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General Remarks

Let P be a Dedalus program. Recall from Section 5.1.2 that deducP ⊆ P is the
subset of all (unmodified) deductive rules. The semantics of deducP is given by
the stratified semantics. Although the semantics of deducP does not depend on
the chosen syntactic stratification, for technical convenience in the proofs, we will
fix an arbitrary syntactic stratification for deducP . Whenever we refer to the stra-
tum number of an idb relation, we implicitly use this fixed syntactic stratification.
Stratum numbers start at 1.

Appendix A Run to Model: Proof Details

In the context of Section 5.2.2, we show that M is a model of P on input H .
Let G abbreviate the ground program groundM (C , I ), where C = pure(P) and
I = decl(H ). To show that M is a stable model, we have to show M = N where
N = G(decl(H )). The inclusions M ⊆ N and N ⊆ M are shown respectively in
Sections A.1 and A.2. We use the notations of Section 5.2.2.

∗ T.J. Ameloot is a Postdoctoral Fellow of the Research Foundation – Flanders (FWO).
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A.1 Inclusion M ⊆ N

By definition,

M = decl(H ) ∪
⋃
i∈N

trans
[i]
R ·

We immediately have decl(H ) ⊆ N by the semantics of G . Next, we define for
uniformity the set trans

[−1]
R = ∅. We will show by induction on i = −1, 0, 1, . . .,

that trans
[i]
R ⊆ N . The base case (i = −1) is clear. For the induction hypothesis,

let i ≥ 0, and assume for all j ∈ {−1, 0, . . . , i − 1} that trans
[j ]
R ⊆ N . We show that

trans
[i]
R ⊆ N . By definition,

trans
[i]
R = caus[i]R ∪ fin[i]R ∪ duc[i]R ∪ snd[i]R ·

We show inclusion of these four sets in N below. Auxiliary claims can be found in
Section A.1.5.

A.1.1 Causality

We show that caus[i]R ⊆ N . Concretely, let (x , s) ∈ N×N such that (x , s) ≺R (xi , si).
We show before(x , s, xi , si) ∈ N . We distinguish between the following cases.

Local edge Suppose (x , s) ≺R (xi , si) is a local edge, i.e., x = xi and si = s + 1.
Because rule (7) is positive, the following ground rule is always in G :

before(x , s, x , s + 1)← all(x ), tsucc(s, s + 1)·

The body facts of this ground rule are in decl(H ) ⊆ N ; hence, the rule derives
before(x , s, x , s + 1) = before(x , s, xi , si) ∈ N .

Message edge Suppose (x , s) ≺R (xi , si) is a message edge, i.e., there is an earlier
transition j < i with j = globR(x , s), in which x sends a message fff to xi such that
αR(j , xi , fff ) = i . Denote fff = R(ā). Because rules of the form (10) in pure(P) are
positive, the following ground rule is always in G :

before(x , s, xi , si)← chosenR(x , s, xi , si , ā)·

We show chosenR(x , s, xi , si , ā) ∈ N , so that before(x , s, xi , si) ∈ N , as desired.
Since j = globR(x , s), we have xj = x and sj = s. Also using si = locR(i), we have

chosenR(x , s, xi , si , ā) ∈ snd[j ]R ⊆ trans
[j ]
R ·

Lastly, we have trans
[j ]
R ⊆ N by applying the induction hypothesis.

Transitive edge Suppose (x , s) ≺R (xi , si) is not a local edge nor a message edge.
Then we can choose a pair (z , u) ∈ N ×N such that (x , s) ≺R (z , u) and (z , u) ≺R
(xi , si), but also such that (z , u) ≺R (xi , si) is a local edge or a message edge.
Because rule (8) is positive, the following ground rule is always in G :

before(x , s, xi , si)← before(x , s, z , u), before(z , u, xi , si)·
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We now show that the body of this rule is in N , so that before(x , s, xi , si) ∈
N , as desired. Denote j = globR(z , u). First, because (x , s) ≺R (z , u), we have
before(x , s, z , u) ∈ caus[j ]R . Next, because (z , u) ≺R (xi , si), we have j < i by
Lemma 1. So, by applying the induction hypothesis to j , we have before(x , s, z , u) ∈
N . Secondly, because (z , u) ≺R (xi , si) is a local edge or a message edge, we have
before(z , u, xi , si) ∈ N as shown in the preceding two cases.

A.1.2 Finite Messages

We show that fin[i]R ⊆ N . Let senders[i]R be as defined in Section 5.2.2. For each of
the different kinds of facts in fin[i]R , we show inclusion in N .

Senders Let hasSender(xi , si , x , s) ∈ fin[i]R . We have (x , s) ∈ senders[i]R , which
means that x during step s sends some message fact R(ā) that arrives in step
si of xi . Rules in pure(P) of the form (11) have a negative rcvInf-atom in their
body. But since we have not added any rcvInf-facts to M , including rcvInf(xi , si),
the following rule is in G :

hasSender(xi , si , x , s)← chosenR(x , s, xi , si , ā)·

We are left to show that chosenR(x , s, xi , si , ā) ∈ N . Denote j = globR(x , s). Using
that x = xj and s = sj , we have chosenR(x , s, xi , si , ā) ∈ snd[j ]R . Because j < i

by the operational semantics, we can apply the induction hypothesis to j to know
snd[j ]R ⊆ N .

Comparison of timestamps Let isSmaller(xi , si , x , s) ∈ fin[i]R . We have (x , s) ∈
senders[i]R and there is a timestamp s ′ ∈ N so that (x , s ′) ∈ senders[i]R and s < s ′.
Rule (12) is positive and therefore the following ground rule is always in G :

isSmaller(xi , si , x , s) ← hasSender(xi , si , x , s), hasSender(xi , si , x , s
′),

s < s ′·

We immediately have (s < s ′) ∈ decl(H ) ⊆ N . By construction of fin[i]R , we also
have hasSender(xi , si , x , s) ∈ fin[i]R and hasSender(xi , si , x , s

′) ∈ fin[i]R , and thus
both facts are also in N as shown above. Hence the previous ground rule derives
isSmaller(xi , si , x , s) ∈ N .

Maximum timestamp Let hasMax(xi , si , x ) ∈ fin[i]R . Thus x is a sender-node men-
tioned in senders[i]R . Let s be the maximum send-timestamp of x in senders[i]R , which
surely exists because senders[i]R is finite. We have not added isSmaller(xi , si , x , s)

to fin[i]R , and thus also not to M . Although rule (13) contains a negated isSmaller-
atom, isSmaller(xi , si , x , s) /∈ M implies that the following ground rule is in G :

hasMax(xi , si , x )← hasSender(xi , si , x , s)·

Moreover, (x , s) ∈ senders[i]R implies hasSender(xi , si , x , s) ∈ N , and thus the pre-
vious ground rule derives hasMax(xi , si , x ) ∈ N , as desired.
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A.1.3 Deductive

We show that duc[i]R ⊆ N . By definition, duc[i]R = D⇑xi ,sii , where Di is the output
of subprogram deducP during transition i . Recall from Section 5.1.3 that deducP
is given the following input during transition i :

sti(xi) ∪ untag(mi),

where sti denotes the state at the beginning of transition i , and mi is the set
of (tagged) messages delivered during transition i . If we can show that (sti(xi) ∪
untag(mi))

⇑xi ,si ⊆ N , then we can apply Claim 1 to know that D⇑xi ,sii ⊆ N , as
desired.

State We first show sti(xi)
⇑xi ,si ⊆ N . There are two cases:

• Suppose si = 0, i.e., i is the first transition of R with active node xi . Then
sti(xi) = H (xi) by the operational semantics, which gives sti(xi)⇑xi ,si ⊆
decl(H ) ⊆ N by definition of decl(H ).

• Suppose si > 0. Then we can consider the last transition j of xi that came
before i . By the operational semantics, we have sti(xi) = stj+1(xi), where
stj+1 is the state resulting from transition j . More concretely, sti(xi) =

H (xi) ∪ inducP(Dj ), with Dj the output of deducP during transition j . As
in the previous case, we already know H (xi)

⇑xi ,si ⊆ decl(H ). Now, by apply-
ing the induction hypothesis to j , we have duc[j ]R ⊆ trans

[j ]
R ⊆ N . Next, by

applying Claim 3, and by using si = sj + 1, we obtain
sti(xi)

⇑xi ,si = H (xi)
⇑xi ,si ∪ inducP(Dj )

⇑xi ,sj+1

⊆ N ·

Messages Now we show untag(mi)
⇑xi ,si ⊆ N . Let fff ∈ untag(mi). We have to show

that fff ⇑xi ,si ∈ N . First, because fff ∈ untag(mi), there is a transition k with k < i

such that (k , fff ) ∈ mi , i.e., the fact fff was sent to xi during transition k (by node
xk ). Denote fff = R(ā). So, there must be an asynchronous rule with head-predicate
R in P, which has a corresponding rule in pure(P) of the form (6). Rules of the
form (6) are positive and thus the following ground rule is always in G :

R(xi , si , ā)← chosenR(xk , sk , xi , si , ā)·
We show chosenR(xk , sk , xi , si , ā) ∈ N , so that the rule derives fff ⇑xi ,si ∈ N , as
desired. Because xk sends fff to xi during transition k , and i is the transition in which
this message is delivered to xi , we have chosenR(xk , sk , xi , si , ā) ∈ snd[k ]R ⊆ trans

[k ]
R .

By applying the induction hypothesis to k , we have snd[k ]R ⊆ N .

A.1.4 Sending

We show that snd[i]R ⊆ N . For each kind of fact in snd[i]R we show inclusion in N .

Candidates Let candR(xi , si , y , t , ā) ∈ snd[i]R . We have R(y , ā) ∈ mesg
[i]
R , t ∈ N and

(y , t) 6≺R (xi , si). Since D⇑xi ,sii ⊆ N (see above), we can use Claim 4 to obtain
candR(xi , si , y , t , ā) ∈ N , as desired.
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Chosen Let chosenR(xi , si , y , t , ā) ∈ snd[i]R . We have R(y , ā) ∈ mesg
[i]
R and t =

locR(j ) with j = αR(i , y ,R(ā)). Because R(y , ā) ∈ mesg
[i]
R , this fact was produced

by asyncP , and thus there is an asynchronous rule in P with head-predicate R.
This asynchronous rule has a corresponding rule in pure(P) of the form (4), that
contains a negated otherR-atom in the body. But by construction of snd[i]R , we have
not added otherR(xi , si , y , t , ā) to snd[i]R , and thus also not to M . Therefore the
following ground rule of the form (4) is in G :

chosenR(xi , si , y , t , ā)← candR(xi , si , y , t , ā)·

Because j > i by the operational semantics, we have (y , t) 6≺R (xi , si) by Lemma 1.
Thus, by construction of snd[i]R , we have candR(xi , si , y , t , ā) ∈ snd[i]R , in which case
candR(xi , si , y , t , ā) ∈ N (shown above). Hence, the previous ground rule derives
chosenR(xi , si , y , t , ā) ∈ N , as desired.

