive

information and communication technologies (ICT) for the grid devices still remains

an open question, benchmarking tools aimed at predicting their behavior in the

deployed solution play an essential role in the decision-making process.

This paper presents a Prolog-based simulation environment, named Grid Mind, pri-

marily intended for the very purpose. The tool was successfully used to generate sim-

ulation scenarios in several smart-grid related projects and became a self-standing

simulation tool for the evaluation of information and communication technologies

used to deliver low-voltage metering and monitoring data. The tool is continuously

evolving, aimed to become an integral part of the future energy grid design in the

Czech Republic and beyond.

KEYWORDS: Simulation Environment; Smart Grid; Communication and Network-

ing; ICT; Prolog



4

Logic Programming and Bisimulation1

Agostino Dovier

University of Udine, DIMI, ITALY

(e-mail: agostino.dovier@uniud.it)

The logic programming encoding of the set-theoretic graph property known as

bisimulation is analyzed. This notion is of central importance in non-well-founded

set theory, semantics of concurrency, model checking, and coinductive reasoning.

From a modeling point of view, it is particularly interesting since it allows two al-

ternative high-level characterizations. We analyze the encoding style of these mod-

elings in various dialects of Logic Programming. Moreover, the notion also admits

a polynomial-time maximum �xpoint procedure that we implemented in Prolog.

Similar graph problems which are instead NP hard or not yet perfectly classi�ed

(e.g., graph isomorphism) can inherit most from the declarative encodings pre-

sented.

KEYWORDS: Logic Programming Modeling, Bisimulation

1 The work is partially supported by INdAM GNCS 2014 and 2015 projects.



Appendix A 5

Parallel Execution of the ASP Computation - an Investigation on GPUs2

Agostino Dovier1, Andrea Formisano2, Enrico Pontelli3, Flavio Vella4

1Dip. di Matematica e Informatica, Università di Udine

(e-mail: agostino.dovier@uniud.it)
2Dip. di Matematica e Informatica, Università di Perugia

(e-mail: formis@dmi.unipg.it)
3Dept. of Computer Science, New Mexico State University

(e-mail: epontell@cs.nmsu.edu)
4IAC-CNR and Dip. di Informatica, Sapienza Università di Roma

(e-mail: vella@di.uniroma1.it)

This paper illustrates the design and implementation of a con�ict-driven ASP solver

that is capable of exploiting the Single-Instruction Multiple-Thread parallelism of-

fered by General Purpose Graphical Processing Units (GPUs). Modern GPUs are

multi-core platforms, providing access to large number of cores at a very low cost,

but at the price of a complex architecture with non-trivial synchronization and

communication costs. The search strategy of the ASP solver follows the notion of

ASP computation, that avoids the generation of unfounded sets. Con�ict analysis

and learning are also implemented to help the search. The CPU is used only to

pre-process the program and to output the results. All the solving components, i.e.,

nogoods management, search strategy, (non-chronological) backjumping, heuristics,

con�ict analysis and learning, and unit propagation, are performed on the GPU by

exploiting SIMT parallelism. The preliminary experimental results con�rm the fea-

sibility and scalability of the approach, and the potential to enhance performance

of ASP solvers.

KEYWORDS: ASP Solvers, ASP Computation, SIMT Parallelism, GPU Comput-

ing

2 Research partially supported by INdAM GNCS-14, GNCS-15 projects and NSF grants DBI-
1458595, HRD-1345232, and DGE-0947465. Hardware partially supported by NVIDIA. We
thank Massimiliano Fatica for the access to the Titan cards and Alessandro Dal Palù for the
useful discussions.



6

On Type-directed Generation of Lambda Terms

Paul Tarau

Department of Computer Science and Engineering, University of North Texas, USA

(e-mail: paul.tarau@unt.edu)

We describe a Prolog-based combined lambda term generator and type-inferrer for

closed well-typed terms of a given size, in de Bruijn notation. By interleaving term

generation and type inference, as shown in the code below, we signi�cantly reduce

the (super-exponential) e�ort needed to generate closed terms and then �lter the

simply-typed ones among them.

generateTypedTerm(Size,Term,Type) :- genTyped(Term,Type,[],Size,0).

genTyped(v(I),V,Vs) --> {nth0(I,Vs,V0), unify_with_occurs_check(V,V0)}.

genTyped(a(A,B),Y,Vs) --> down, genTyped(A,(X->Y),Vs), genTyped(B,X,Vs).

genTyped(l(A),(X->Y),Vs) --> down, genTyped(A,Y,[X|Vs]).

down(From,To):-From>0,To is From-1.

