
1

Appendix A Guidelines for Stepping

In what follows, we give advice on how users can exploit stepping for analysing and

debugging their code. Fig. A 1 synthesises practical guidelines for stepping from the

methodological aspects of stepping described in Section 4.6. It can be seen as a user-

oriented view on the stepping technique. Depending on the goals and the knowledge

of the user, this guide gives concise yet high-level suggestions on how to proceed

in a stepping session. The upper area of the figure is concerned with clarifying the

best strategy for a stepping session and for choosing the computation to start from.

The lower area, on the other hand, guides the user through the stepping process.

The diagram differentiates between four tasks a user may want to perform.

(i) Debugging a program lacking a particular answer set: we suggest to step and

jump through rules that one thinks build up this answer set. Eventually, the

computation will get stuck when adding a rule that prevents the answer set.

(ii) Debugging a program that lacks any answer set: if an intended answer set is

known, we advise using the strategy of Item (i). Otherwise, the user should

choose rules and truth values during stepping that he or she thinks should be

consistent, i.e., lead to a successful computation. Also here, the computation

is guaranteed to fail and get stuck, indicating a reason for the inconsistency.

(iii) Debugging a program with an unintended answer set I : In case that I is

similar to an intended but missing answer set I ′, thus if I is intuitively a wrong

version of I ′, we recommend stepping towards I ′, following the strategy of

Item (i). Otherwise, the user can step towards I . Unlike in the previous cases,

the computation is guaranteed to eventually succeed. Here, stepping acts as

a disciplined way to inspect how the atoms of I can be derived and why no

rule prevents I from being an answer set. If I is intended to be a model but

not stable, then the stepping process will reveal which rules provide external

support for sets of atoms that are supposed to be unfounded.

(iv) Analysing a program: In case that the user is interested in the behaviour of

the program under a particular interpretation, it is reasonable to step towards

this interpretation. Otherwise, rules and truth assignments should be chosen

that drive the computation towards states that the user is interested in.

The procedures suggested above and in Fig. A 1 are meant as rough guidelines for

the inexperienced user. Presumably, knowledge about the own source code and some

practice in stepping gives the user a good intuition on how to find bugs efficiently.

It is natural to ask how big a program can get such that it is still suitable for

stepping. Due to the vague nature of the question, answers cannot be clearly es-

tablished. From a complexity theoretic point of view, the problems that need to be

solved in a stepping support environment for and after performing a step or a jump,

e.g., computing a new state from a jump, determining rules with active instances,

or checking whether a computation has failed, are not harder than computing an

answer set of the program under development. Under this observation, our tech-

nique is certainly an appropriate approach for debugging ASP. In some applications,

however, solving times of multiple minutes or even hours are acceptable. Certainly,

2

STEPPING
GUIDE

What is your goal? What type of bug?

Do you want to inspect the
behaviour of your program

under a particular
interpretation?

Always choose truth values
to match the interpretation
when performing a step in

this session

Follow your intuitions to
create an interesting

situation when choosing
truth values in this session

Is the unintended answer set
a wrong version of a missing

expected answer set?

Do you know any particular
expected answer set?

Always choose truth values
to match the intended

answer set when performing
a step in this session

Always choose truth values
to match the unintended

answer set when performing
a step in this session

Which is the computation
you can obtain that reflects
your intended setting the

most?

Start stepping from the
obtained computation

Start stepping from the
empty state. Then, jump

through the program’s facts

Select rules for step or jump

Step Jump
Do you want to continue
stepping from the current
state of the computation?

Store computation for later
use. Retract the final states
from the computation until
the new final state matches

your intentions

Can you already gain
satisfactory insight into the

program’s semantics?

Store computation for later
use

DONE

find

a bug

analyse the program

yes no

an unintended answer set

no answer sets exist although some should

yesno

a missing answer set

yes no

a (part of a) stored computation for a trusted part of the program,

a computation generated from an answer set of a trusted part of the program,

a computation generated from an answer set of a previous version of the program, or

a computation generated from an interpretation from an external source

no

yes
no

yes

Fig. A 1. Stepping guide

3

having waiting times of these lengths for individual debugging steps is undesirable.

On the positive side, often, following a few guidelines during the development of

an answer-set program can significantly reduce the likelihood of introducing bugs,

the amount of information the user has to deal with, and also the computational

resources required for stepping. Among these measures are best practices for ASP

development that have been discussed in a paper by Brain et al. (2009). For working

with the stepping method in particular, we give the following recommendations.