Other Let R(y , ā) and t be from above. Let otherR(xi , si , y , u, ā) ∈ snd[i]R . We
have u ∈ N, (y , u) 6≺R (xi , si) and u 6= t . Because rule (5) is positive, the following
ground rule is in G :

otherR(xi , si , y , u, ā) ← candR(xi , si , y , u, ā), chosenR(xi , si , y , t , ā),

u 6= t ·

We immediately have (u 6= t) ∈ decl(H ) ⊆ N . Now we show that the other body
facts are in N , so the rule derives otherR(xi , si , y , u, ā) ∈ N , as desired. Because
(y , u) 6≺R (xi , si), by construction of snd[i]R , we have candR(xi , si , y , u, ā) ∈ snd[i]R
and thus candR(xi , si , y , u, ā) ∈ N (shown above). Moreover, it was shown above
that chosenR(xi , si , y , t , ā) ∈ N .

A.1.5 Subclaims

Claim 1
Let i be a transition of R. If (sti(xi) ∪ untag(mi))

⇑xi ,si ⊆ N , then D⇑xi ,sii ⊆ N .

Proof
Abbreviate Ii = sti(xi) ∪ untag(mi). Recall that Di = deducP(Ii), which is com-
puted with the stratified semantics.
For k ∈ N, we write D→k

i to denote the set obtained by adding to Ii all facts
derived in stratum 1 up to stratum k during the computation of Di . For the largest
stratum number n of deducP , we have D→n

i = Di . Also, because stratum numbers
start at 1, we have D→0

i = Ii . We show by induction on k = 0, 1, 2, . . ., n, that
(D→k

i )⇑xi ,si ⊆ N .

Base case For the base case, k = 0, the property holds by the given assumption
I ⇑xi ,sii ⊆ N .

Induction hypothesis For the induction hypothesis, assume for some stratum num-
ber k with k ≥ 1 that (D→k−1

i )⇑xi ,si ⊆ N .
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Inductive step For the inductive step, we show that (D→k
i )⇑xi ,si ⊆ N . Recall that

the input of stratum k in deducP is the set D→k−1
i , and the semantics is given

by the fixpoint semantics of semi-positive Datalog¬ (see Section 3.2.2). So, we can
consider D→k

i to be a fixpoint, i.e., as the set
⋃

l∈N Al with A0 = D→k−1
i and

Al = T (Al−1) for each l ≥ 1, where T is the immediate consequence operator of
stratum k . We show by inner induction on l = 0, 1, etc, that

(Al)
⇑xi ,si ⊆ N ·

For the base case (l = 0), we have A0 = D→k−1
i , for which we can apply the outer

induction hypothesis to know that (D→k−1
i )⇑xi ,si = (A0)⇑xi ,si ⊆ N , as desired. For

the inner induction hypothesis, we assume for some l ≥ 1 that (Al−1)⇑xi ,si ⊆ N .
For the inner inductive step, we show that (Al)

⇑xi ,si ⊆ N . Let fff ∈ Al \ Al−1.
Let ϕ ∈ deducP and V be a rule from stratum k and valuation respectively that
have derived fff . Let ϕ′ be the rule in pure(P) obtained by applying the transfor-
mation (1) to ϕ. Let V ′ be V extended to assign xi and si to the new variables in
ϕ′ that represent the location and timestamp respectively. Note in particular that
V ′(posϕ′) = V (posϕ)⇑xi ,si and V ′(negϕ′) = V (negϕ)⇑xi ,si . Let ψ be the positive
ground rule obtained by applying V ′ to ϕ′ and by subsequently removing all nega-
tive (ground) body atoms. We show that ψ ∈ G and that its body is in N , so that
ψ derives headψ = fff ⇑xi ,si ∈ N , as desired.

• In order for ψ to be in G , it is required that V ′(negϕ′) ∩M = ∅. Because V

is satisfying for ϕ, and negation in ϕ is only applied to lower strata, we have
V (negϕ) ∩ D→k−1

i = ∅. Moreover, since a relation is computed in only one
stratum of deducP , we overall have V (negϕ) ∩ Di = ∅. Then by Claim 2 we
have V (negϕ)⇑xi ,si ∩M = ∅. Hence,

V ′(negϕ′) ∩M = ∅·

• Now we show that posψ ⊆ N . BecauseV is satisfying for ϕ, we haveV (posϕ) ⊆
Al−1, and by applying the inner induction hypothesis we have V (posϕ)⇑xi ,si ⊆
N . Therefore, posψ = V ′(posϕ′) ⊆ N .

Claim 2
Let i be a transition of R. Let I be a set of facts over sch(P). If I ∩ Di = ∅ then
I ⇑xi ,si ∩M = ∅.

Proof
If a fact fff ∈ M is over schema sch(P)LT and has location specifier xi and timestamp
si then fff ∈ duc[i]R because (i) for any transition j there are no facts over sch(P)LT

in caus[j ]R , fin[j ]R or snd[j ]R ; (ii) we only add facts with location specifier xi to duc[j ]R if
j is a transition of node xi ; and, (iii) for every transition j of node xi , if i 6= j then
locR(j ) 6= si .
Hence, it suffices to show I ⇑xi ,si∩duc[i]R = ∅. But this is immediate from I ∩Di = ∅

because duc[i]R equals D⇑xi ,sii by definition.



7

Claim 3
Let j be a transition of R. Let Dj be the output of deducP during transition j .
Suppose duc[j ]R ⊆ N . We have inducP(Dj )

⇑xj ,sj+1 ⊆ N .

Proof
Let fff ∈ inducP(Dj ). Let ϕ ∈ inducP and V respectively be a rule and valuation
that have derived fff . Let ϕ′ be the rule in pure(P) that is obtained after applying
transformation (2) to ϕ. Thus, besides the additional location variable, the rule
ϕ′ has two timestamp variables, one in the body and one in the head. Moreover,
the body contains an additional positive tsucc-atom. Let V ′ be V extended to
assign xj to the location variable, and to assign timestamps sj and sj + 1 to the
body and head timestamp variables respectively. Let ψ be the positive ground
rule obtained from ϕ′ by applying valuation V ′ and by subsequently removing all
negative (ground) body atoms. We show that ψ ∈ G and that its body is in N , so
that ψ derives headψ = fff ⇑xj ,sj+1 ∈ N , as desired.

• For ψ to be inG , we requireV ′(negϕ′)∩M = ∅. SinceV ′(negϕ′) = V (negϕ)⇑xj ,sj ,
it suffices to show V (negϕ)⇑xj ,sj ∩M = ∅. Because V is satisfying for ϕ, we
have V (negϕ) ∩Dj = ∅. Then, by Claim 2 we have V (negϕ)⇑xj ,sj ∩M = ∅.

• Now we showV ′(posϕ′) ⊆ N . The setV ′(posϕ′) consists of the factsV (posϕ)⇑xj ,sj

and the fact tsucc(sj , sj + 1). The latter fact is in decl(H ) and thus in N .
For the other facts, because V is satisfying for ϕ, we have V (posϕ) ⊆ Dj and
thus V (posϕ)⇑xj ,sj ⊆ D

⇑xj ,sj
j = duc[j ]R . And by using the given assumption

duc[j ]R ⊆ N , we obtain the inclusion in N .

Claim 4
Let i be a transition of R. Suppose D⇑xi ,sii ⊆ N . For each R(y , ā) ∈ mesg

[i]
R and

timestamp t ∈ N with (y , t) 6≺R (xi , si) we have

candR(xi , si , y , t , ā) ∈ N ·

Proof
By definition of mesg

[i]
R , we have R(y , ā) ∈ asyncP(Di). Let ϕ ∈ asyncP and

V be a rule and valuation that have produced R(y , ā). Let ϕ′ ∈ P be the original
asynchronous rule on which ϕ is based. Let ϕ′′ ∈ pure(P) be the rule obtained from
ϕ′ by applying transformation (9). Let V ′′ be valuation V extended to assign xi
and si to respectively the sender location and sender timestamp of ϕ′′, and to assign
y and t respectively to the addressee location and addressee arrival timestamp. Let
ψ denote the positive ground rule that is obtained from ϕ′′ by applying valuation
V ′′ and by subsequently removing all negative (ground) body atoms. We show that
ψ ∈ G and that its body is in N , so that ψ derives headψ = candR(xi , si , y , t , ā) ∈
N , as desired.
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• For ψ to be in G , we require V ′′(negϕ′′)∩M = ∅. By construction of ϕ′′, the
setV ′′(negϕ′′) consists of the factsV (negϕ)⇑xi ,si and the fact before(y , t , xi , si).
First, because V is satisfying for ϕ, we have V (negϕ) ∩ Di = ∅, and thus
V (negϕ)⇑xi ,si ∩ M = ∅ by Claim 2. Moreover, we are given that (y , t) 6≺R
(xi , si), and thus we have not added before(y , t , xi , si) to caus[i]R , and by ex-
tension also not toM (since caus[i]R is the only part ofM where we add before-
facts with last two components xi and si). Thus overall V ′′(negϕ′′)∩M = ∅,
as desired.

• Now we show V ′′(posϕ′′) ⊆ N . By construction of ϕ′′, the set V ′′(posϕ′′)

consists of the facts V (posϕ)⇑xi ,si , all(y) and time(t). First, we immediately
have time(t) ∈ decl(H ) ⊆ N . Also, by definition of mesg

[i]
R , y is a valid

addressee and thus all(y) ∈ decl(H ) ⊆ N . Finally, because V is satisfying
for ϕ, we have V (posϕ) ⊆ Di . Thus V (posϕ)⇑xi ,si ⊆ D⇑xi ,sii , and we are given
that D⇑xi ,sii ⊆ N . Thus overall V ′′(posϕ′′) ⊆ N .