By taking advantage of Prolog's unique bidirectional execution model and sound

uni�cation algorithm, our generator can build �customized� closed terms of a given

type. This relational view of terms and their types enables the discovery of in-

teresting patterns about frequently used type expressions occurring in well-typed

functional programs. At the same time, our study uncovers the most �popular� types

that govern function applications among a about a million small-sized lambda terms

and hints toward practical uses to combinatorial software testing.

The paper also shows the e�ectiveness of Prolog as a meta-language for modeling

properties of lambda terms and their types. Together with (Tarau 2015b; Tarau

2015a) it provides a logic programming-based declarative playground for experi-

menting with lambda terms, combinators, as well as their type inference and eval-

uation mechanisms.

References

Tarau, P. 2015a. On a Uniform Representation of Combinators, Arithmetic, Lambda

Terms and Types. In PPDP'15: Proceedings of the 17th international ACM SIGPLAN

Symposium on Principles and Practice of Declarative Programming, E. Albert, Ed.

ACM, New York, NY, USA, 244�255.

Tarau, P. 2015b. On Logic Programming Representations of Lambda Terms: de Bruijn

Indices, Compression, Type Inference, Combinatorial Generation, Normalization. In

Proceedings of the Seventeenth International Symposium on Practical Aspects of Declar-

ative Languages PADL'15, E. Pontelli and T. C. Son, Eds. Springer, LNCS 8131, Port-

land, Oregon, USA, 115�131.



Appendix A 7

KEYWORDS: Lambda Calculus, de Bruijn Notation, Type Inference, Generation of

Closed Simply-typed Lambda Terms, Logic Programming as a Meta-language.



8

Answer Set Application Programming: a Case Study on Tetris3

Peter Schüller1 and Antonius Weinzierl2

1 Department of Computer Engineering, Faculty of Engineering,

Marmara University

(e-mail: peter.schuller@marmara.edu.tr)
2 Institute of Information Systems,

TU Wien

(e-mail: weinzierl@kr.tuwien.ac.at)

Answer-Set Programming (ASP) is a successful branch of the logic programming

paradigm with many applications in modelling and solving of NP-hard problems.

Combinatorial problems are the main application domain of ASP and it seems un-

suitable for serving as a programming language for interactive applications. How-

ever, we conjecture that there is no theoretical obstacle for using ASP to that

end. As witnessed by functional programming, it can be useful to use a declarative

paradigm for creating applications. In this work we explore possibilities, bene�ts,

and drawbacks, of programming an interactive application in ASP. We �nd that

this is hard mainly for the following reasons: managing change over time, inter-

action with the user, generating output that is ordered (i.e., not a set), handling

persistence of certain data, and ensuring e�ciency. ASP and related �elds provide

powerful techniques for representing actions and change, executing programs with

respect to external environments, and processing external events. Even if the full

power of these techniques is not required to build an interactive application, combin-

ing them is necessary, and putting together these concepts in a practical framework

is challenging. We realize such an integration in a framework we call Answer Set

Application Programming framework which is based on the HEX language and

features syntactic shortcuts to make application programming more intuitive. We

describe design decisions and discuss alternative possibilities. Our sample applica-

tion is a playable version of Tetris which demonstrates that ASP can be used as a

general-purpose programming-language.

KEYWORDS: Answer-Set Programming, Programming Techniques, Knowledge Rep-

resentation, Software Engineering, Nonmonotonic Reasoning

3 This work has been supported by the Austrian Science Fund (FWF) Project P27730 and the
Scienti�c and Technological Research Council of Turkey (TUBITAK) Grant 114E430.



Appendix A 9

Structural Resolution for Logic Programming

Patricia Johann1 and Ekaterina Komendantskaya2 and Vladimir Komendantskiy3

1 Department of Computer Science, Appalachian State University, USA

(e-mail: johannp@appstate.edu)
2 School of Computing, University of Dundee, UK

(e-mail: katya@computing.dundee.ac.uk)
3 Moixa, UK

(e-mail: vladimir@moixaenergy.com)

As ICLP is celebrating the 200th anniversary of George Boole, we are re�ecting on

the fundamental �laws" underlying derivations in logic programming (LP), and mak-

ing an attempt to formulate some fundamental principles for �rst-order proof search,

analogous in generality to Boole's �laws of thought" for propositional logic.

Any such principles must be able to re�ect two important features of �rst-order

proof search in LP: its recursive and non-deterministic nature. For this they must

satisfy two criteria: to be able to (a) model in�nite structures and (b) re�ect

the non-determinism of proof search, relating �laws of in�nity" with �laws of non-

determinism" in LP. To be implementable in practice, such principles also need to

(c) model in�nite derivations in some constructive, observational way, thus de�ning

�laws of observability" for LP proof search.