Use scalable encodings and start with small examples. Using small problem in-

stances, also the resulting grounding as well as answer sets are typically small.

This limits the amount of information to be considered during debugging. Chances

that bugs are detected early, using small programs is suggested by an evaluation of

the small-scope hypothesis for ASP (Oetsch et al. 2012).

Visualise answer sets and stepping states. Tools like Kara (Kloimüllner et al. 2013)

(that is implemented in SeaLion), ASPVIZ (Cliffe et al. 2008), IDPDraw (Wittocx

2009), or Lonsdaleite (Smith 2011) allow for visualising interpretations. With

their help, one can quickly spot when an answer set differs from what is expected

and they allow to monitor the evolvement of the interpretation that is build up

during stepping. The illustrations of the maze generation problem in this section

were created using Kara. For use with stepping, we advise to specify visualisations

also for interpretations that are not supposed to be answer sets. For example, in

Fig. 8, we have visualisations for cells that are not assigned to be empty or a wall

and for cells that are assigned to be a wall and empty, despite in an expected answer

set, every cell has to be either a wall or empty.

Test often. Frequent tests allow the user to trust in large parts of the program,

hence these parts can be jumped over in a stepping session.

Appendix B Remaining Proofs

Theorem 1

Let S be a state and S ′ a successor of S , where ∆ = IS ′ \ IS . Moreover, let X ′ be

a set of literals with ∅ ⊂ X ′ ⊆ IS ′ . Then, the following statements are equivalent:

(i) X ′ is unfounded in PS ′ with respect to IS ′ .

(ii) X ′ = ∆′ ∪ X , where ∆′ ⊆ ∆, X ∈ ΥS , and rnew(S ,S ′) is not an external

support for X ′ with respect to IS ′ .

Proof

((i)⇒(ii)) It is obvious that rnew(S ,S ′) is not an external support for X ′ with

respect to IS ′ as otherwise X ′ cannot be unfounded in PS ′ with respect to IS ′ .

It remains to be shown that X ′ = ∆′ ∪ X for some ∆′ ⊆ ∆ and some X ∈ ΥS .

Towards a contradiction, assume X ′ 6= ∆′′ ∪ X ′′ for all X ′′ ∈ ΥS and all ∆′′ ⊆ ∆.

We define X = X ′ ∩ IS .

4

Consider the case that X ∈ ΥS . As X ′ \ IS ⊆ ∆, and X ′ = (X ′ \ IS) ∪ X , we

have a contradiction to our assumption. Therefore, it holds that X 6∈ ΥS . Hence,

as X ⊆ IS , by definition of a state, X is not unfounded in PS with respect to IS .

Therefore, there is some external support r ∈ PS for X with respect to IS .

In the following, we show that r is also an external support for X ′ with respect

to IS ′ . Since S ′ is a successor of S and S is a state, we get that IS and IS ′ coincide

on Dr . Consequently, from IS |= B(r) we get that also IS ′ |= B(r). Moreover,

because of IS \X |= B(r) it is also true that IS ′ \X ′ |= B(r). Furthermore, we know

that there is some A ∈ H(r) with X |DA
6= ∅ and IS |DA

⊆ C , for some C ∈ CA. As

X |DA
= X ′|DA

and IS |DA
= IS ′ |DA

we also have X ′|DA
6= ∅ and IS ′ |DA

⊆ C . Finally,

note that for all A ∈ H(r) with IS |= A, we have (X ∩ IS)|DA
6= ∅. Consider some

A ∈ H(r) such that IS ′ |= A. From the latter we get that IS |= A and therefore

(X ∩ IS)|DA
6= ∅. As X ∩ IS ⊆ X ′ ∩ IS ′ , we also have (X ′ ∩ IS ′)|DA

6= ∅. Hence, r

fulfils all conditions for being an external support for X ′ with respect to IS ′ , which

is a contradiction to X ′ being unfounded in PS ′ with respect to IS ′ .