A.2 Inclusion N ⊆ M

In this section we show that N ⊆ M . By definition, N = G(decl(H )). Following
the semantics of positive Datalog¬ programs in Section 3.2.1, we can view N as
a fixpoint, i.e., N =

⋃
l∈N Nl , where N0 = decl(H ), and for each l ≥ 1 the set Nl

is obtained by applying the immediate consequence operator of G to Nl−1. This
implies Nl−1 ⊆ Nl for each l ≥ 1. We show by induction on l = 0, 1, . . ., that
Nl ⊆ M . For the base case (l = 0), we immediately have N0 = decl(H ) ⊆ M .
For the induction hypothesis, we assume for some l ≥ 1 that Nl−1 ⊆ M . For the
inductive step, we show that Nl ⊆ N . Specifically, we divide the facts of Nl \ Nl−1
into groups based on their predicate, and for each group we show inclusion in M .
As for terminology, we call a ground rule ψ ∈ G active on Nl−1 if posψ ⊆ Nl−1.
The numbered claims we will refer to can be found in Section A.2.5.

A.2.1 Causality

Let before(x , s, y , t) ∈ Nl \ Nl−1. It is sufficient to show that (x , s) ≺R (y , t)

because then before(x , s, y , t) ∈ caus[i]R ⊆ M where i = globR(y , t). We have the
following cases:

Local edge The before-fact was derived by a ground rule in G of the form (7) (local
edge). This implies x = y and t = s + 1. Then (x , s) ≺R (y , t) by definition of ≺R.

Message edge The before-fact was derived by a ground rule in G of the form (10)
(message edge):

before(x , s, y , t)← chosenR(x , s, y , t , ā)·

Since this rule is active on Nl−1, we have chosenR(x , s, y , t , ā) ∈ Nl−1. By ap-
plying the induction hypothesis, we have chosenR(x , s, y , t , ā) ∈ M . Denoting
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j = globR(x , s), the set snd[j ]R is the only part of M where we could have added this
fact. This implies that x during its step s sends a message to y , and this message
arrives at local step t of y . Then (x , s) ≺R (y , t) by definition of ≺R.

Transitive edge The before-fact was derived by a ground rule in G of the form (8)
(transitive edge):

before(x , s, y , t)← before(x , s, z , u), before(z , u, y , t)·

Since this rule is active on Nl−1, its body facts are in Nl−1. By applying the induc-
tion hypothesis, we have before(x , s, z , u) ∈ M and before(z , u, y , t) ∈ M . The
only places we could have added these facts to M are in the sets caus[j ]R and caus[k ]R
respectively, where j = globR(z , u) and k = globR(y , t). By construction of the sets
caus[j ]R and caus[k ]R we respectively have that (x , s) ≺R (z , u) and (z , u) ≺R (y , t),
and thus by transitivity (x , s) ≺R (y , t), as desired.

A.2.2 Finite Messages

Senders Let hasSender(x , s, y , t) ∈ Nl \Nl−1. This fact can only have been derived
by a ground rule in G of the form (11):

hasSender(x , s, y , t)← chosenR(y , t , x , s, ā)·

Since this rule is active on Nl−1, we have chosenR(y , t , x , s, ā) ∈ Nl−1. By applying
the induction hypothesis, we have chosenR(y , t , x , s, ā) ∈ M . We can only have
added this fact in the set snd[i]R with i = globR(y , t). This means that y during its
step t sends a message R(ā) to x , and this message arrives during step s of x . Hence,
denoting j = globR(x , s), we have (y , t) ∈ senders[j ]R (with senders[j ]R as defined in
Section 5.2.2). Thus we have added the fact hasSender(x , s, y , t) ∈ fin[j ]R ⊆ M , as
desired.

Comparison of timestamps Let isSmaller(x , s, y , t) ∈ Nl \Nl−1. This fact can only
have been derived by a ground rule in G of the form (12):

isSmaller(x , s, y , t) ← hasSender(x , s, y , t), hasSender(x , s, y , t ′),

t < t ′·

Since this rule is active on Nl−1, its body facts are in Nl−1. By applying the induc-
tion hypothesis, we have hasSender(x , s, y , t) ∈ M and hasSender(x , s, y , t ′) ∈ M .
The only part of M where we could have added these facts is the set fin[i]R with
i = globR(x , s). By construction of the set fin[i]R , this implies that (y , t) ∈ senders[i]R
and (y , t ′) ∈ senders[i]R . Because (t < t ′) ∈ Nl−1, we more specifically know that (t <

t ′) ∈ decl(H ), which implies t < t ′. Thus we have added isSmaller(x , s, y , t) ∈
fin[i]R , as desired.

Maximum timestamp Let hasMax(x , s, y) ∈ Nl \Nl−1. This fact can only have been
derived by a ground rule in G of the form (13):

hasMax(x , s, y)← hasSender(x , s, y , t)·
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Since this rule is active on Nl−1, we have hasSender(x , s, y , t) ∈ Nl−1. By applying
the induction hypothesis, we have hasSender(x , s, y , t) ∈ M . The only part of M
where we could have added this fact, is the set fin[i]R with i = globR(x , s). Thus
(y , t) ∈ senders[i]R , and y is a sender-node mentioned in senders[i]R . Hence, we have
added hasMax(x , s, y) ∈ fin[i]R ⊆ M , as desired.

Receive infinite Let rcvInf(x , s) ∈ Nl \Nl−1. This fact can only have been derived
by a ground rule in G of the form (14):

rcvInf(x , s)← hasSender(x , s, y , t)·

Since this rule is active on Nl−1, we have hasSender(x , s, y , t) ∈ Nl−1. By applying
the induction hypothesis, we have hasSender(x , s, y , t) ∈ M . The only part of M
where we could have added this fact, is the set fin[i]R with i = globR(x , s). Thus
(y , t) ∈ senders[i]R . Moreover, because the rule (14) contains a negative hasMax-atom
in the body, and the above ground rule is in G , it must be that hasMax(x , s, y) /∈
M , and thus hasMax(x , s, y) /∈ fin[i]R . But since y is a sender-node mentioned in
senders[i]R , the absence of hasMax(x , s, y) from fin[i]R is impossible. Therefore this
case can not occur.

A.2.3 Regular Facts

Let R(x , s, ā) ∈ (Nl \ Nl−1)|sch(P)LT . The fact R(x , s, ā) has been derived by a
ground rule ψ ∈ G that is active on Nl−1. Because ψ ∈ G , there is a rule ϕ ∈
pure(P) and valuation V such that ψ is obtained from ϕ by applying V and by
subsequently removing the negative (ground) body atoms, and such that V (negϕ)∩
M = ∅. We have the following cases:

Deductive Rule ϕ is of the form (1). Let ϕ′ ∈ deducP be the original deductive rule
corresponding to ϕ. By construction of ϕ out of ϕ′, we can apply valuation V to
ϕ′ as well. Denote i = globR(x , s). We will show now that V is satisfying for ϕ′
during transition i , which causes V (headϕ′) = R(ā) ∈ Di to be derived, and we
obtain as desired:

R(x , s, ā) ∈ D⇑x ,si = D⇑xi ,sii = duc[i]R ⊆ M ·

By definition of syntactic stratification, relations mentioned in posϕ′ are never com-
puted in a stratum higher than R, and relations mentioned in negϕ′ are computed
in a strictly lower stratum than R. Thus, it is sufficient to show that V (posϕ′) ⊆ Di

and V (negϕ′) ∩Di = ∅.
First we show V (posϕ′) ⊆ Di . Because ϕ is of the form (1), all facts in V (posϕ)

are over sch(P)LT and have location specifier x and timestamp s. Moreover, since
ψ is active on Nl−1, we have posψ = V (posϕ) ⊆ Nl−1. By applying the induction
hypothesis, we have V (posϕ) ⊆ M , and thus V (posϕ)⇓ ⊆ Di by Claim 5. We thus
obtain V (posϕ′) ⊆ Di since V (posϕ)⇓ = V (posϕ′).
Next we show V (negϕ′)∩Di = ∅. Because ϕ is of the form (1), all facts in V (negϕ)

are over sch(P)LT and have location specifier x and timestamp s. Moreover, by
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choice of ϕ and V , we have V (negϕ) ∩M = ∅, and thus V (negϕ)⇓ ∩ Di = ∅ by
Claim 6. We thus obtain V (negϕ′) ∩Di = ∅ since V (negϕ)⇓ = V (negϕ′).

Inductive Rule ϕ is of the form (2). Let ϕ′ ∈ inducP be the rule corresponding to
ϕ. First, ψ contains in its body a fact of the form tsucc(r , s). Since ψ is active on
Nl−1, we have tsucc(r , s) ∈ Nl−1 and more specifically, tsucc(r , s) ∈ decl(H ). This
implies that s = r + 1. Denote i = globR(x , r) and j = globR(x , s). Since s = r + 1,
there are no transitions of node x between i and j . By the relationship between ϕ
and ϕ′, we can apply V to ϕ′, and we will now show that V is satisfying for ϕ′
during transition i . This results in V (headϕ′) = R(ā) ∈ inducP(Di) ⊆ sti+1(x ),
and since sti+1(x ) = stj (x ) ⊆ Dj , we obtain R(x , s, ā) ∈ D⇑x ,sj = duc[j ]R ⊆ M , as
desired.
First we show V (posϕ′) ⊆ Di . Denote I = V (posϕ)|sch(P)LT , which allows us

to exclude the extra tsucc-fact in the body. All facts in I have location specifier
x and timestamp r . Because ψ is active on Nl−1, we have I ⊆ posψ ⊆ Nl−1, and
by applying the induction hypothesis, we have I ⊆ M . Thus I ⇓ ⊆ Di by Claim 5.
Hence, V (posϕ′) = I ⇓ ⊆ Di .
Secondly, showing that V (negϕ′) ∩ Di = ∅ is like in the previous case, where ϕ

is deductive.

Delivery Rule ϕ is of the form (6). Then ψ concretely looks as follows, where (y , t) ∈
N × N:

R(x , s, ā)← chosenR(y , t , x , s, ā)·

Since ψ is active on Nl−1, we have chosenR(y , t , x , s, ā) ∈ Nl−1, and by applying
the induction hypothesis, we have chosenR(y , t , x , s, ā) ∈ M . The only part of M
where we could have added this fact, is snd[i]R with i = globR(y , t). This implies that
x will receive R(ā) during its local step s, thus during transition j = globR(x , s).
Then, by the operational semantics, we have R(ā) ∈ untag(mj ) ⊆ Dj . Hence,
R(x , s, ā) ∈ D⇑x ,sj = duc[j ]R ⊆ M .

A.2.4 Sending

For a transition i of R, let Di denote the output of subprogram deducP during
transition i .