We draw our inspiration from the classical approach to semantics of �rst-order logic

and recursive schemes. Best summarised in �Fundamental Properties of In�nite

Trees" (Courcelle, 1983) this approach models �rst-order terms as trees, de�ning a

term tree as a map from a (�nite or in�nite) tree language to �rst-order signature.

The de�nition is subject to laws relating the structure of the tree language to the

structure of the �rst-order signature.

We extend this elegant theory of in�nite trees to give an operational semantics of

LP that satis�es criteria (a), (b), and (c) above. We introduce a Three Tier Tree

Calculus (T 3C) that de�nes in a systematic way the three tiers of tree structures

underlying proof search in LP: term trees as described above, rewriting trees whose

codomains are given by term trees, and derivation trees whose codomains are given

by rewriting trees.

In all three cases, we identify structural laws that hold in every tier irrespective of

the size of the tree language constituting the domain. We thus formulate structural

(constructive) laws for �nite and in�nite tree structures arising in LP proof search

that satisfy criteria (a) and (c). We further show how non-deterministic nature of

LP proof search can be modeled by the new formalism of T 3C, so that it satis�es

criterion (b) as well. Overall this shows that T 3C de�nes a new � structural �

version of resolution for LP.



10

KEYWORDS: Structural Resolution, Term Trees, Rewriting Trees, Derivation Trees



Appendix A 11

Debugging ASP using ILP

Tingting Li1, Marina De Vos2, Julian Padget2, Ken Satoh3 and Tina Balke4

1 Institute for Security Science and Technology, Imperial College London, UK

(e-mail: tingting.li@imperial.ac.uk)
2 Department of Computer Science, University of Bath, Bath, UK

(e-mail: {mdv,jap}@cs.bath.ac.uk)
3 National Institute of Informatics and Sokendai, Japan

(e-mail: ksatoh@nii.ac.jp)
4 Centre for Research in Social Simulation, University of Surrey, UK

(e-mail: t.balke@surrey.ac.uk)

Declarative programming allows the expression of properties of the desired solu-

tion(s), while the computational task is delegated to a general-purpose algorithm.

The freedom from explicit control is counter-balanced by the di�culty in working

out what properties are missing or are incorrectly expressed, when the solutions do

not meet expectations. This can be particularly problematic in the case of answer

set semantics, because the absence of a key constraint/rule could make the di�er-

ence between none or thousands of answer sets, rather than the intended one (or

handful). The debugging task then comprises adding or deleting conditions on the

right hand sides of existing rules or, more far-reaching, adding or deleting whole

rules. The contribution of this paper is to show how inductive logic programming

(ILP) along with examples of (un)desirable properties of answer sets can be used

to revise the original program semi-automatically so that it satis�es the stated

properties, in e�ect providing debugging-by-example for programs under answer

set semantics.

KEYWORDS: Answer Set Programming, Debugging, Inductive Logic Program-

ming



12

Learning Probabilistic Action Models from Interpretation Transitions

David Martínez1, Tony Ribeiro2, Katsumi Inoue3, Guillem Alenyà4 and Carme

Torras4

1 Institut de Robotica i Informatica Industrial (CSIC-UPC)

Llorens i Artigas 4-6, 08028 Barcelona, Spain

(e-mail: dmartinez@iri.upc.edu)
2 The Graduate University for Advanced Studies (Sokendai),

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

(e-mail: tony_ribeiro@nii.ac.jp)
3 National Institute of Informatics,

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

(e-mail: inoue@nii.ac.jp)
4 Institut de Robotica i Informatica Industrial (CSIC-UPC)

Llorens i Artigas 4-6, 08028 Barcelona, Spain

(e-mail: {galenya,torras}@iri.upc.edu)

There have been great advances in the probabilistic planning community during

recent years, and planners can now provide solutions for very complex probabilis-

tic tasks. However, planners require to have a model that represents the dynamics

of the system, and in general these models are built by hand. In this paper, we

present a framework to automatically infer probabilistic models from observations

of the state transitions of a dynamic system. We propose an extension of previous

works that perform learning from interpretation transitions. These works consider

as input a set of state transitions and build a logic program that realizes the given

transition relations. Here we extend this method to learn a compact set of proba-

bilistic planning operators that capture probabilistic dynamics. Finally, we provide

experimental validation of the quality of the learned models.