((ii)⇒(i)) Towards a contradiction, assume X ′ has some external support r ∈ PS ′

with respect to IS ′ . From (ii) we know that r 6= rnew(S ,S ′) and X ′ = ∆′ ∪ X for

some ∆′ ⊆ ∆ and some X ∈ ΥS . As r 6= rnew(S ,S ′), we have that IS and IS ′

coincide on Dr . Therefore, from IS ′ |= B(r) and IS ′ \ X ′ |= B(r), it follows that

IS |= B(r) and IS \ X ′ |= B(r). Note that X = X ′ ∩ IS and hence IS \ X |= B(r).

We know that there is some A ∈ H(r) with X ′|DA 6= ∅ and IS ′ |DA ⊆ C , for some

C ∈ CA. As X ′|DA
= X |DA

we have X |DA
6= ∅. Moreover, as IS ′ |DA

= IS |DA
, it

holds that IS |DA
⊆ C . Finally, notice that for all A ∈ H(r) with IS ′ |= A, we

have (X ′ ∩ IS ′)|DA
6= ∅. Consider some A ∈ H(r) with IS |= A. As IS ′ |DA

= IS |DA
,

we also have IS ′ |= A and hence (X ′ ∩ IS ′)|DA
6= ∅. As DA ∩ ∆ = ∅, we have

(X ′ ∩ IS ′)|DA = (X ∩ IS)|DA . Consequently, it holds that (X ∩ IS)|DA 6= ∅. We

showed that r is an external support of X in PS with respect to IS . Therefore, we

have a contradiction to X ∈ ΥS because S is a state.

Theorem 3

Let S0 be a state, P a C-program with PS0 ⊆ P , and I an answer set of P with

IS0
⊆ I and I ∩ I−S0

= ∅. Then, there is a computation S0, . . . ,Sn that has

succeeded for P such that PSn = P I and ISn = I .

Proof

The proof is by induction on the size of the set P I \PS0
. Observe that from IS0

⊆ I ,

I ∩ I−S0 = ∅, and IS0 |= B(r) and Dr ⊆ IS0 ∪ I−S0 , for all r ∈ PS0 , we get that

I |= B(r) for all r ∈ PS0
. Hence, as PS0

⊆ P , we have PS0
⊆ P I .

Consider the base case that |P I \ PS0
| = 0. From PS0

⊆ P I we get PS0
= P I .

Consider the sequence C = 〈PS0 , IS0 , I
−
S0 ,ΥS0〉. Towards a contradiction, assume

IS0
6= I . As IS0

⊆ I this means IS0
⊂ I . Hence, there is some a ∈ I \ IS0

. As for

all r ∈ PS0 it holds that Dr ⊆ IS0 ∪ I−S0 , and I ∩ I−S0 = ∅, we get a 6∈ DPS0
. We

have a contradiction to I ∈ AS(PS0
) by Corollary 1, as {a} is unfounded in PS0

with respect to I . Consequently, IS0
= I must hold. As IS0

is an answer set of PS0

5

and S0 is a state, we have that ΥS0
= {∅} by definition of state. It follows that C

meets the criteria of the conjectured computation.

We proceed with the step case. As induction hypothesis, assume that the claim

holds whenever |P I \ PS0 | ≤ i for an arbitrary but fixed i ≥ 0. Consider some

state S0 and some I ∈ AS(PS0
) for which the conditions in the premise hold

such that |P I \ PS0
| = i + 1. Towards a contradiction, assume there is no C-rule

r ∈ P I \PS0
such that IS0

|= B(r). Note that there is at least one C-rule r ′ ∈ P I \PS0

because |P I \ PS0
| = i + 1. It cannot hold that I = IS0

since from r ′ ∈ P IS0

follows IS0 |= B(r ′). Consequently, we have IS0 ⊂ I . Consider some r ′′ ∈ P I with

IS0
|= B(r ′′). By our assumption, we get that r ′′ ∈ PS0

. It follows that IS0
|= r ′′, and

consequently there is some C-atom A ∈ H(r ′′) with IS0 |= A. As Dr ′′ ⊆ DS0 , we have

DA ⊆ IS0
∪ I−S0

. From that, since IS0
⊂ I and I ∩ I−S0

= ∅, we get I |DA
= IS0

|DA
.

We have a contradiction to I being an answer set of P by Definition 12.

