
Online appendix for the paper

Representing Hybrid Automata
by Action Language Modulo Theories

published in Theory and Practice of Logic Programming
Joohyung Lee, Nikhil Loney

School of Computing, Informatics and Decision Systems Engineering
Arizona State University, Tempe, AZ, USA

Yunsong Meng
Houzz, Inc.

Palo Alto, CA, USA

Appendix A Review: C+

A.1 Syntax of C+

C+ was originally defined as a propositional language (Giunchiglia et al. 2004). In this section
we review its reformulation in terms of ASPMT (Lee and Meng 2013).

We consider a many-sorted first-order signature σ that is partitioned into three sub-signatures:
the set σfl of object constants called fluent constants, the set σact of object constants called action
constants, and the background signature σbg . The signature σfl is further partitioned into the set
σsim of simple fluent constants and the set σsd of statically determined fluent constants.

A fluent formula is a formula of signature σfl∪σbg . An action formula is a formula of σact∪σbg
that contains at least one action constant and no fluent constants.

A static law is an expression of the form

caused F if G (A1)

where F and G are fluent formulas.
An action dynamic law is an expression of the form (A1) in which F is an action formula and

G is a formula.
A fluent dynamic law is an expression of the form

caused F if G after H (A2)

where F andG are fluent formulas andH is a formula, provided that F does not contain statically
determined constants.

A causal law is a static law, an action dynamic law, or a fluent dynamic law. An action descrip-
tion is a finite set of causal laws.

The formula F in causal laws (A1) and (A2) is called the head.
We call an action description definite if the head F of every causal law (A1) and (A2) is an

atomic formula that is (σfl ∪ σact)-plain. 8

8 For any function constant f , we say that a first-order formula is f -plain if each atomic formula in it

• does not contain f , or
• is of the form f(t) = t1 where t is a list of terms not containing f , and t1 is a term not containing f .

For any list c of predicate and function constants, we say that F is c-plain if F is f -plain for each function constant f
in c.

2 J. Lee, N. Loney and Y. Meng

A.2 Semantics of C+

For a signature σ and a nonnegative integer i, expression i : σ is the signature consisting of the
pairs i : c such that c ∈ σ, and the value sort of i : c is the same as the value sort of c. Similarly,
if s is an interpretation of σ, expression i : s is an interpretation of i : σ such that cs = (i : c)i:s.

For any action descriptionD of signature σfl ∪ σact ∪ σbg and any nonnegative integerm, the
ASPMT program Dm is defined as follows. The signature of Dm is 0 : σfl ∪ · · · ∪m : σfl ∪ 0 :

σact ∪ · · · ∪ (m−1) :σact ∪ σbg . By i : F we denote the result of inserting i : in front of every
occurrence of every fluent and action constant in a formula F .

ASPMT program Dm is the conjunction of

i :G→ i :F

for every static law (A1) in D and every i ∈ {0, . . . ,m}, and for every action dynamic law (A1)
in D and every i ∈ {0, . . . ,m−1};

(i+1):G ∧ i :H → (i+1):F

for every fluent dynamic law (A2) in D and every i ∈ {0, . . . ,m− 1}.
The transition system represented by an action description D consists of states (vertices) and

transitions (edges). A state is an interpretation s of σfl such that 0:s |=bg SM[D0; 0:σsd]. A
transition is a triple 〈s, e, s′〉, where s and s′ are interpretations of σfl and e is an interpretation
of σact , such that

(0 :s) ∪ (0 :e) ∪ (1 :s′) |=bg SM[D1; (0 :σsd) ∪ (0 :σact) ∪ (1 :σfl)] .

The definition of the transition system above implicitly relies on the following property of
transitions:

Theorem 2
(Lee and Meng 2013, Theorem 3) For every transition 〈s, e, s′〉, s and s′ are states.

The following theorem states the correspondence between the stable models of Dm and the
paths in the transition system represented by D:

Theorem 3
(Lee and Meng 2013, Theorem 4)

(0 :s0) ∪ (0 :e0) ∪ (1 :s1) ∪ (1 :e1) ∪ · · · ∪ (m :sm)

|=bg SM[Dm; (0 :σsd) ∪ (0 :σact) ∪ (1 :σfl) ∪ (1 :σact) ∪ · · · ∪ (m−1:σact) ∪ (m :σfl)]

iff each triple 〈si, ei, si+1〉 (0 ≤ i < m) is a transition.