KEYWORDS: Inductive Logic Programming, Learning from Interpretation Transi-

tions, Probabilistic Planning Operators, Action Model Learning, Probabilistic Plan-

ning



Appendix A 13

Logic Programming for Cellular Automata

Marcus Völker1 and Katsumi Inoue2

1 RWTH Aachen University

Thomashofstraÿe 5, 52070 Aachen, Germany

(e-mail: marcus.voelker@rwth-aachen.de)
2 National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

(e-mail: inoue@nii.ac.jp)

Cellular automata can represent real-world phenomena studied in physics and biol-

ogy, and have been applied to intelligent systems like arti�cial life and multi-agent

systems. In this paper, we study a semantic preserving transformation between cel-

lular automata and normal logic programs based on the TP -operator. In particular,

a subset of normal logic programs is shown to precisely correspond to the classic

grid-based cellular automata such as Conway's Game of Life. We use two automaton

models: one-way bounded cellular automata, for simplicity of construction, and un-

bounded cellular automata, which correspond to the classic de�nition of grid-based

cellular automata. Using this construction, some computational theorems are eas-

ily proved regarding phenomena in the con�gurations of one-way bounded cellular

automata, and some decidability results are newly obtained on the orbits of normal

logic programs.

KEYWORDS: Semantic Foundations, TP -operator, Supported Models, Cellular Au-

tomata, Decidability



14

Relating Concrete Argumentation Formalisms and Abstract Argumen-

tation

Michael J. Maher

School of Engineering and Information Technology

University of New South Wales, Canberra

ACT 2600, Australia

(e-mail: michael.maher@unsw.edu.au)

Argumentation and defeasible reasoning are essentially di�erent names for the same

thing: resolving con�icting chains of reasoning in a principled way. In modern times,

argumentation has been structured through Dung's introduction of abstract argu-

mentation. Arguments are constructed from rules, and attack relations are deter-

mined; then a semantics for abstract argumentation can be applied to evaluate the

arguments and determine the consequences.

However, there are very many defeasible reasoning systems that provide concrete

mechanisms for drawing conclusions from defeasible rules, without formulating the

problem as the construction and then evaluation of arguments. They include various

systems for non-monotonic inheritance; a wide range of defeasible logics; courteous

logic programs and its more recent incarnations LPDA, ASPDA and Rulelog; De-

fLog; Ordered Logic; logic programming without negation as failure (LPwNF);

and Defeasible Logic Programming. Surprisingly, little work has been done relating

such concrete defeasible reasoning to abstract argumentation.

In this paper we identify a small fragment of defeasible rule systems that (i) de�nes

concrete argument systems isomorphic to abstract argumentation frameworks, and

(ii) produces the same conclusions in almost all of the defeasible reasoning systems

mentioned above. We show a close correspondence between abstract argumentation

and the fragment as interpreted by ambiguity blocking logics in the DL framework.

As a result, those defeasible reasoning systems can mimic abstract argumentation

under the grounded semantics. Similarly, some defeasible reasoning systems can

mimic abstract argumentation under the stable semantics.

These results allow us to transfer complexity lower bounds from abstract argumen-

tation to the many defeasible reasoning systems.

KEYWORDS: Defeasible Reasoning, Abstract Argumentation, Non-Monotonic Logic



Appendix A 15

CHR Exhaustive Execution - Revisited

AhmeD Elsawy1, Amira Zaki1,2, Slim Abdennadher1

1German University in Cairo, Egypt

(e-mail: {ahmed.el-sawy,amira.zaki,slim.abdennadher}@guc.edu.eg)
2Ulm University, Germany

(e-mail: amira.zaki@uni-ulm.de)

Constraint Handling Rules (CHR) is a rule-based programming language that

rewrites a multi-set of constraints until a �nal state is reached where no more rules

are applicable (Frühwirth et al. 1996). The execution is committed-choice and �red

rules cannot be retracted, thus CHR does not backtrack over alternatives.

For non-con�uent programs, the derived �nal state depends on the order of the con-

straints within the query, the order of the rules within the program, and the order

of the constraints within the rules. Due to the committed-choice nature of CHR, it

might not be possible to reach all �nal states for these programs. Hence the need

arises to implement a mechanism to enforce a full search space exploration.

Source-to-source transformations can be used to transform CHR programs into

extended ones with additional machinery. A source-to-source transformation was

introduced in (Elsawy et al. 2014) to transform any given CHR program to an ex-

tended one that explores a query's full search space. There were two main problems

with the proposed transformation. First, the transformed program would perform

many redundant computations, which is a drawback to its performance. Secondly,

the approach was presented for only one type of CHR rules known as simpli�cation

rules. The transformation requires an additional handling for other CHR rule types

that was not formally investigated.