So, there must be some C-rule r ∈ P I \ PS0
such that IS0

|= B(r). From r ∈ P I

we get I |= B(r) and I |= r . Consider the state structure S1 = 〈P1, I1, I1
−,Υ1〉,

where P1 = PS0
∪ {r}, I1 = IS0

∪ (I ∩Dr), I1
− = I−S0

∪ (Dr \ I), and

Υ1 = {X |X = ∆′ ∪X ′, where ∆′ ⊆ (I1 \ IS0
),X ′ ∈ ΥS0

, and

r is not an external support of X with respect to I1}·

S1 is a successor of state S0, therefore S1 is also a state by Corollary 2. As P1 ⊆ P ,

I1 ⊆ I , I ∩ I1
− = ∅, and |P I \ P1| = i , by the induction hypothesis, S1, . . . ,Sn is

a computation, where Sn is a stable state, PSn = P I , and ISn = I . Since S1 is a

successor of state S0, also S0,S1, . . . ,Sn is a computation.

For establishing Theorem 5 we make use of the following notion which reflects

positive dependency on the rule level.

Definition 1

The positive rule dependency graph of P is given by

GR(P) = 〈P , {〈r1, r2〉 | r1, r2 ∈ P , posOcc(B(r1)) ∩ posOcc(H(r2)) 6= ∅}〉·

We can relate the two notions of dependency graph as follows.

Lemma 1

Let P be a C-program. GR(P) is acyclic iff G(P) is acyclic.

Proof

Let ≺D denote the edge relation of G(P) and ≺R that of GR(P).

(⇒) Assume G(P) is not acyclic. There must be some path a1, . . . , an of atoms

ai such that for 1 ≤ i < n, we have ai ∈ DP , ai ≺D ai+1, and a1 = an . Hence,

by the definition of G(P), there must be a sequence r1, . . . , rn−1 such that for each

1 ≤ i ≤ n − 1, ri ∈ P , ai ∈ posOcc(H(ri)), and ai+1 ∈ posOcc(B(ri)). Therefore,

for each 1 ≤ i < n − 1, we have ri+1 ≺R ri . Note that a1 ∈ posOcc(H(r1)) and

a1 ∈ posOcc(B(rn−1)). Consequently, we have rn−1 ≺R r1 and thus r1, rn−1, . . . , r1

forms a cycle in GR(P). It follows that GR(P) is not acyclic.

(⇐) Assume now that GR(P) is not acyclic. There must be some path r1, . . . , rn
of C-rules ri such that for 1 ≤ i < n we have ri ∈ P , r1 = rn , and ri ≺R ri+1.

6

Hence, by the definition of GR(P), there must be a sequence a1, . . . , an−1 such that

for each 1 ≤ i ≤ n − 1, ai ∈ posOcc(H(ri+1)), and ai ∈ posOcc(B(ri)). Therefore,

for each 1 ≤ i < n − 1 we have ai+1 ≺D ai . Note that an−1 ∈ posOcc(H(r1)) and

a1 ∈ posOcc(B(r1)). Consequently, we have an−1 ≺D a1 and thus a1, an−1, . . . , a1

forms a cycle in G(P). We have that GR(P) is not acyclic.

Lemma 2

Let P be an absolutely tight C-program. There is a strict total order ≺ on P that

extends the reachability relation of GR(P).

Proof

By Definition 21, G(P) is acyclic. Hence, by Lemma 1, GR(P) is also acyclic. The

conjecture holds, since every directed acyclic tree has a topological ordering.

We now have the means to show Theorem 5, guaranteeing the existence of stable

computations.

Theorem 5

Let C = S0, . . . ,Sn be a computation such that S0 and Sn are stable and P∆ =

PSn
\ PS0

is a normal, convex, and absolutely tight C-program. Then, there is a

stable computation C′=S ′0, . . . ,S
′
n such that S0 = S ′0 and Sn = S ′n .

Proof

Let ≺ be the strict total order extending the reachability relation of GR(P∆) that is

guaranteed to exist by Lemma 2. Let r(·) : {1, . . . ,n} 7→ P∆ denote the one-to-one

mapping from the integer interval {1, . . . ,n} to the C-rules from P∆ such that for

all i , j in the range of r(·), we have that i < j implies r(j) ≺ r(i). Consider the

sequence C′=S ′0, . . . ,S
′
n , where S ′0 = S0, and for all 0 ≤ i < n,

P ′i+1 = P ′i ∪ {r(i + 1)},

IS ′
i+1

= IS ′
i
∪ (ISn

∩Dr(i+1)),

I−S ′
i+1

= I−S ′
i
∪ (I−Sn

∩Dr(i+1)), and

ΥS ′
i+1

= {∅}·

Notice that S ′n = Sn and IS ′
i+1
|DP

S′
i

= IS ′
i
|DP

S′
i

, for all 0 ≤ i < n. We show that C′

is a computation by induction on the length of a subsequence of C′.