It is known that whenD is definite, ASPMT programDm that is obtained from action descrip-
tion D is always tight. Functional completion (Bartholomew and Lee 2013) on ASPMT can be
applied to turn Dm into an SMT instance.

A.3 Some Useful Abbreviations of C+ Causal Laws

This section explains the abbreviations of C+ causal laws used in the paper.

1. A static law of the form

caused ⊥ if ¬F

Appendix: Representing Hybrid Automata by Action Language Modulo Theories 3

can be written as

constraint F.

2. A fluent dynamic law of the form

caused ⊥ if ¬F after G

can be written as

constraint F after G.

3. A fluent dynamic law of the form

caused ⊥ after F ∧G

where F is an action formula can be written as

nonexecutable F if G. (A3)

4. An expression of the form

F causes G if H (A4)

where F is an action formula stands for the fluent dynamic law

caused G after F ∧H

if G is a fluent formula,9 and for the action dynamic law

caused G if F ∧H

if G is an action formula.

5. An expression of the form

default F if G (A5)

stands for the causal law

caused {F}ch if G.

6. An expression of the form

default F if G after H

stands for the fluent dynamic law 10

caused {F}ch if G after H.

7. An expression of the form

exogenous c if G (A6)

where c is a constant stands for the set of causal laws

default c=v if G

9 It is clear that the expression in the previous line is a fluent dynamic law only when G does not contain statically
determined fluent constants. Similar remarks can be made in connection with many of the abbreviations introduced
below.

10 {F}ch stands for choice formula F ∨ ¬F .

4 J. Lee, N. Loney and Y. Meng

for all v ∈ Dom(c).

8. An expression of the form

inertial c if G (A7)

where c is a fluent constant stands for the set of fluent dynamic laws

default c=v after c=v ∧G

for all v ∈ Dom(c).

9. In the abbreviations of causal laws above, ”if G” and ”if H” can be omitted ifG andH are>.

Appendix B Proofs

B.1 Proof of Theorem 1

We assume the case for linear hybrid automata with convex invariants. The proof of the general
case of non-linear hybrid automata with non-convex invariants are mostly similar except for the
difference in Flow and Inv conditions.

Theorem 1
There is a 1:1 correspondence between the paths of the transition system of a Hybrid automata
H and the paths of the transition system of the C+ action description DH .

The proof is immediate from Lemma 1 and Lemma 2, which are proven below.

B.1.1 Proof of Lemma 1

Lemma 3
Let H be a linear hybrid automaton with convex invariants, and let

(v, r)
σ−→ (v, r′)

be a transition in TH such that σ ∈ R>0. Function f(t)=r+t×(r′−r)/σ is a linear differentiable
function from [0, σ] to Rn, with the first derivative ḟ : [0, σ] → Rn such that (i) f(0) = r and
f(σ)=r′ and (ii) for all reals ε ∈ (0, σ), both Invv(f(ε)) and Flowv(ḟ(ε)) are true.

Proof. We check that f satisfies the above conditions:

• It is clear that f(t) is differentiable over t ∈ [0, σ], f(0)=r and f(σ)=r′.
• Since (v, r) and (v, r′) are states of TH , it follows that Invv(f(0)) and Invv(f(σ)) are true.

Since the values of X that makes Invv(X) form a convex region inRn and f(t) is a linear
function, it follows that for ε ∈ (0, σ), Invv(f(ε)) is true.

• Since (v, r)
σ−→ (v, r′) is a transition in TH , it follows that there is a function g such that

(i) g is differentiable in [0, σ], (ii) for any ε ∈ (0, σ), Flowv(ġ(ε)) is true, (iii) g(0) = r

and g(σ) = r′. Since g is continuous on [0, σ] (differentiability implies continuity) and
differentiable on (0, σ), by the mean value theorem11, there is a point c ∈ (0, σ) such that
ġ(c) = (r′−r)/σ. Consequently, Flowv((r′−r)/σ) is true. As a result, we get Flowv(ḟ(ε))

is true for all ε ∈ (0, σ).

In the following two lemmas, si, ai, si+1 are defined as in Lemma 1.

11 http://en.wikipedia.org/wiki/Mean value theorem

Appendix: Representing Hybrid Automata by Action Language Modulo Theories 5

Lemma 4
For each i ≥ 0, si is a state in the transition system of DH .