Candidates Let candR(x , s, y , t , ā) ∈ Nl \ Nl−1. The fact candR(x , s, y , t , ā) is de-
rived by a ground rule ψ ∈ G of the form (9) that is active on Nl−1. Because
ψ ∈ G , there is a rule ϕ ∈ pure(P) and a valuation V such that ψ is ob-
tained from ϕ by applying valuation V and by subsequently removing the negative
(ground) body atoms, and so that V (negϕ) ∩ M = ∅. Denote i = globR(x , s).
It is sufficient to show that R(y , ā) ∈ mesg

[i]
R and (y , t) 6≺R (x , s), because then

candR(x , s, y , t , ā) ∈ snd[i]R ⊆ M , as desired.
First, we show (y , t) 6≺R (x , s). Because there is a negative before-atom in ϕ, the
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existence of ψ in G implies that before(y , t , x , s) /∈ M . Hence, before(y , t , x , s) /∈
caus[i]R . Then by construction of caus[i]R we obtain (y , t) 6≺R (x , s).
Secondly, we show R(y , ā) ∈ mesg

[i]
R . Let ϕ′ ∈ P be the original asynchronous

rule on which ϕ is based. Let ϕ′′ ∈ asyncP be the rule corresponding to ϕ′. It
follows from the constructions of ϕ out of ϕ′ and ϕ′′ out of ϕ′ that valuation V

can be applied to ϕ′′. Note, V (headϕ′′) = R(y , ā). We show that V is satisfying
for ϕ′′ during transition i on Di , which gives R(y , ā) ∈ asyncP(Di). Moreover, the
body of ψ contains the fact all(y) ∈ decl(H ), and thus y ∈ N , making y a valid
addressee. Hence, R(y , ā) ∈ mesg

[i]
R , as desired.

We have to show V (posϕ′′) ⊆ Di and V (negϕ′′) ∩ Di = ∅. Abbreviate I1 =

V (posϕ)|sch(P)LT and I2 = V (negϕ)|sch(P)LT . Note, I ⇓1 = V (posϕ′′) and I ⇓2 =

V (negϕ′′). All facts in I1 ∪ I2 have location specifier x and timestamp s.

• Because ψ is active on Nl−1, we have I1 ⊆ posψ ⊆ Nl−1, and thus I1 ⊆ M by
the induction hypothesis. Then V (posϕ′′) = I ⇓1 ⊆ Di by Claim 5.

• By choice of ϕ and V , we have I2 ∩M = ∅. Then I ⇓2 ∩ Di = ∅ by Claim 6,
giving V (negϕ′′) ∩Di = ∅.

Chosen Let chosenR(x , s, y , t , ā) ∈ Nl \Nl−1. This fact is derived by a ground rule
ψ in G of the form (4):

chosenR(x , s, y , t , ā)← candR(x , s, y , t , ā)·

Denote i = globR(x , s). We show that R(y , ā) ∈ mesg
[i]
R and that t is the actual

arrival timestamp of this message at y . Then chosenR(x , s, y , t , ā) ∈ snd[i]R ⊆ M ,
as desired.
First, since ψ is active on Nl−1, we have candR(x , s, y , t , ā) ∈ Nl−1, and thus

candR(x , s, y , t , ā) ∈ M by the induction hypothesis. The set snd[i]R is the only part
of M where we could have added this fact, which implies R(y , ā) ∈ mesg

[i]
R and

(y , t) 6≺R (x , s).
We are left to show that t is the actual arrival timestamp of the message. Because

ψ ∈ G , there is a rule ϕ ∈ pure(P) and valuation V such that ψ is obtained from
ϕ by applying V and by subsequently removing the negative (ground) body atoms,
and so that V (negϕ) ∩M = ∅. Now, because rule ϕ contains a negative otherR-
atom in its body, we have otherR(x , s, y , t , ā) /∈ M and thus otherR(x , s, y , t , ā) /∈
snd[i]R . Since R(y , ā) ∈ mesg

[i]
R and (y , t) 6≺R (x , s) (see above), the absence of this

otherR-fact from snd[i]R can only be explained by the following: t = locR(j ) with
j = αR(i , y ,R(ā)), as desired.

Other Let otherR(x , s, y , t , ā) ∈ Nl \Nl−1. This fact is derived by a ground rule ψ
of the form (5):

otherR(x , s, y , t , ā) ← candR(x , s, y , t , ā), chosenR(x , s, y , t ′, ā),

t 6= t ′·

We have candR(x , s, y , t , ā) ∈ Nl−1 and chosenR(x , s, y , t ′, ā) ∈ Nl−1 since ψ is
active on Nl−1, and these facts are thus also in M by the induction hypothesis.
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Denote i = globR(x , s). The only part of M where we could have added these
candR- and chosenR-facts to M , is the set snd[i]R . First, candR(x , s, y , t , ā) ∈ snd[i]R
implies that R(y , ā) ∈ mesg

[i]
R and (y , t) 6≺R (x , s). Second, chosenR(x , s, y , t ′, ā) ∈

snd[i]R implies that t ′ is the real arrival timestamp of the message R(ā) at y . Finally,
since ψ is active, we have (t 6= t ′) ∈ decl(H ), and thus t 6= t ′. Therefore we have
added otherR(x , s, y , t , ā) to snd[i]R ⊆ M , as desired.

A.2.5 Subclaims

Claim 5
Let I be a set of facts over sch(P)LT, all having the same location specifier x ∈ N
and timestamp s ∈ N. Denote i = globR(x , s). If I ⊆ M then I ⇓ ⊆ Di , where Di

denotes the output of subprogram deducP during transition i of R.

Proof
The only part of M where we add facts over sch(P)LT with location specifier x and
timestamp s is duc[i]R . Hence I ⊆ duc[i]R = D⇑x ,si and thus I ⇓ ⊆ Di .

Claim 6
Let I be a set of facts over sch(P)LT, all having the same location specifier x ∈ N
and timestamp s ∈ N. Denote i = globR(x , s). If I ∩ M = ∅ then I ⇓ ∩ Di = ∅,
where Di denotes the output of subprogram deducP during transition i of R.

Proof
First, I ∩M = ∅ implies I ∩duc[i]R = ∅ because duc[i]R ⊆ M . And since duc[i]R = D⇑x ,si ,
we have I ∩D⇑x ,si = ∅. Finally, since the facts in I ∪D⇑x ,si all have the same location
specifier x and timestamp s, we obtain I ⇓ ∩Di = ∅.

Appendix B Model to Run: Proof Details

Consider the definitions and notations from Section 5.3. In this section we show
that R is a run of P on input H , and that trace(R) = M |sch(P)LT . We do this in
several parts, where each part is placed in its own subsection:

• in Section B.2 we show ρ0 = start(P,H );
• in Section B.3 we show that every transition of R is valid; and,
• in Section B.4 we show trace(R) = M |sch(P)LT .

Before we start, the next subsection gives definitions and notations. The numbered
claims we will refer to can be found in Section B.5.
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B.1 Definitions and Notations

Using notations of Section 3.2.3, let G be the ground program groundM (C , I )

where C = pure(P) and I = decl(H ). By definition of M as a stable model, we
have M = G(I ).

Let ϕ ∈ pure(P) be a rule having its head atom over sch(P)LT. From the con-
struction of pure(P), we know that ϕ belongs to exactly one of the following three
cases:

• ϕ is of the form (1), i.e., deductive, recognizable as a rule in which only atoms
over sch(P)LT are used, and in which the location and timestamp variable in
the head are the same as in the body;

• ϕ is of the form (2), i.e., inductive, recognizable as a rule with a head atom
over sch(P)LT and a tsucc-atom in the body;

• ϕ is of the form (6), i.e., a delivery, recognizable as a rule with a head atom
over sch(P)LT and a chosenR-fact in the body (with R the head-predicate).

The same classification of deductive, inductive and delivery rules can also be applied
to the (positive) ground rules in G that have a ground head atom over sch(P)LT.
Recall from the general remarks at the beginning of the appendix that we are

working with a fixed (but arbitrary) syntactic stratification for the deductive rules.
Stratum numbers start at 1. If ϕ ∈ pure(P) is deductive, we can uniquely identify
its stratum number as the stratum number of the original deductive rule in P on
which ϕ is based. Similarly, for deductive ground rules, we can also uniquely identify
the stratum number as the stratum number of a corresponding non-ground rule in
pure(P).1
We call a ground rule ψ ∈ G active if posψ ⊆ M , which implies that headψ ∈ M

because M is stable. Now we define the following subsets of M :

• M duc,k : the head facts of all active deductive rules in G with stratum number
less than or equal to k ;

• M ind: the head facts of all active inductive rules in G ;
• M deliv: the head facts of all active delivery rules in G .

This allows us to classify the facts in M |sch(P)LT as being derived in a deductive
manner, an inductive manner or being message deliveries. We also define:

M N = M |edb(P)LT ∪M ind ∪M deliv·

For (x , s) ∈ N ×N, we write I |x ,s to abbreviate (I |sch(P)LT)|x ,s . So intuitively, when
we select the facts with location specifier x and timestamp s, we are only interested
in facts that provide these two components, which are the facts over sch(P)LT.
Intuitively, for i ∈ N, the set (M N)|xi ,si is the input for the deductive rules

during local step si of node xi , consisting of (i) the edb-facts; (ii) the facts derived

1 We say a rather than the corresponding rule because there could be more than one. Indeed,
multiple original deductive rules in pure(P) could be mapped to the same positive ground rule
after applying a valuation and removing their negative ground body atoms. But in any case,
these non-ground rules will have the same head predicate. Hence, they have the same stratum.
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by inductive rules during a previous step (if any) of xi ; and, (iii) the delivered
messages. The deductive rules then complete this information by deriving some
new facts, that are visible within step si of xi .

For a transition number i of R, (i) we denote the source-configuration of tran-
sition i as ρi = (sti , bf i); (ii) we denote the set of (tagged) messages delivered
in transition i as mi ; and, (iii) we denote Di = deducP(sti(xi) ∪ untag(mi)). For
a number k ∈ N, we write D→k

i to denote the set of facts obtained by adding to
sti(xi)∪untag(mi) all facts derived in stratum 1 up to stratum k during the compu-
tation of Di . To mirror this notation, we write M→k to denote the set M N∪M duc,k .
For uniformity in the proofs, we will consider the case k = 0, which is an invalid
stratum number, and this gives D→0

i = sti(xi) ∪ untag(mi) and M→0 = M N.