As base case consider the sequence C′′= S ′0. As S ′0 = S0 and S0 is a state, C′′ is

a computation. For the induction hypothesis, assume that for some arbitrary but

fixed i with 0 ≤ i < n, the sequence S ′0, . . . ,S
′
i is a computation.

In the induction step it remains to be shown that S ′i+1 is a successor of S ′i . Clearly,

S ′i+1 is a state structure, and by definition of C′, since C is a computation and

IS ′
i+1
|DPSi+1

= ISn
|DPSi+1

,

Conditions (i), (ii), (iii), and (v) of Definition 17 for being a successor of S ′i are

fulfilled by S ′i+1. Let ∆ denote IS ′
i+1
\ IS ′

i
.

7

Next we show that Condition (iv) holds, i.e., IS ′
i
|= B(r(i + 1)). Note that since

Condition (v) holds, we have IS ′
i+1
|= B(r(i + 1)) and hence (iv) holds in the case

∆ = ∅. Towards a contradiction assume ∆ 6= ∅ and IS ′
i
6|= B(r(i + 1)). We define

∆B+ = ∆ ∩ posOcc(B(r(i + 1))).

First, consider the case that ∆B+ = ∅. As IS ′
i
6|= B(r(i + 1)), there must be some

C-literal L ∈ B(r(i + 1)) such that IS ′
i
6|= L. We know that IS ′

i+1
|= L. Consequently,

IS ′
i
|DL ⊂ IS ′

i+1
|DL and therefore ∆|DL 6= ∅. Moreover, from IS ′

i+1
|= L we have

IS ′
i+1
|DL
⊆ posOcc(B(r(i + 1)))·

It follows that ∆|DL
∩posOcc(B(r(i + 1))) 6= ∅, indicating a contradiction to ∆B+ =

∅. It holds that ∆B+ 6= ∅. Note that X ⊆ ISn . From that, since Sn is a state, there

must be some C-rule r∆B+ ∈ PSn
such that r∆B+ is an external support for ∆B+

with respect to ISn
. It cannot be the case that r ∈ PS0

, since ∆B+ ∩ IS ′
i

= ∅,
therefore, r∆B+ ∈ P∆. As r∆B+ is an external support for ∆B+ with respect to ISn

,

for {A} = H(r∆B+), we have ISn
|= A and ∆B+ |DA

6= ∅.
Consider the case that r∆B+ = r(i + 1). From that we get posOcc(H(r(i + 1)))∩

∆B+ 6= ∅. This, in turn, implies posOcc(H(r(i + 1))) ∩ posOcc(B(r(i + 1))) 6= ∅
which is a contradiction to GR(P∆) being acyclic. The latter is guaranteed by

absolute tightness of P∆ and Lemma 1.

Consider the case that r(i + 1) ≺ r∆B+ . Then, by definition of C′ we have that

r∆B+ ∈ PS ′
i
. Hence, from ∆B+ |DA 6= ∅ follows

∆B+ |DP
S′
i

6= ∅ and thus IS ′
i+1
\ IS ′

i
|DP

S′
i

6= ∅·

The latter is a contradiction to IS ′
i+1
|DP

S′
i

= IS ′
i
|DP

S′
i

.

Consider the remaining case that r∆B+ ≺ r(i + 1). As ∆B+ |DA 6= ∅, ∆B+ ⊆ ISn ,

and ISn
|DA
∈ CA, it holds that posOcc(H(r∆B+)) ∩ ∆B+ 6= ∅. Therefore, we have

posOcc(H(r∆B+)) ∩ posOcc(B(r(i + 1))) 6= ∅. This implies r(i + 1) ≺ r∆B+ , being

a contradiction to ≺ being a strict order as we also have r∆B+ ≺ r(i + 1). Thus,

Condition (iv) of Definition 17 for being a successor of S ′i holds for S ′i+1.