This work aims to revisit the exhaustive execution problem, by designing a more

generic and e�cient source-to-source transformation that enforces full-space ex-

ploration. The new exhaustive transformation will be formalized in this work by

de�ning how it handles all types of CHR rules. An evaluation showing the gained

improvement will be also shown in comparison to previous work (Elsawy et al.

2014). In addition to, this work also proposes an interesting application for exhaus-

tive CHR that brings it closer to its declarative form.

References

Elsawy, A., Zaki, A., and Abdennadher, S. 2014. Exhaustive execution of CHR

through source-to-source transformation. In Logic-Based Program Synthesis and Trans-

formation - 24th International Symposium, LOPSTR 2014, Canterbury, UK, September

9-11, 2014. Revised Selected Papers, M. Proietti and H. Seki, Eds. Vol. 8981. Springer,

59�73.



16

Frühwirth, T., Brisset, P., and Molwitz, J.-R. 1996. Planning cordless business

communication systems. IEEE Expert: Intelligent Systems and Their Applications, 50�

55.

KEYWORDS: Declarative programming, Constraint Handling Rules, Exhaustive

execution, Source-to-source transformation, Full-search space exploration



Appendix A 17

A logic-based approach to understanding lone-actor terrorism

Dalal Alrajeh1 and Paul Gill2

Department of Computing, Imperial College London

London SW7 2RH, United Kingdom

(e-mail: dalal.alrajeh@imperial.ac.uk)
2 Department of Security and Crime Science, University College London

London WC1H 9EZ, United Kingdom

(e-mail: paul.gill@ucl.ac.uk)

The need for systematic research into behavioural factors of individual terrorists

has been highlighted by much recent work on terrorism. Many existing methods

follow a hypothesis-testing approach in which statistical modelling and analysis of

existing data is conducted to either con�rm or refute a hypothesis. However, the

initial construction of hypotheses is not trivial, nor is the decision upon which of

the variables are to be considered relevant for the testings. It has been argued that

the lack of a methodical approach to represent, analyse, interpret and infer from

existing data presents a pressing challenge to the progress of lone-actor terrorism

research in particular, and the terrorism �eld more generally.

This paper sets a new agenda for such research. We propose the use of a logic pro-

gramming approach to address the shortcomings of existing methodologies in the

study of lone-actor terrorism. Our method is based on transforming characteristic

and behavioural codes into a logic program and applying inductive logic program-

ming to learn hypotheses about potentially relevant factors associated with terrorist

behaviour, as well as the in�uence of speci�c factors on such behaviour. This pa-

per is an exploratory study of 111 lone-actor terrorists' target selections (civilian

vs. high-value targets) and the agency of their ideological orientation in determining

their target choices.

KEYWORDS: Inductive Logic Programming, Lone-Actor Terrorism, Hypothesis

Generation



18

Abstract Answer Set Solvers for Cautious Reasoning

Remi Brochenin and Marco Maratea

University of Genova, Italy

(e-mail: {remi.brochenin,marco.maratea}@unige.it)

Abstract solvers are a recently employed method to formally analyze algorithms

that earns some advantages w.r.t. traditional ways such as pseudo-code-based de-

scription. Abstract solvers proved to be a useful tool for describing, comparing and

composing solving techniques in various �elds such as SAT, SMT, ASP, CASP. In

ASP, abstract solvers have been so far employed for describing solvers for brave

reasoning tasks.

In this paper we apply, for the �rst time, this methodology to the analysis of ASP

solvers for cautious reasoning tasks. We describe and compare the available ap-

proaches in the literature, which employ techniques for computing over- and under-

approximations of the solution, the last including �coherence tests� for deciding the

inclusion of a single atom in the solution, a technique borrowed from backbone

computation of CNF formulas. Then, we show how to improve the current abstract

solvers with new techniques, in order to design new solving algorithms.

KEYWORDS: Answer Set Programming, Abstract Solvers, Cautious Reasoning



Appendix A 19

Thread-Aware Logic Programming for Data-Driven Parallel Programs

Flavio Cruz12, Ricardo Rocha2, Seth Copen Goldstein1

1Carnegie Mellon University, Pittsburgh, PA 15213

(e-mail: {fmfernan,seth}@cs.cmu.edu)
2CRACS & INESC TEC and Faculty of Sciences, University Of Porto

Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal

(e-mail: {flavioc,ricroc}@dcc.fc.up.pt)

Declarative programming in the style of functional and logic programming has been

hailed as an alternative parallel programming style where computer programs are

automatically parallelized without programmer control. Although this approach

removes many pitfalls of explicit parallel programming, it hides important informa-

tion about the underlying parallel architecture that could be used to improve the

scalability and e�ciency of programs. In this paper, we present a novel program-

ming model that allows the programmer to reason about thread state in data-driven

declarative programs. This abstraction has been implemented on top of Linear Meld,

a linear logic programming language that is designed for writing graph-based pro-

grams. We present several programs that show the �avor of our new programming

model, including graph algorithms and a machine learning algorithm. Our goal is

to show that it is possible to take advantage of architectural details without losing

the key advantages of logic programming.