B.2 Valid Start

We show that ρ0 = start(P,H ). Denote ρ0 = (st0, bf0). Let x ∈ N . First we show
st0(x ) = H (x ). By definition,

st0(x ) =
(
(M |edb(P)LT)|x ,s ∪M ind|x ,s

)⇓
with s = locM (0, x ). Note, s = 0 because no elements of N×N with first component
x have an ordinal strictly less than 0 in the total order <M . Now, there can be no
ground inductive rules in G that derive facts with head timestamp 0 because it
follows from the construction of decl(H ) that the second component of a tsucc-
fact is always strictly larger than 0. Therefore M ind|x ,s = ∅, and thus st0(x ) =(
(M |edb(P)LT)|x ,s

)⇓. Then by Claim 7 we have st0(x ) = (H (x )⇑x ,s)⇓ = H (x ), as
desired.
Now we show bf0(x ) = ∅. By definition, bf0(x ) is

{(globM (y , t), R(ā)) | ∃u : chosenR(y , t , x , u, ā) ∈ M ,

globM (y , t) < 0 ≤ globM (x , u)}·

By definition of function globM (·), all facts of the form chosenR(y , t , x , u, ā) ∈ M

satisfy globM (y , t) ≥ 0. Hence, bf0(x ) = ∅.
We conclude that ρ0 = start(P,H ).

B.3 Valid Transition

Let i ∈ N. We show that (ρi , xi ,mi , i , ρi+1) is a valid transition. Denote ρi =

(sti , bf i) and ρi+1 = (sti+1, bf i+1).
We start by showing mi ⊆ bf i(xi). Let (j , fff ) ∈ mi . By definition of mi , there

is a fact of the form chosenR(y , t , z , u, ā) ∈ M with globM (z , u) = i such that
j = globM (y , t) and fff = R(ā). Note, globM (z , u) = i implies z = xi and u = si .
Now, because rules in pure(P) of the form (10) are always positive, the following
ground rule is in G , which is of the form (10):

before(y , t , xi , si)← chosenR(y , t , xi , si , ā)·

Since its body is in M , this rule derives before(y , t , xi , si) ∈ M . Hence (y , t) ≺M



16

(xi , si) by definition of ≺M . Moreover, <M respects ≺M , and thus (y , t) <M (xi , si),
which implies globM (y , t) < globM (xi , si). And since globM (xi , si) = i , we overall
have

globM (y , t) < i ≤ globM (xi , si)·

Therefore (j , fff ) ∈ bf i(xi).
Now, because mi ⊆ bf i(xi), and because transitions are deterministic once the

active node and delivered messages are fixed, we can consider the unique result
configuration ρ = (st, bf) such that (ρi , xi ,mi , i , ρ) is a valid transition. We are left
to show ρi+1 = ρ. We divide the work in two parts: for each x ∈ N , we show that
(i) sti+1(x ) = st(x ), and (ii) bf i+1(x ) = bf(x ).

B.3.1 State

Let x ∈ N . We show sti+1(x ) = st(x ). Denote s = locM (i + 1, x ). By definition,

sti+1(x ) =
(
(M |edb(P)LT)|x ,s ∪M ind|x ,s

)⇓ ·
Case x 6= xi . By definition, st(x ) = sti(x ). Hence, it suffices to show sti+1(x ) =

sti(x ). Since x 6= xi , the number of pairs from N ×N containing node x that come
strictly before ordinal i + 1 is the same as the number of pairs containing node
x that come strictly before ordinal i . Formally: s = locM (i + 1, x ) = locM (i , x ).
Thus the right-hand side in the previous equation equals sti(x ), and the result is
obtained.

Case x = xi . By definition, st(x ) = H (x )∪ inducP(Di). Referring to the definition
of sti+1(x ) from above, by Claim 7 we have

(M |edb(P)LT)|x ,s = H (x )⇑x ,s ·

If we can also show M ind|x ,s = inducP(Di)
⇑x ,s , then we overall have, as desired:

sti+1(x ) =
(
(M |edb(P)LT)|x ,s ∪M ind|x ,s

)⇓
= H (x ) ∪ inducP(Di)

= st(x )·

Since x = xi , we have s = locM (i + 1, xi) = locM (i , xi) + 1, and using that
locM (i , xi) = si (Claim 8), we have s = si +1. Now, Claim 9 and Claim 12 together
show M ind|xi ,si+1 = inducP(Di)

⇑xi ,si+1.

B.3.2 Buffer

Let x ∈ N . We show bf i+1(x ) = bf(x ). Denote

δi→x = {(i ,R(ā)) | R(x , ā) ∈ asyncP(Di)}·

Like in the operational semantics, δi→x denotes the (tagged) messages that are sent
to x during transition i .
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Case x 6= xi . By definition, bf(x ) = bf i(x ) ∪ δi→x . We start by showing bf(x ) ⊆
bf i+1(x ). Let (j , fff ) ∈ bf(x ). Denote fff = R(ā).

• Suppose (j , fff ) ∈ bf i(x ). By definition of bf i(x ), there are values y ∈ N , t ∈ N
and u ∈ N such that chosenR(y , t , x , u, ā) ∈ M and j = globM (y , t) < i ≤
globM (x , u). Now, since x 6= xi , we more specifically have i < globM (x , u)

and thus i + 1 ≤ globM (x , u). Therefore (j , fff ) ∈ bf i+1(x ), as desired.
• Suppose (j , fff ) ∈ δi→x . By definition of δi→x , this implies j = i and R(x , ā) ∈
asyncP(Di). Then (j , fff ) = (i ,R(ā)) ∈ bf i+1(x ) by Claim 13, as desired.

Secondly, we show bf i+1(x ) ⊆ bf(x ). Let (j , fff ) ∈ bf i+1(x ). Denote fff = R(ā).
By definition of bf i+1(x ), there are values y ∈ N , t ∈ N and u ∈ N such that
chosenR(y , t , x , u, ā) ∈ M and j = globM (y , t) < i + 1 ≤ globM (x , u). So j ≤ i .
We have the following cases:

• Suppose j < i . Thus globM (y , t) < i . This immediately gives (j , fff ) ∈ bf i(x ) ⊆
bf(x ), as desired.

• Suppose j = i . Then R(x , ā) ∈ asyncP(Di) by Claim 14. This implies that
(j , fff ) = (i ,R(ā)) ∈ δi→x ⊆ bf(x ), as desired.

Case x = xi . By definition, bf(x ) = (bf i(x )\mi)∪δi→x . Some parts of the reasoning
are similar to the case x 6= xi . We refer to shared subclaims where possible.
We start by showing bf(x ) ⊆ bf i+1(x ). Let (j , fff ) ∈ bf(x ). Denote fff = R(ā). We

have the following cases:

• Suppose (j , fff ) ∈ bf i(x ) \ mi . Thus (j , fff ) ∈ bf i(x ) and (j , fff ) /∈ mi . Here,
(j , fff ) ∈ bf i(x ) implies there are values y ∈ N , t ∈ N and u ∈ N such that
chosenR(y , t , x , u, ā) ∈ M and j = globM (y , t) < i ≤ globM (x , u). Also,
(j , fff ) /∈ mi implies globM (x , u) 6= i . Hence, i +1 ≤ globM (x , u) and we obtain
(j , fff ) ∈ bf i+1(x ), as desired.

• Suppose (j , fff ) ∈ δi→x . By definition of δi→x , we have j = i and R(x , ā) ∈
asyncP(Di). By Claim 13 we then have (i ,R(ā)) ∈ bf i+1(x ), as desired.

Secondly, we show bf i+1(x ) ⊆ bf(x ). Let (j , fff ) ∈ bf i+1(x ). Denote fff = R(ā).
By definition of bf i+1(x ), there are values y ∈ N , t ∈ N and u ∈ N such that
chosenR(y , t , x , u, ā) ∈ M and j = globM (y , t) < i +1 ≤ globM (x , u). Now we look
at the cases for j :

• Suppose j < i . This gives us globM (y , t) < i ≤ globM (x , u), which implies
(j , fff ) ∈ bf i(x ). Moreover, i + 1 ≤ globM (x , u) gives globM (x , u) 6= i . Hence,
(j , fff ) /∈ mi . Taken together, we now have (j , fff ) ∈ bf i(x ) \mi ⊆ bf(x ).

• Suppose j = i . Then (i ,R(ā)) ∈ bf i+1(x ), and by Claim 14 we obtain that
R(x , ā) ∈ asyncP(Di). Therefore (j , fff ) = (i ,R(ā)) ∈ δi→x ⊆ bf(x ), as de-
sired.
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B.4 Trace

In this section we show trace(R) = M |sch(P)LT . Recall from Section 5.1.5 that

trace(R) =
⋃
i∈N

(Di)
⇑xi , locR(i)·

For each i ∈ N, locR(i) is the number of transitions in R before i in which xi is also
the active node. From the construction of R we know locR(i) = locM (i , xi); indeed,
locM (i , xi) counts the number of pairs in N ×N with node xi that have an ordinal
strictly smaller than i , which is precisely the number of transitions in R with active
node xi that come before i . Moreover, by Claim 8 we have locM (i , xi) = si . Hence,

trace(R) =
⋃
i∈N

(Di)
⇑xi ,si ·

Thus, by Claim 15:

trace(R) =
⋃
i∈N

M |xi ,si ·

For the next step, let us denote A = {(xi , si) | i ∈ N}. We show A = N × N.
First, we have A ⊆ N × N because xi ∈ N and si ∈ N for each i ∈ N. Now, let
(x , s) ∈ N × N. Denote i = globM (x , s). By definition, xi = x and si = s. Hence
(x , s) = (xi , si) ∈ A. Now we may write:

trace(R) =
⋃

(x ,s)∈A

M |x ,s

=
⋃

(x ,s)∈N×N

M |x ,s ·

Finally, becauseM is well-formed (see Section 5.3), for each R(v ,w , ā) ∈ M |sch(P)LT
we have v ∈ N and w ∈ N. We obtain, as desired:

trace(R) = M |sch(P)LT ·

B.5 Subclaims

Claim 7
Let x ∈ N and s ∈ N. We have (M |edb(P)LT)|x ,s = H (x )⇑x ,s .

Proof
First, by construction of decl(H ) we have (decl(H )|edb(P)LT)|x ,s = H (x )⇑x ,s . Be-
cause decl(H ) ⊆ M , and because facts over edb(P)LT can not be derived by rules
in pure(P), we have M |edb(P)LT = decl(H )|edb(P)LT . Hence,

(M |edb(P)LT)|x ,s = (decl(H )|edb(P)LT)|x ,s = H (x )⇑x ,s ·
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Claim 8
Let i ∈ N. We have si = locM (i , xi).