Towards a contradiction assume Condition (vi) does not hold. Hence, it must hold

that there is some ∆′ ⊆ ∆ such that ∆′ 6= ∅ and r(i + 1) is not an external support

for ∆′ with respect to IS ′
i+1

. We have IS ′
i+1
|= B(r(i + 1)) and since we already know

that IS ′
i
|= B(r(i + 1)), also IS ′

i+1
\ ∆′ |= B(r(i + 1)) holds by convexity of P∆.

Moreover, as IS ′
i+1
|= r(i + 1), it must hold that IS ′

i+1
|= A for H(r(i + 1)) = {A}.

Consequently, for r(i + 1) not to be an external support for ∆′ with respect to

IS ′
i+1

, we have ∆′|DA
= ∅. As then ∆′|DH(r(i+1))

= ∅ but ∆′|Dr(i+1)
6= ∅ it must

hold that ∆′|DB(r(i+1))
6= ∅. Consider ∆′′ = ∆′ ∩ posOcc(B(r(i + 1))) and assume

that ∆′′ 6= ∅. Then, as ∆′′ ⊆ ISn
, there must be some C-rule r∆′′ that is an

external support for ∆′′ with respect to ISn . Hence, posOcc(H(r∆′′)) ∩ ∆′′ 6= ∅
and therefore posOcc(H(r∆′′)) ∩ posOcc(B(r(i + 1))) 6= ∅. It follows that r(i +

1) ≺ r∆′′ . From that we get r∆′′ ∈ PS ′
i
. This is a contradiction as we know that

posOcc(H(r∆′′)) ∩ ∆′′ 6= ∅, posOcc(H(r∆′′)) ∩ ∆′′ ⊆ IS ′
i
, and ∆′′ ⊆ IS ′

i+1
\ IS ′

i
.

Consequently, ∆′ ∩ posOcc(B(r(i + 1))) = ∅ must hold. From ∆′|DB(r(i+1))
6= ∅ we

get that there is some L ∈ B(r(i + 1)) with ∆′|DL 6= ∅. As IS ′
i+1
|= L, we have that

8

IS ′
i+1
|DL
∈ C in the case L is a C-atom L = 〈DL,C 〉, and IS ′

i+1
|DL
∈ 2DL \ C in the

case L is a default negated C-atom L = not 〈DL,C 〉. In both cases, as ∆′ ⊆ IS ′
i+1

and ∆′|DL
6= ∅, we get a contradiction to ∆′ ∩ posOcc(B(r(i + 1))) = ∅.

References

Brain, M., Cliffe, O., and De Vos, M. 2009. A pragmatic programmer’s guide to
answer set programming. In Proceedings of the 2nd International Workshop on Software
Engineering for Answer-Set Programming (SEA’09), Potsdam, Germany, M. De Vos and
T. Schaub, Eds. 49–63.

Cliffe, O., De Vos, M., Brain, M., and Padget, J. A. 2008. ASPVIZ: Declarative
visualisation and animation using answer set programming. In Proceedings of the 24th
International Conference on Logic Programming (ICLP’08), Udine, Italy, Dec. 9-13,
2008, M. G. de la Banda and E. Pontelli, Eds. LNCS, vol. 5366. Springer, 724–728.

Kloimüllner, C., Oetsch, J., Pührer, J., and Tompits, H. 2013. Kara: A system
for visualising and visual editing of interpretations for answer-set programs. In Revised
Selected Papers of the 19th International Conference on Applications of Declarative
Programming and Knowledge Management (INAP’11) and the 25th Workshop on Logic
Programming (WLP’11), Vienna, Austria, Sept. 28-30, 2011. LNCS, vol. 7773. Springer,
325–344.

Oetsch, J., Prischink, M., Pührer, J., Schwengerer, M., and Tompits, H. 2012. On
the small-scope hypothesis for testing answer-set programs. In Proceedings of the 13th
International Conference on Principles of Knowledge Representation and Reasoning
(KR’12), Rome, Italy, June 10-14, 2012, G. Brewka, T. Eiter, and S. A. McIlraith, Eds.
AAAI Press.

Smith, A. 2011. Lonsdaleite. https://github.com/rndmcnlly/Lonsdaleite. [Online;
accessed Dec. 14, 2016].

Wittocx, J. 2009. IDPDraw, a tool used for visualizing answer sets. https://dtai.cs.
kuleuven.be/software/idpdraw. [Online; accessed Dec. 14, 2016].