KEYWORDS: Parallel Programming, Declarative Programming, Coordination



20

Towards a Generic Interface to Integrate CLP and Tabled Execution

(Abstract)

Joaquín Arias1 and Manuel Carro1,2

1IMDEA Software Institute

(e-mail: joaquin.arias@imdea.org)
2Technical University of Madrid

(e-mail: manuel.carro@{imdea.org,upm.es})

Logic programming systems featuring Constraint Logic Programming and tabled

execution have been shown to increase the declarativeness and e�ciency of Prolog,

while at the same time making it possible to write very expressive programs. Pre-

vious implementations fully integrating both capabilities (i.e., forcing suspension,

answer subsumption, etc. where it is necessary in order to avoid recomputation

and terminate whenever possible) did not have a simple, well-documented, easy-

to-understand interface which made it possible to integrate arbitrary CLP solvers

into existing tabling systems. This clearly hinders a more widespread usage of this

combination.

In our work, we examine the requirements that a constraint solver must ful�ll to

be easily interfaced with a tabling system. We propose a minimal set of operations

which the constraint solver has to provide to the tabling engine. The operations are

based in only four objects (Vars, Dom, ProjStore and Store). Vars is a list with the

constrained variables of a call. Dom and ProjStore represent the projection of the

constraint store corresponding to a call. Store is the representation of the constraint

store of a generator and is used by the external constraint solver to reinstall it when

the generator is complete. The two main operations to be provided by the solver

are: (i) entailment, entail(+VarsA, +DomA, +DomB , +ProjStoreB), which checks

if the call/answer constraint store (VarsA and DomA) is entailed by the previous

call/answer constraint store (DomB and ProjStoreB) and (ii) projection, executed in

two steps: project_domain(+Vars, -Dom), that pre-computes an object used during

the entailment, and project_gen_store(+Vars, +Dom, -ProjStore) which is executed

when the entailment phase fails.

We validate our design with three use cases. First we re-engineer a previously exist-

ing tabled constrain domain (di�erence constraints) in Ciao. This solver is imple-

mented in C, so the arguments of the interface represent the memory address of C

structures. Then we integrate Holzbauer's CLP(Q) implementation with Ciao Pro-

log's tabling engine. Since existing CLP(Q) predicates already provide the necessary

functionality, we only need to write simple bridge predicates. Last, we implement a

constraint solver over (�nite) lattice that is parametrized by the lattice domain. The

lattice domain de�nes the elements and its operations, including at least join and

meet which de�ne the partial order (v) relation used to check entailment.

We evaluate the cost of adopting a more modular framework versus the previous



Appendix A 21

non-modular implementation of di�erence constraints. We present the bene�ts of

using TCLP(Q), which gives more expressiveness and in some cases better perfor-

mance that TCLP(Di�). We also implemented a simple abstract analyzer whose

�x-point is reached by means of tabled execution and whose domain operations are

implemented using the constraint solver over (�nite) lattices, which avoids recom-

putation of subsumed abstractions and attains better accuracy and considerable

speedups.

KEYWORDS: Constraint Logic Programming, Tabling, Prolog, Interface, Imple-

mentation



22

Markov Logc Style Weighted Rules under the Stable Model Semantics

Joohyung Lee1, Yunsong Meng2 and Yi Wang1

1 School of Computing, Informatics, and Decision Systems Engineering

Arizona State University, Tempe, AZ, USA

(e-mail: {joolee,ywang485}@asu.edu)
2Samsung Research America, Mountain View, CA, USA

(e-mail: yunsong.m@samsung.com)

We introduce the language LPMLN that extends logic programs under the stable

model semantics to allow weighted rules similar to the way Markov Logic considers

weighted formulas. LPMLN is a proper extension of the stable model semantics to

enable probabilistic reasoning, providing a way to handle inconsistency in answer

set programming. We also show that the recently established logical relationship

between Pearl's Causal Models and answer set programs can be extended to the

probabilistic setting via LPMLN.