Proof. Since DH does not contain statically determined fluent constants and every simple
fluent constant is declared exogenous, it is sufficient to prove

0:si |=bg SM[(DH)0; ∅],

while SM[(DH)0; ∅] is equivalent to the conjunction of

0:Mode = v → 0: Invv(X) (B1)

for each v ∈ V . Since p is a path, for each i ≥ 0, (vi, ri) is a state in TH . By the definition
of a hybrid transition system, Invvi(ri) is true. Since si |=bg (Mode, X) = (vi, ri), we have
0:si |=bg (B1).

Lemma 5
For each i ≥ 0, 〈si, ai, si+1〉 is a transition in the transition system of DH .

Proof. By definition, we are to show that

0:si ∪ 0:ai ∪ 1:si+1 |=bg SM[(DH)1; 0 :σact ∪ 1:σfl]. (B2)

We check that (DH)1 is tight, so that (B2) is equivalent to

0:si ∪ 0:ai ∪ 1:si+1 |=bg Comp[(DH)1; 0 :σact ∪ 1:σfl],

where the completion Comp[(DH)1; 0 : σact ∪ 1 : σfl] is equivalent to the conjunction of the
following formulas:

• Formula FLOW, which is the conjunction of

Flowv((1 :X−0:X)/t)← 0:Mode = v ∧ 0:Dur = t ∧ 0:Wait = TRUE ∧ t > 0 (B3)

and

1:X = 0:X ← 0:Mode = v ∧ 0:Dur = 0 ∧ 0:Wait = TRUE (B4)

for each v ∈ V .
• Formula INV , which is the conjunction of

k : Invv(X) ← k : Mode = v (B5)

for each k ∈ {0, 1} and each v ∈ V .
• Formula WAIT , which is the conjunction of

0:Wait = FALSE ↔
∨
e∈E 0:hevent(e)= TRUE.

• Formula GUARD, which is the conjunction of

⊥ ← 0:hevent(e)= TRUE ∧ 0:¬Guarde(X) (B6)

for each edge e ∈ E.
• Formula RESET , which is the conjunction of

Resete(0 :X, 1:X) ← 0:hevent(e)= TRUE

for each edge e = (v1, v2) ∈ E.

6 J. Lee, N. Loney and Y. Meng

• Formula MODE, which is the conjunction of

⊥ ← 0:hevent(e)= TRUE ∧ ¬(0 :Mode = v1)

for each e = (v1, v2) ∈ E;

1 : Mode = v ↔
∨
{v′|(v′,v)∈E} 0:hevent(v′, v)= TRUE ∨ 0:Mode = v

for each v ∈ V .
• Formula DURATION, which is the conjunction of

0:Dur = 0 ←
∨
e∈E 0:hevent(e)

for each edge e ∈ E.

We will show that 0 :si ∪ 0 :ai ∪ 1 :si+1 satisfies each of the formulas above. First, we check
INV .

• INV: From the fact that (vi, ri) and (vi+1, ri+1) are states in TH , by the definition of a hy-
brid transition system, Invvi(ri) and Invvi+1(ri+1) are true. Note that si |=bg (Mode, X) =

(vi, ri) and si+1 |=bg (Mode, X) = (vi+1, ri+1). As a result,

0:si |=bg (0 :Mode = v → 0: Invvi(X))

1 :si+1 |=bg (1 :Mode = v → 1: Invvi+1
(X)).

Hence 0:si ∪ 0:ai ∪ 1:si+1 |=bg INV .

Next, we check the remaining formulas. From the definition of TH , there are two cases for the
value of σi.

Case 1: σi = hevent(e) where e = (vi, vi+1). It follows from the construction of p′ that
(Dur)ai = 0, (hevent(e))ai = TRUE, (hevent(e′))ai = FALSE for all e′ 6= e and (Wait)ai =

FALSE.
From the fact that

(vi, ri)
σi−→ (vi+1, ri+1)

is a transition in TH and that σi = hevent(e), it follows from the definition of a hybrid transition
system that Guarde(ri) and Resete(ri, ri+1) are true.

• FLOW: Since 0 : ai |= 0 : Wait = FALSE, trivially, 0:si ∪ 0:ai ∪ 1:si+1 |=bg FLOW.
• WAIT: Since (hevent(e))ai = TRUE, and (Wait)ai = FALSE, it follows that 0 : si ∪ 0 :

ai ∪ 1:si+1 |=bg WAIT .
• GUARD: From si |=bg X = ri, it follows that 0:si |=bg 0:Guarde(X). Since (hevent(e))ai =

TRUE, it follows that 0:si ∪ 0:ai ∪ 1:si+1 |=bg GUARD.
• RESET: From si |=bg (Mode, X) = (vi, ri) and si+1 |=bg (Mode, X) = (vi+1, ri+1), it

follows that 0 : si ∪ 1 : si+1 |=bg Resete(0 :X, 1 :X). Since (hevent(e))ai = TRUE, it
follows that 0:si ∪ 0:ai ∪ 1:si+1 |=bg RESET .