Proof
Recall that (xi , si) ∈ N×N is the unique pair at ordinal i in<M , i.e., globM (xi , si) =

i . Suppose we would know for all s ∈ N and t ∈ N that s < t implies globM (xi , s) <

globM (xi , t). Then locM (i , xi), which is

|{s ∈ N | globM (x , s) < i}|,

is precisely

|{s ∈ N | s < si}|·

The latter is just si .
We are left to show for any s ∈ N and t ∈ N that s < t implies globM (xi , s) <

globM (xi , t). It is actually sufficient to show for any s ∈ N that (xi , s) ≺M (xi , s+1).
Indeed, this would imply for any t ∈ N with s < t that

(xi , s) ≺M (xi , s + 1) ≺M (xi , s + 2) ≺M . . . ≺M (xi , t)·

And since ≺M is a partial order, it is transitive, and thus (xi , s) ≺M (xi , t).
Next, since <M respects ≺M , we obtain (xi , s) <M (xi , t) and thus globM (xi , s) <

globM (xi , t), as desired. To show (xi , s) ≺M (xi , s + 1), we observe that the rule (7)
in pure(P) is positive. Hence, for any s ∈ N, the following ground rule is always
in G , and it derives before(xi , s, xi , s + 1) ∈ M because all(xi) ∈ decl(H ) and
tsucc(s, s + 1) ∈ decl(H ):

before(xi , s, xi , s + 1)← all(xi), tsucc(s, s + 1)·

Thus (xi , s) ≺M (xi , s + 1) by definition of ≺M .

Claim 9
Let i ∈ N. We have M ind|xi ,si+1 ⊆ inducP(Di)

⇑xi ,si+1.

Proof
Let fff ∈ M ind|xi ,si+1. We show fff ∈ inducP(Di)

⇑xi ,si+1.
By definition of M ind, there is an active inductive ground rule ψ ∈ G with

headψ = fff . Because ψ ∈ G , there is a rule ϕ ∈ pure(P) and a valuation V so
that ψ can be obtained from ϕ by applying V and by subsequently removing all
negative (ground) body literals, and so that V (negϕ)∩M = ∅. The rule ϕ must be
of the form (2), which implies that V must assign xi and si to the body location
and timestamp variable respectively, and that it must assign xi and si + 1 to the
head location and timestamp variable respectively.
Let ϕ′ ∈ P be the original inductive rule on which ϕ is based. Let ϕ′′ ∈ inducP

be the rule corresponding to ϕ′. It follows from the construction of ϕ out of ϕ′ and
ϕ′′ out of ϕ′ that valuation V can also be applied to rule ϕ′′. Indeed, rule ϕ just
has more variables for the location and timestamps. We show that V is satisfying
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for ϕ′′ with respect to Di , so that ϕ′′ and V together derive V (headϕ′′) = fff ⇓ ∈
inducP(Di), which gives fff ∈ inducP(Di)

⇑xi ,si+1, as desired.
We must concretely show V (posϕ′′) ⊆ Di and V (negϕ′′) ∩ Di = ∅. We start by

showing V (posϕ′′) ⊆ Di . From the relationship between ψ, ϕ and ϕ′′, we know that

posψ|sch(P)LT = V (posϕ)|sch(P)LT = V (posϕ′′)⇑xi ,si ·

Since ψ is active with respect to M , we have posψ ⊆ M , and thus V (posϕ′′)⇑xi ,si ⊆
M . Then by Claim 10 we have V (posϕ′′) ⊆ Di , as desired.
Now we show that V (negϕ′′)∩Di = ∅. By the relationship of ϕ and ϕ′′, we have

V (negϕ′′)⇑xi ,si = V (negϕ). By choice of ϕ and V , we have V (negϕ) ∩ M = ∅.
Hence, V (negϕ′′)⇑xi ,si ∩M = ∅. Finally, by Claim 11, we have V (negϕ′′)∩Di = ∅,
as desired.

Claim 10
Let i ∈ N. Let I be a set of facts over sch(P)LT that all have location specifier xi
and timestamp si . If I ⊆ M then I ⇓ ⊆ Di , with Di as defined in Section B.1.

Proof
We are given I ⊆ M . By the assumptions on I , we more specifically have I ⊆
M |xi ,si . Then by Claim 15 we have I ⊆ (Di)

⇑xi ,si . Hence I ⇓ ⊆ Di , as desired.

Claim 11
Let i ∈ N. Let I be a set of facts over sch(P)LT that all have location specifier xi
and timestamp si . If I ∩M = ∅ then I ⇓∩Di = ∅, with Di as defined in Section B.1.

Proof
We are given that I ∩ M = ∅. This implies I ∩ M |xi ,si = ∅. By Claim 15 we
have I ∩ (Di)

⇑xi ,si = ∅. Hence, by the assumptions on I , we have I ⇓ ∩ Di = ∅, as
desired.

Claim 12
Let i ∈ N. We have inducP(Di)

⇑xi ,si+1 ⊆ M ind|xi ,si+1.

Proof
Let fff ∈ inducP(Di). We show that fff ⇑xi ,si+1 ∈ M ind|xi ,si+1.
Recall the semantics for inducP from Section 5.1.2. Let ϕ ∈ inducP and V be

the rule and valuation that together derived fff ∈ inducP(Di). Let ϕ′ ∈ P be the
original inductive rule on which ϕ is based. Let ϕ′′ ∈ pure(P) be the inductive rule
that in turn is based on ϕ′, which is of the form (2). Let V ′′ be the valuation for
ϕ′′ that is obtained by extending V to assign xi and si to respectively the location
and timestamp variables in the body, and to assign si + 1 to the head timestamp
variable. Let ψ be the positive ground rule obtained from ϕ′′ by applying the
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valuation V ′′, and by subsequently removing the negative (ground) body literals.
Note that headψ = V (headϕ)⇑xi ,si+1 = fff ⇑xi ,si+1. We will show that ψ ∈ G and
that posψ ⊆ M , so that this ground rule derives fff ⇑xi ,si+1 ∈ M . And since ψ is
inductive, we more specifically have fff ⇑xi ,si+1 ∈ M ind|xi ,si+1, as desired.

• For ψ ∈ G , we require V ′′(negϕ′′) ∩M = ∅. From the construction of rule
ϕ′′, we have V ′′(negϕ′′) = V (negϕ)⇑xi ,si . We show V (negϕ)⇑xi ,si ∩M = ∅.
Because V is satisfying for ϕ with respect to Di , we have V (negϕ)∩Di = ∅.
This gives V (negϕ)⇑xi ,si ∩ (Di)

⇑xi ,si = ∅. Then V (negϕ)⇑xi ,si ∩M |xi ,si = ∅ by
Claim 15. Next, we obtain V (negϕ)⇑xi ,si ∩M = ∅ since V (negϕ)⇑xi ,si contains
only facts over sch(P)LT with location specifier xi and timestamp si .

• Now we show posψ ⊆ M . From the construction of rule ϕ′′, we have

posψ = V ′′(posϕ′′) = V (posϕ)⇑xi ,si ∪ {tsucc(si , si + 1)}·

We immediately have tsucc(si , si + 1) ∈ decl(H ) ⊆ M . Moreover, since
V is satisfying for ϕ with respect to Di , we have V (posϕ) ⊆ Di . Hence
V (posϕ)⇑xi ,si ⊆ (Di)

⇑xi ,si . By Claim 15 we then haveV (posϕ)⇑xi ,si ⊆ M |xi ,si ⊆
M , as desired.

Claim 13
Let i ∈ N. Let x ∈ N . For each R(x , ā) ∈ asyncP(Di), we have (i ,R(ā)) ∈ bf i+1(x ).

Proof
The main approach of this proof is as follows. We will show there is a timestamp
u ∈ N such that chosenR(xi , si , x , u, ā) ∈ M . Next, because rules of the form (10)
are positive, in G there is always the following ground rule:

before(xi , si , x , u)← chosenR(xi , si , x , u, ā)·

Thus if chosenR(xi , si , x , u, ā) ∈ M then before(xi , si , x , u) ∈ M , which implies
(xi , si) ≺M (x , u) by definition of ≺M . Since<M respects≺M , we obtain (xi , si) <M

(x , u) and thus globM (xi , si) < globM (x , u). Also, since globM (xi , si) = i , we overall
get

globM (xi , si) < i + 1 ≤ globM (x , u),

which together with chosenR(xi , si , x , u, ā) ∈ M gives (globM (xi , si), R(ā)) =

(i ,R(ā)) ∈ bf i+1(x ), as desired.
Now we are left to show that such a timestamp u exists. Recall the semantics

for asyncP from Section 5.1.2. Let ϕ ∈ asyncP and V be a rule and valuation
that together have derived R(x , ā) ∈ asyncP(Di). Let ϕ′ ∈ P be the original
asynchronous rule on which ϕ is based. Let ϕ′′ ∈ pure(P) be the rule obtained by
applying transformation (9) to ϕ′. To continue, because ≺M is well-founded, there
are only a finite number of timestamps v ∈ N of node x such that (x , v) ≺M (xi , si).
So, there exists a timestamp u ∈ N such that (x , u) 6≺M (xi , si). Now, let V ′′ be
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the valuation for ϕ′′ that is the extension of valuation V to assign xi and si to the
body location variable and timestamp variable respectively (both belonging to the
sender), and to assign u to the addressee arrival timestamp. Note that from the
construction of ϕ′′ we also know that V (and thus V ′′) assigns the value x to the
addressee location variable and the tuple ā to the message contents. Let ψ denote
the ground rule obtained by applying V ′′ to ϕ′′, and by subsequently removing
the negative (ground) body literals. We will first show that ψ ∈ G , and then we
show that posψ ⊆ M , meaning that ψ derives headψ = candR(xi , si , x , u, ā) ∈ M .
Then Claim 17 can be applied to know that there is a timestamp u ′, with possibly
u ′ = u, such that chosenR(xi , si , x , u

′, ā) ∈ M , as desired.
In order for ψ to be in G , we require V ′′(negϕ′′) ∩M = ∅. It follows from the

construction of ϕ′′ out of ϕ′ and ϕ out of ϕ′ that

V ′′(negϕ′′) = V (negϕ)⇑xi ,si ∪ {before(x , u, xi , si)}·

We have before(x , u, xi , si) /∈ M because (x , u) 6≺M (xi , si) by choice of u. Next,
we show that V (negϕ)⇑xi ,si ∩M = ∅. Because V is satisfying for ϕ with respect to
Di , we have V (negϕ) ∩Di = ∅, and thus

V (negϕ)⇑xi ,si ∩ (Di)
⇑xi ,si = ∅·

Then, by Claim 15,

V (negϕ)⇑xi ,si ∩M |xi ,si = ∅·

Since V (negϕ)⇑xi ,si contains only facts over sch(P)LT with location specifier xi and
timestamp si , we have

V (negϕ)⇑xi ,si ∩M = ∅·

We now show posψ ⊆ M . Note, posψ = V ′′(posϕ′′). From the construction of ϕ′′
we have

V ′′(posϕ′′) = V (posϕ)⇑xi ,si ∪ {all(x ), time(u)}·

Because x ∈ N and u ∈ N, we immediately have {all(x ), time(u)} ⊆ decl(H ) ⊆
M . We are left to show V (posϕ)⇑xi ,si ⊆ M . Because V is satisfying for ϕ with
respect to Di , we have V (posϕ) ⊆ Di . Hence V (posϕ)⇑xi ,si ⊆ (Di)

⇑xi ,si . By again
using Claim 15 we then obtain V (posϕ)⇑xi ,si ⊆ M |xi ,si ⊆ M , as desired.