KEYWORDS: Answer Set Programming, Markov Logic Networks, Probabilistic

Causal Models, Probabilistic Logic Programming



Appendix A 23

On Structural Analysis of Non-Ground Answer-Set Programs4

Benjamin Kiesl1, Peter Sch uller2 and Hans Tompits1

1Institut f ur Informationssysteme,

Arbeitsbereich Wissensbasierte Systeme 184/3,

Technische Universit at Wien

(e-mail: {kiesl,tompits}@kr.tuwien.ac.at)
2Department of Computer Engineering,

Faculty of Engineering, Marmara University

(e-mail: peter.schuller@marmara.edu.tr)

The development of answer-set programs often involves domain experts without

a background in logic programming. In such situations, it would be bene�cial to

translate programs into a form which is easier to understand and closer to natural

language. Since the structure of a program determines to a great extent how a pro-

gram should be explained in a clear and comprehensible way, as a �rst step towards a

natural-language representation of answer-set programs, in this paper, we introduce

methods for analysing the structure of disjunctive non-ground answer-set programs.

In particular, as most programs follow the generate-de�ne-test paradigm, we intro-

duce formal de�nitions to characterise the respective generate, de�ne, and test parts

of a program. Thereby, we de�ne the non-deterministic core of a program, e�ec-

tively determining the program's active solution-space generators, following ideas of

the weakly perfect model semantics as introduced by Przymusinska and Przymusin-

ski, and we prove that our de�nitions ful�l desirable properties. Moreover, we also

provide an implementation of a tool, using a metaprogramming approach, which

classi�es the rules of a given program according to our de�nitions. Finally, we pro-

pose an algorithm that, based on our generate-de�ne-test classi�cation, computes

the order in which the rules of a program should be explained when translated into

natural language.

KEYWORDS: Answer-set Programming, Generate-de�ne-test Paradigm, Program

Analysis

4 This work has been supported by the Austrian Science Fund (FWF) under project W1255-N23
and by the Scienti�c and Technological Research Council of Turkey (TUBITAK) under grant
114E777.



24

A logical approach to working with biological databases

Nicos Angelopoulos and Georgios Giamas

Department of Surgery and Cancer, Imperial College, London, UK

(e-mail: nicos.angelopoulos@gmail.com,g.giamas@imperial.ac.uk)

It has been argued before that Prolog is a strong candidate for research and code

development in bioinformatics and computational biology. This position has been

based on both the intrinsic strengths of Prolog and recent advances in its technolo-

gies. Here we strengthen the case for the deployment and penetration of Prolog

into bioinformatics, by introducing bio_db, a comprehensive and extensible system

for working with biological data. We focus on databases that translate between

biological products and product-to-product interactions, the latter of which can be

visualised as graphs. This library allows easy access to high quality data in two

formats: as Prolog fact �les and as SQLite databases. On-demand downloading of

prepacked data �les in these two formats is supported in all operating system archi-

tectures as well as reconstruction from latest data �les from the curated databases.

The methods used to deliver the data are transparent to the user and the data are

delivered in the familiar format of Prolog facts.

KEYWORDS: Biological Databases, Bioinformatics, Gene Ontology, SQLite, Big

Data



Appendix A 25

Automated Reasoning about XACML 3.0 Delegation Using Answer Set

Programming

Joohyung Lee1, Yi Wang1 and Yu Zhang2

1 School of Computing, Informatics, and Decision Systems Engineering

Arizona State University, Tempe, AZ, USA

(e-mail: {joolee,ywang485}@asu.edu)
2 Intel, Chandler, AZ, USA

(e-mail: yzhan289@asu.edu)

XACML is an XML-based declarative access control language standardized by OA-

SIS. Its latest version 3.0 has several new features including the concept of dele-

gation for decentralized administration of access control. Though it is important

to avoid unintended consequences of ill-designed policies, delegation makes formal

analysis of XACML policies highly complicated. In this paper, we present a logic-

based approach to XACML 3.0 policy analysis. We formulate XACML 3.0 in An-

swer Set Programming (ASP) and use ASP solvers to perform automated reasoning

about XACML policies. To the best of our knowledge this is the �rst work that fully

captures the XACML delegation model in a formal executable language.