• MODE: Note that si |=bg (Mode, X) = (vi, ri) and si+1 |=bg (Mode, X) = (vi+1, ri+1).
It is immediate that 0 : si |=bg 0 : Mode = vi and 1 : si+1 |=bg 1 : Mode = vi+1. Since
(hevent(e))ai = TRUE, it follows that 0:si ∪ 0:ai ∪ 1:si+1 |=bg MODE.

• DURATION: Since (Dur)ai = 0 and (hevent(e))ai = TRUE, it follows that 0 : si ∪ 0 :

ai ∪ 1:si+1 |=bg DURATION.

Appendix: Representing Hybrid Automata by Action Language Modulo Theories 7

Case 2: σi ∈ R≥0. By the construction of p′, (Dur)ai =σi, (Wait)ai = TRUE and (hevent(e))ai =

FALSE for every e = (v, v′) ∈ E. It is easy to check that WAIT , GUARD, RESET , MODE,
DURATION are trivially satisfied by 0 : si ∪ 0 : ai ∪ 1 : si+1. So, it is sufficient to consider only
FLOW.

From the fact that

(vi, ri)
σi−→ (vi+1, ri+1)

is a transition of TH and that σi ∈ R≥0, it follows from the definition of a hybrid transition
system that

(a) vi=vi+1, and
(b) there is a differentiable function f : [0, σi] → Rn, with the first derivative ḟ : [0, σi] →
Rn such that: (1) f(0) = ri and f(σi) = ri+1 and (2) for all reals ε ∈ (0, σi), both
Invvi(f(ε)) and Flowvi(ḟ(ε)) are true.

• FLOW:

— If σi = 0, then (Dur)ai = 0. From (b), ri = ri+1 = f(0). As a result Xsi = Xsi+1

and it follows that 0:si ∪ 0:ai ∪ 1:si+1 |=bg (B4).
— If σi > 0, then (Dur)ai>0. By Lemma 3, f(t) = ri + t ∗ (ri+1− ri)/σi is a differ-

entiable function that satisfies all the conditions in (b). As a result, Flowvi((ri+1 −
ri)/σi) is true and thus 0 : si ∪ 0 : ai ∪ 1 : si+1 |=bg Flowvi((1 : r − 0 : r)/Dur). It
follows that 0:si ∪ 0:ei ∪ 1:si+1 |=bg (B3).

Lemma 1
p′ is a path in the transition system DH .

Proof. By Lemma 4, each si is a state of DH . By Lemma 5, each 〈si, ai, si+1〉 is a transition
of DH . So p′ is a path in the transition system of DH .

B.1.2 Proof of Lemma 2

In the following two lemmas, vi, ri are defined as in Lemma 2.

Lemma 6
For each i ≥ 0, (vi, ri) is a state in TH .

Proof. By definition, we are to show that Invvi(ri) is true. Since each si is a state in the
transition system of DH , by definition,

0:si |=bg SM[(DH)0; ∅]. (B7)

Note that SM[(DH)0; ∅] is equivalent to the conjunction of the formula:

0: Invv(X)← 0:Mode = v (B8)

for each v ∈ V . Since (Mode)si = vi, it follows that si |=bg Invvi(X). Since Xsi = ri, it
follows that Invvi(ri) is true.

8 J. Lee, N. Loney and Y. Meng

Lemma 7
For each i ≥ 0, (vi, ri)

σi−→ (vi+1, ri+1) is a transition in TH .

Proof. From the fact that (si, ai, si+1) is a transition of DH , by definition we know that

0:si ∪ 0:ai ∪ 1:si+1 |=bg SM[(DH)1; 0 :σact ∪ 1:σfl]. (B9)

Since (DH)1 is tight, SM[(DH)1; 0 :σact ∪ 1:σfl] is equivalent to Comp[(DH)1; 0 :σact ∪ 1:

σfl], which is equivalent to the conjunction of FLOW, INV , WAIT , GUARD, RESET , MODE,
DURATION (See the proof of Lemma 5 for the definitions of these formulas).