Claim 14
Let i ∈ N and x ∈ N . For each (i ,R(ā)) ∈ bf i+1(x ), we have R(x , ā) ∈ asyncP(Di).

Proof
By definition of bf i+1(x ), the pair (i ,R(ā)) ∈ bf i+1(x ) implies that there are values
y ∈ N , t ∈ N and u ∈ N such that chosenR(y , t , x , u, ā) ∈ M , globM (y , t) = i and
globM (y , t) < i + 1 ≤ globM (x , u). And globM (y , t) = i gives us that y = xi and
t = si . Thus chosenR(xi , si , x , u, ā) ∈ M .
All ground rules in G that can derive chosenR(xi , si , x , u, ā) ∈ M are of the
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form (4), and hence candR(xi , si , x , u, ā) ∈ M . Let ψ ∈ G be an active ground rule
with head candR(xi , si , x , u, ā). Because ψ ∈ G , there is a rule ϕ ∈ pure(P) and
a valuation V so that ψ is obtained from ϕ by applying V and by subsequently
removing all negative (ground) body literals, and so that V (negϕ) ∩M = ∅. The
rule ϕ is of the form (9), which implies that V must assign xi and si respectively to
the body location and timestamp variable that correspond to the sender, and that
it must assign x and u respectively to the location and timestamp variable that
correspond to the addressee. Let ϕ′ ∈ P be the original asynchronous rule on which
ϕ is based. Let ϕ′′ be the corresponding rule in asyncP . From the construction of
ϕ out of ϕ′ and ϕ′′ out of ϕ′, it follows that V can also be applied to ϕ′′. Note,
V (headϕ′′) = R(x , ā). We now show that V is satisfying for ϕ′′ with respect to
Di , which causes R(x , ā) ∈ asyncP(Di), as desired. Specifically, we have to show
V (posϕ′′) ⊆ Di and V (negϕ′′) ∩Di = ∅.
First we show V (posϕ′′) ⊆ Di . By construction of ϕ and ϕ′′, we have

posψ|sch(P)LT = V (posϕ)|sch(P)LT = V (posϕ′′)⇑xi ,si ·

Since ψ is active, we have posψ|sch(P)LT ⊆ M , and therefore V (posϕ′′)⇑xi ,si ⊆ M .
Then, because the facts in V (posϕ′′)⇑xi ,si are over sch(P)LT and have location
specifier xi and timestamp si , we can apply Claim 10 to know that V (posϕ′′) ⊆ Di ,
as desired.
Now we show V (negϕ′′) ∩Di = ∅. By construction of ϕ and ϕ′′, we have

V (negϕ)|sch(P)LT = V (negϕ′′)⇑xi ,si ·

By choice of ϕ and V , we have V (negϕ)∩M = ∅. Hence, V (negϕ′′)⇑xi ,si ∩M = ∅.
Then, because the facts in V (negϕ′′)⇑xi ,si are over sch(P)LT and have location
specifier xi and timestamp si , we can apply Claim 11 to know that V (negϕ′′)∩Di =

∅, as desired.

Claim 15
Let i ∈ N. We have M |xi ,si = (Di)

⇑xi ,si . Intuitively, this means that the operational
deductive fixpoint Di during transition i , corresponding to step si of node xi , is
represented by M in an exact way.

Proof
Recall the notations from Section B.1. Let n denote the largest stratum number of
the deductive rules of P. We show by induction on k = 0, 1, . . . ,n that

(M→k )|xi ,si = (D→k
i )⇑xi ,si ·

This will give us (M→n)|xi ,si = (D→n
i )⇑xi ,si = (Di)

⇑xi ,si · Moreover, Claim 18 says
that (M→n)|xi ,si = M |xi ,si , and thus we obtain M |xi ,si = (Di)

⇑xi ,si , as desired.
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Base case (k = 0) By definition,

M→0 = M N ∪M duc,0·

But since there are no deductive ground rules in G with stratum 0, we have
M duc,0 = ∅. Hence,

(M→0)|xi ,si = (M N)|xi ,si

= (M |edb(P)LT)|xi ,si ∪M ind|xi ,si ∪M deliv|xi ,si · (B1)

Using Claim 16 and Claim 19, we can rewrite expression (B1) to the desired equality:

(M→0)|xi ,si = sti(xi)
⇑xi ,si ∪ untag(mi)

⇑xi ,si

= (sti(xi) ∪ untag(mi))
⇑xi ,si

= (D→0
i )⇑xi ,si ·

Induction hypothesis For the induction hypothesis, we assume for a stratum number
k ≥ 1 that

(M→k−1)|xi ,si = (D→k−1
i )⇑xi ,si ·

Inductive step We show that

(M→k )|xi ,si = (D→k
i )⇑xi ,si ·

We show both inclusions separately, in Claims 20 and 21.

Claim 16
Let i ∈ N. We have sti(xi)⇑xi ,si = (M |edb(P)LT)|xi ,si ∪M ind|xi ,si .

Proof
By definition,

sti(xi) =
(
(M |edb(P)LT)|xi ,s ∪M ind|xi ,s

)⇓
,

where s = locM (i , xi). Using Claim 8, we have s = si . Therefore,

sti(xi)
⇑xi ,si = (M |edb(P)LT)|xi ,si ∪M ind|xi ,si ·

Claim 17
For each fact candR(x , s, y , u, ā) ∈ M , there is a timestamp u ′ ∈ N such that
chosenR(x , s, y , u ′, ā) ∈ M , with possibly u ′ = u.
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Proof
Towards a proof by contradiction, suppose there is no such timestamp u ′. Now,
because candR(x , s, y , u, ā) ∈ M , the following ground rule, which is of the form (4),
can not be in G , because otherwise chosenR(x , s, y , u, ā) ∈ M , which is assumed
not to be possible:

chosenR(x , s, y , u, ā)← candR(x , s, y , u, ā)·

Because rules of the form (4) contain a negative other...-atom in their body, the
absence of the above ground rule from G implies otherR(x , s, y , u, ā) ∈ M . This
otherR-fact must be derived by a ground rule of the form (5):

otherR(x , s, y , u, ā)← candR(x , s, y , u, ā), chosenR(x , s, y , u ′, ā), u 6= u ′·

But this implies that chosenR(x , s, y , u ′, ā) ∈ M , which is a contradiction.

Claim 18
Let i ∈ N. Let n denote the largest stratum number of the deductive rules of P.
We have (M→n)|xi ,si = M |xi ,si .

Proof
First, since M→n ⊆ M , we immediately have (M→n)|xi ,si ⊆ M |xi ,si .
Now, let fff ∈ M |xi ,si . We show fff ∈ (M→n)|xi ,si . Since fff has location specifier xi

and timestamp si , we are left to show fff ∈ M→n . We have the following cases:

• Suppose fff ∈ M |edb(P)LT . Then fff ∈ M N ⊆ M→n .
• Suppose fff ∈ M |idb(P)LT . Then there is an active ground rule ψ ∈ G with
headψ = fff . As seen in Section B.1, rule ψ can be of three types: deductive,
inductive and delivery. The last two cases would respectively imply fff ∈ M ind

and fff ∈ M deliv, giving fff ∈ M N ⊆ M→n . In the deductive case, rule ψ has a
stratum number no larger than n, and hence fff ∈ M duc,n ⊆ M→n .

Claim 19
Let i ∈ N. We have M deliv|xi ,si = untag(mi)

⇑xi ,si .

Proof
Let fff ∈ M deliv|xi ,si . We show fff ∈ untag(mi)

⇑xi ,si . Denote fff = R(xi , si , ā). By
definition of M deliv, there is an active delivery rule ψ ∈ G that derives fff :

R(xi , si , ā)← chosenR(y , t , xi , si , ā)·

Because this rule is active, we have chosenR(y , t , xi , si , ā) ∈ M . Now, by definition
of xi and si , we have globM (xi , si) = i . Hence, (globM (y , t), R(ā)) ∈ mi and thus
R(ā) ∈ untag(mi). Finally, we obtain fff = R(xi , si , ā) ∈ untag(mi)

⇑xi ,si , as desired.
Let fff ∈ untag(mi)

⇑xi ,si . We show fff ∈ M deliv|xi ,si . Denote fff = R(xi , si , ā). We
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have R(ā) ∈ untag(mi). Thus, there is some tag j ∈ N such that (j ,R(ā)) ∈ mi .
By definition of mi , there are values y ∈ N , t ∈ N, z ∈ N and u ∈ N such that

chosenR(y , t , z , u, ā) ∈ M ,

where globM (y , t) = j and globM (z , u) = i . Here, globM (z , u) = i implies z = xi
and u = si . Hence, chosenR(y , t , xi , si , ā) ∈ M . Now, the following ground rule ψ
is in G because (delivery) rules of the form (6) are always positive:

R(xi , si , ā)← chosenR(y , t , xi , si , ā)·

This rule derives fff = R(xi , si , ā) ∈ M because its body-fact is in M . Hence, fff ∈
M deliv|xi ,si , as desired.

Claim 20
Let i ∈ N. Let k be a stratum number (thus k ≥ 1). Suppose that

(M→k−1)|xi ,si = (D→k−1
i )⇑xi ,si ·

We have

(M→k )|xi ,si ⊆ (D→k
i )⇑xi ,si ·

Proof
We consider the fixpoint computation of M , i.e., M =

⋃
l∈N Ml with M0 = decl(H )

and Ml = T (Ml−1) for each l ≥ 1, where T is the immediate consequence operator
of G . By the semantics of operator T , we have Ml−1 ⊆ Ml .