KEYWORDS: Policy, XACML, Delegation, Answer Set Programming



26

Unifying Justi�cations and Debugging for Answer-Set Programs

Carlos Viegas Damàsio1, 5 João Moura1 and Anastasia Analyti2

1 NOVA LINCS, Universidade Nova de Lisboa, Portugal

(e-mail: cd@fct.unl.pt,joaomoura@yahoo.com)
2 Institute of Computer Science, FORTH-ICS, Crete, Greece

(e-mail: analyti@ics.forth.gr)

Recently, (Viegas Damàsio et al. 2013) introduced a way to construct propositional

formulae encoding provenance information for logic programs. From these formu-

lae, justi�cations for a given interpretation are extracted but it does not explain

why such interpretation is not an answer-set (debugging). Resorting to a meta-

programming transformation for debugging logic programs, (Gebser et al. 2008)

does the converse. Here we unify these complementary approaches using meta-

programming transformations. First, an answer-set program is constructed in order

to generate every provenance propositional models for a program, both for well-

founded and answer-set semantics, suggesting alternative repairs to bring about (or

not) a given interpretation. In particular, we identify what changes must be made

to a program in order for an interpretation to be an answer-set, thus providing the

basis to relate provenance with debugging. With this meta-programming method,

one does not have the need to generate the provenance propositional formulas and

thus obtain debugging and justi�cation models directly from the transformed pro-

gram. This enables computing provenance answer-sets in an easy way by using AS

solvers. We show that the provenance approach generalizes the debugging one, since

any error has a counterpart provenance but not the other way around. Because the

method we propose is based on meta-programming, we extended an existing tool

(Spock) and developed a proof-of-concept (http://cptkirk.sourceforge.net) built to

help computing our models.

References

Damàsio, C., Analyti, A., and Antoniou, G. 2013. Justi�cations for Logic Program-

ming. In Logic Programming and Nonmonotonic Reasoning, P. Cabalar andT. C. Son,

Eds. Lecture Notes in Computer Science, vol. 8148. Springer Berlin Heidelberg, 530�542.

KEYWORDS: Answer Set Programming, Debugging, Justi�cations, Provenance

5 Under grant SFRH/BD/69006/2010 from Fundação para a Ciência e Tecnologia / Ministério
do Ensino e da Ciêencia.



Appendix A 27

An abductive Framework for Datalog± Ontologies

Marco Gavanelli1, Evelina Lamma2, Fabrizio Riguzzi2, Elena Bellodi3, Riccardo

Zese3 and Giuseppe Cota3

1 Dipartimento di Ingegneria � University of Ferrara
2 Dipartimento di Matematica e Informatica � University of Ferrara
3 Dipartimento di Ingegneria � University of Ferrara

(e-mail: {<firstname>.<lastname>@unife.it})

Ontologies are a fundamental component of the Semantic Web since they provide a

formal and machine manipulable model of a domain. Description Logics (DLs) are

often the languages of choice for modeling ontologies. Great e�ort has been spent in

identifying decidable or even tractable fragments of DLs. Conversely, for knowledge

representation and reasoning, integration with rules and rule-based reasoning is

crucial in the so-called Semantic Web stack vision. Datalog± is an extension of

Datalog which can be used for representing lightweight ontologies, and is able to

express the DL-Lite family of ontology languages, with tractable query answering

under certain language restrictions.

In this work, we show that Abductive Logic Programming (ALP) is also a suit-

able framework for representing Datalog± ontologies, supporting query answering

through an abductive proof procedure, and smoothly achieving the integration of

ontologies and rule-based reasoning. In particular, we consider an Abductive Logic

Programming framework named SCIFF and derived from the IFF abductive frame-

work, able to deal with existentially (and universally) quanti�ed variables in rule

heads, and Constraint Logic Programming constraints. Forward and backward rea-

soning is naturally supported in the ALP framework. We show that the SCIFF
language smoothly supports the integration of rules, expressed in a Logic Program-

ming language, with Datalog± ontologies, mapped into SCIFF (forward) integrity

constraints.

KEYWORDS: Abductive Logic Programming, Datalog±, Description Logics, Se-

mantic Web.



28

Expressing and Supporting E�ciently Greedy Algorithms as Locally

Strati�ed Logic Programs

C. Zaniolo

University of California, Los Angeles, USA

(e-mail: zaniolo@cs.ucla.edu)

The problem of expressing and supporting classical greedy algorithms in Datalog

has been the focus of many signi�cant research e�orts that have produced very

interesting solutions for particular algorithms. But we still lack a general treatment

that characterizes the relationship of greedy algorithms to non-monotonic theories

and leads to asymptotically optimal implementations. In this paper, we propose

a general solution to this problem. Our approach begins by identifying a class of

locally strati�ed programs that subsumes XY-strati�ed programs and is formally

characterized using the Datalog1S representation of numbers. Then, we propose

a simple specialization of the iterated �xpoint procedure that computes e�ciently

the perfect model for these programs, achieving optimal asymptotic complexities for

well-known greedy algorithms.This makes possible their e�cient support in Datalog

systems.

KEYWORDS: Horn Clauses, Datalog, Aggregates, Greedy Algorithms