Consider two cases:

Case 1: There exists an edge e = (v, v′) such that (hevent(e))ai = TRUE. Since Modesi = vi
and Modesi+1 = vi+1, it follows that (v, v′) must be (vi, vi+1). Since (hevent(e))ai = TRUE, it
follows from the definition that σi is hevent(e).

• Since 0 : si ∪ 0 :ai ∪ 1 : si+1 |=bg GUARD and Xsi = ri, it is immediate that Guarde(ri)
is true.

• Since 0 : si ∪ 0 : ai ∪ 1 : si+1 |=bg RESET , Xsi+1 = ri+1 and Xsi = ri, it is immediate
that Resete(ri, ri+1) is true.

• By Lemma 6, (vi, ri) and (vi+1, ri+1) are states.

Consequently, we conclude that (vi, ri)
σi−→ (vi+1, ri+1) is a transition in TH .

Case 2: (hevent(e))ai = FALSE for all edges e = (v, v′) ∈ E. By construction, σi = (Dur)ai

where (Dur)ai ∈ R≥0. By Lemma 6, (vi, ri) and (vi+1, ri+1) are states of TH . Since 0 :si ∪ 0 :

ai∪1:si+1 |= MODE, it follows that Modesi = Modesi+1 . As a result, vi = vi+1. We are to show
that there is a differentiable function f : [0, σi]→ Rn, with the first derivative ḟ : [0, σi]→ Rn
such that: (i) f(0) = ri and f(σi) = ri+1 and (ii) for all reals ε ∈ (0, σi), both Invvi(f(ε)) and
Flowvi(ḟ(ε)) are true. We now check these conditions for two cases.

1. σi = 0: Since 0 : si ∪ 0 : ai ∪ 1 : si+1 |=bg (B4), it is clear that ri+1 = ri. This satisfies
condition (i) since f(σi) = f(0) = ri+1 = ri. Condition (ii) is trivially satisfied since
there is no ε ∈ (0, 0).

2. σi > 0: Define f(t) = ri + t ∗ (ri+1 − ri)/σi. We check that f satisfies the above
conditions:

• f(t) is differentiable over [0, σi].
• It is clear that f(0) = ri and f(σi) = ri+1.
• We check that for any ε ∈ (0, σ), Invv(f(ε)) is true. From 0:si ∪ 1:si+1 |=bg (B5),

it follows that Invvi(f(0)) and Invvi(f(σi)) are true. Since the values of X that
makes Invvi(X) form a convex region inRn and f(t) is a linear function, it follows
that for ε ∈ (0, σ), Invvi(f(ε)) is true.
• We check that for any ε ∈ (0, σ), Flowvi(ḟ(ε)) is true. From (B3), it follows that
Flowvi((f(σi)− f(0))/σi) is true. Since f(t) is a linear function, it follows that for
any ε ∈ (0, σi), ḟ(ε) = (f(σi)− f(0))/σi. As a result, Flowvi(ḟ(ε)) is true

Consequently, we conclude that (vi, ri)
σi−→ (vi+1, ri+1) is a transition in TH .

Lemma 2
q′ is a path in the transition system of TH .

Proof. By Lemma 6, each (vi, ri) is a state in TH . By Lemma 7, each (vi, ri)
σi−→ (vi+1, ri+1)

is a transition in TH . So q′ is a path in TH .

Appendix: Representing Hybrid Automata by Action Language Modulo Theories 9

Appendix C Examples

C.1 Water Tank Example

This example describes a water tank example with 2 tanks X1 and X2. Here R1 and R2 are
constants that describe the lower bounds of the level of water in the respective tanks. W1 and W2

are constants that define the rate at which water is being added to the respective tanks and V is
the constant rate at which water is draining from the tanks. We assume that water is added only
one tank at a time.

Assuming W1 = W2 = 7.5, V = 5, R1 = R2 = 0 and initially the level of water in the
respective tanks are X1 = 0, X2 = 8, then the goal is to find a way to add water to each of the
tanks with the passage of time.

C.1.1 Hybrid Automata Components

• Variables:

— X1, X
′
1, Ẋ1

— X2, X
′
2, Ẋ2

• States:

— Q1 (mode=1)
— Q2 (mode=2)

• Directed Graph: The graph is given above
• Invariants:

— InvQ1
(X) : X2 ≥ R2

— InvQ2(X) : X1 ≥ R1

• Flow:

— FlowQ1
(X) : Ẋ1 = W1 −V ∧ Ẋ2 = −V.