We show by induction on l = 0, 1, 2, . . ., that

(Ml ∩M→k )|xi ,si ⊆ (D→k
i )⇑xi ,si ·

This will imply that((⋃
l∈N

Ml

)
∩M→k

)
|xi ,si ⊆ (D→k

i )⇑xi ,si ·

Hence, we obtain, as desired

(M ∩M→k )|xi ,si = (M→k )|xi ,si ⊆ (D→k
i )⇑xi ,si ·

Before we start with the induction, recall from Section B.1 that

M→k = M N ∪M duc,k

= M |edb(P)LT ∪M ind ∪M deliv ∪M duc,k ·
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Base case (l = 0) We have M0 = decl(H ). Thus M0 contains no facts derived by
deductive, inductive or delivery ground rules. Therefore,

M0 ∩M→k = M |edb(P)LT ·

Hence,

(M0 ∩M→k )|xi ,si ⊆ (M N)|xi ,si

⊆ (M→k−1)|xi ,si ·

And by using the given equality (M→k−1)|xi ,si = (D→k−1
i )⇑xi ,si , we obtain, as

desired:

(M0 ∩M→k )|xi ,si ⊆ (D→k−1
i )⇑xi ,si

⊆ (D→k
i )⇑xi ,si ·

Induction hypothesis Let l ≥ 1. We assume

(Ml−1 ∩M→k )|xi ,si ⊆ (D→k
i )⇑xi ,si ·

Inductive step We show

(Ml ∩M→k )|xi ,si ⊆ (D→k
i )⇑xi ,si ·

Let fff ∈ (Ml ∩ M→k )|xi ,si . If fff ∈ Ml−1 then fff ∈ (Ml−1 ∩ M→k )|xi ,si and the
induction hypothesis can be immediately applied. Now suppose that fff ∈ Ml \Ml−1.
Then there is a ground rule ψ ∈ G with headψ = fff that is active on Ml−1. We
have posψ ⊆ Ml−1. As we have seen in Section B.1, rule ψ can be of three types:
deductive, inductive or a delivery. If ψ is an inductive rule or a delivery rule then

fff ∈ M ind|xi ,si ∪M deliv|xi ,si

⊆ (M N)|xi ,si ⊆ (M→k−1)|xi ,si

= (D→k−1
i )⇑xi ,si ⊆ (D→k

i )⇑xi ,si ·

Now suppose ψ is deductive. If ψ has stratum less than or equal to k − 1, then
fff ∈ (M→k−1)|xi ,si . In that case, the given equality (M→k−1)|xi ,si = (D→k−1

i )⇑xi ,si

gives fff ∈ (D→k−1
i )⇑xi ,si ⊆ (D→k

i )⇑xi ,si , as desired. Now suppose that ψ has stratum
k . Because ψ ∈ G , there is a rule ϕ ∈ pure(P) and valuation V so that ψ is
obtained from ϕ by applying valuation V and subsequently removing the negative
(ground) body literals, and so that V (negϕ) ∩M = ∅. Let ϕ′ ∈ P be the original
deductive rule on which ϕ is based. Thus ϕ′ ∈ deducP (see Section 5.1.2). By
construction of ϕ out of ϕ′, valuation V can also be applied to rule ϕ′. We now
show that V is satisfying for ϕ′ during the computation of Di , in stratum k . Since
V (headϕ) = headψ = fff , this results in the derivation of V (headϕ′) = fff ⇓ ∈ D→k

i

and thus fff ∈ (D→k
i )⇑xi ,si , as desired. It is sufficient to show V (posϕ′) ⊆ D→k

i and
V (negϕ′) ∩ D→k−1

i = ∅ because by the syntactic stratification, if ϕ′ uses relations
positively then those relations are in stratum k or lower, and if ϕ′ uses relations
negatively then those relations are in a stratum strictly lower than k .
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• We show V (posϕ′) ⊆ D→k
i . First, by the relationship between ϕ and ϕ′,

and because valuation V assigns xi and si to respectively the body location
variable and body timestamp variable of ϕ, we have posψ = V (posϕ) =

V (posϕ′)⇑xi ,si . By choice of ψ, we already know posψ ⊆ Ml−1. If we could
show posψ ⊆ M→k then posψ ⊆ (Ml−1 ∩M→k )|xi ,si , to which the induction
hypothesis can be applied to obtain posψ = V (posϕ′)⇑xi ,si ⊆ (D→k

i )⇑xi ,si ,
resulting in V (posϕ′) ⊆ D→k

i , as desired.
Now we show posψ ⊆ M→k . Let ggg ∈ posψ. If ggg ∈ M N then we immediately
have ggg ∈ M→k . Now suppose that ggg /∈ M N. Since posψ ⊆ M |xi ,si , we have ggg ∈
M |xi ,si \M N. Then Claim 18 implies there is an active deductive ground rule
ψ′ ∈ G with headψ′ = ggg . But we are working with a syntactic stratification,
and thus the stratum of ψ′ can not be higher than the stratum of ψ, which is
k . Hence ggg ∈ M duc,k ⊆ M→k .
• We show V (negϕ′)∩D→k−1

i = ∅. By choice of ϕ and V , we have V (negϕ)∩
M = ∅. So,

V (negϕ) ∩ (M→k−1)|xi ,si = ∅·

By applying the given equality (M→k−1)|xi ,si = (D→k−1
i )⇑xi ,si , we then have

V (negϕ)∩ (D→k−1
i )⇑xi ,si = ∅. By the relationship between ϕ and ϕ′, we have

V (negϕ) = V (negϕ′)⇑xi ,si . Thus V (negϕ′) ∩D→k−1
i = ∅, as desired.

Claim 21
Let i ∈ N. Let k be a stratum number (thus k ≥ 1). Suppose that

(M→k−1)|xi ,si = (D→k−1
i )⇑xi ,si ·

We have

(D→k
i )⇑xi ,si ⊆ (M→k )|xi ,si ·

Proof
Recall that the semantics of stratum k in deducP is that of semi-positive Datalog¬,
with input D→k−1

i . So, we can consider D→k
i to be a fixpoint, i.e., as the set

⋃
l∈N Al

with A0 = D→k−1
i and Al = T (Al−1) for each l ≥ 1, where T is the immediate

consequence operator of stratum k in deducP . We show by induction on l = 0, 1,
2, etc, that

(Al)
⇑xi ,si ⊆ (M→k )|xi ,si ·

This then gives us the desired result.

Base case (l = 0) We have A0 = D→k−1
i . By applying the given equality, we obtain

(A0)⇑xi ,si = (D→k−1
i )⇑xi ,si = (M→k−1)|xi ,si ⊆ (M→k )|xi ,si ·
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Induction hypothesis Let l ≥ 1. We assume

(Al−1)⇑xi ,si ⊆ (M→k )|xi ,si ·

Inductive step Let fff ∈ Al . We show fff ⇑xi ,si ∈ (M→k )|xi ,si . If fff ∈ Al−1 then the
induction hypothesis can be applied to obtain the desired result. Now suppose
fff ∈ Al \ Al−1. Let ϕ ∈ deducP and V be respectively a rule with stratum k and a
valuation that together have derived fff ∈ Al . Let ϕ′ ∈ pure(P) be the rule obtained
from ϕ by applying transformation (1). Let V ′ be the extension of V to assign xi
and si respectively to the body location and timestamp variable of ϕ′, which are
also both used in the head of ϕ′. Let ψ be the ground rule obtained from ϕ′ by
applying valuation V ′ and by subsequently removing all negative body literals. We
show ψ ∈ G and posψ ⊆ M , which then implies

headψ = V ′(headϕ′) = V (headϕ)⇑xi ,si = fff ⇑xi ,si ∈ M ·

Moreover, because ϕ (and thus ϕ′) has stratum k , rule ψ is an active deductive
ground rule with stratum k , and thus fff ⇑xi ,si ∈ (M duc,k )|xi ,si ⊆ (M→k )|xi ,si , as
desired.

• To show ψ ∈ G , we require V ′(negϕ′)∩M = ∅. Because V is satifying for ϕ,
and because negation is only applied to lower strata, we have

V (negϕ) ∩D→k−1
i = ∅·

Thus

V (negϕ)⇑xi ,si ∩ (D→k−1
i )⇑xi ,si = ∅·

By the relationship between ϕ and ϕ′, we have V (negϕ)⇑xi ,si = V ′(negϕ′),
which gives us

V ′(negϕ′) ∩ (D→k−1
i )⇑xi ,si = ∅·

And by using the given equality (M→k−1)|xi ,si = (D→k−1
i )⇑xi ,si , we have

V ′(negϕ′) ∩ (M→k−1)|xi ,si = ∅·

Now, for the last step, we work towards a contradiction: suppose that there
is a fact ggg ∈ V ′(negϕ′) ∩M . From the construction of ϕ′, we know that ggg is
over sch(P)LT and has location specifier xi and timestamp si .
— If ggg is over edb(P)LT then ggg ∈ (M |edb(P)LT)|xi ,si . Thus ggg ∈ (M N)|xi ,si ⊆

(M→k−1)|xi ,si , which is a contradiction.
— If ggg is over idb(P)LT then there is an active ground rule ψ′ ∈ G with

headψ′ = ggg . As seen in Section B.1, rule ψ′ is either deductive, inductive or
a delivery. The last two cases would imply that ggg ∈ (M ind∪M deliv)|xi ,si ⊆
(M N)|xi ,si , which gives a contradiction like in the previous case. Now sup-
pose that ψ′ is deductive. Because the predicate of ggg is used negatively in
ϕ′ and thus negatively in ϕ, the syntactic stratification assigns a smaller
stratum number to ψ′ than the stratum number of ψ, which is k . Hence,
ggg ∈ (M→k−1)|xi ,si , which is again a contradiction.
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We conclude that V ′(negϕ′) ∩M = ∅.
• We show posψ ⊆ M . Because V is satisfying for ϕ, we have

V (posϕ) ⊆ Al−1·

By the relationship between ϕ and ϕ′ (and ψ), we have V (posϕ)⇑xi ,si =

V ′(posϕ′) = posψ. Thus

posψ ⊆ (Al−1)⇑xi ,si ·

By now applying the induction hypothesis, we obtain, as desired:

posψ ⊆ (M→k )|xi ,si ⊆ M ·
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