— FlowQ2(X) : Ẋ1 = −V ∧ Ẋ2 = W2 −V.

• Guard and Reset:

— Guard(Q1,Q2)(X) : X2 ≤ R2.
— Guard(Q2,Q1)(X) : X1 ≤ R1.
— Reset(Q1,Q2)(X,X

′) : X ′1 = X1 ∧ X ′2 = X2.
— Reset(Q2,Q1)(X,X

′) : X ′1 = X1 ∧ X ′2 = X2.

10 J. Lee, N. Loney and Y. Meng

C.1.2 In the Input Language of CPLUS2ASPMT

% File: water.cp

:- constants
x1,x2 :: simpleFluent(real[0..30]);
mode :: inertialFluent(real[1..2]);
e1,e2 :: exogenousAction;
wait :: action;
duration :: exogenousAction(real[0..10]).

:- variables
X11,X21,X10,X20,T,X.

exogenous x1.
exogenous x2.

% Guard
nonexecutable e1 if -(x2<=r2).
nonexecutable e2 if -(x1<=r1).

% Reset
constraint (x1=X10 & x2=X20) after x1=X10 & x2=X20 & e1.
constraint (x1=X10 & x2=X20) after x1=X10 & x2=X20 & e2.

% Mode
nonexecutable e1 if -(mode=1).
nonexecutable e2 if -(mode=2).
e1 causes mode=2.
e2 causes mode=1.

% Duration
e1 causes duration=0.
e2 causes duration=0.

% Wait
default wait.
e1 causes ˜wait.
e2 causes ˜wait.

% Flow
constraint (x1=X11 & x2=X21 ->> (((X11-X10)//T)=w1-v & ((X21-X20)//T)=-v))

after mode=1 & x1=X10 & x2=X20 & duration=T & wait & T>0.

constraint (x1=X10 & x2=X20)
after mode=1 & x1=X10 & x2=X20 & duration=0 & wait.

constraint (x1=X11 & x2=X21 ->> (((X11-X10)//T)=-v & ((X21-X20)//T)=w2-v))
after mode=2 & x1=X10 & x2=X20 & duration=T & wait & T>0.

constraint (x1=X10 & x2=X20)
after mode=2 & x1=X10 & x2=X20 & duration=0 & wait.

% Invariant

Appendix: Representing Hybrid Automata by Action Language Modulo Theories 11

constraint (mode=1 ->> (x2=X ->> X>=r2)).
constraint (mode=2 ->> (x1=X ->> X>=r1)).

:- query
label :: test;
maxstep :: 6;
0:mode=1;
0:x1 = 0;
0:x2 = 8;
2:mode=2;
4:mode=1;
6:mode=2.

C.1.3 Output

Command: cplus2aspmt water.cp -c maxstep=6 -c query=test -c w1=7.5 -c w2=7.5
-c v=5 -c r1=0 =c r2=0

Solution:
duration_0_ : [ENTIRE] = [1.6, 1.6]
duration_1_ : [ENTIRE] = [0, 0]
duration_2_ : [ENTIRE] = [0.7999999999999998, 0.8000000000000003]
duration_3_ : [ENTIRE] = [0, 0]
duration_4_ : [ENTIRE] = [0.3999999999999999, 0.4000000000000002]
duration_5_ : [ENTIRE] = [0, 0]
mode_0_ : [ENTIRE] = [1, 1]
mode_1_ : [ENTIRE] = [1, 1]
mode_2_ : [ENTIRE] = [2, 2]
mode_3_ : [ENTIRE] = [2, 2]
mode_4_ : [ENTIRE] = [1, 1]
mode_5_ : [ENTIRE] = [1, 1]
mode_6_ : [ENTIRE] = [2, 2]
x1_0_ : [ENTIRE] = [0, 0]
x1_1_ : [ENTIRE] = [4, 4.000000000000001]

12 J. Lee, N. Loney and Y. Meng

x1_2_ : [ENTIRE] = [4, 4.000000000000001]
x1_3_ : [ENTIRE] = [0, 0]
x1_4_ : [ENTIRE] = [0, 0]
x1_5_ : [ENTIRE] = [0.9999999999999998, 1.000000000000001]
x1_6_ : [ENTIRE] = [0.9999999999999998, 1.000000000000001]
x2_0_ : [ENTIRE] = [8, 8]
x2_1_ : [ENTIRE] = [0, 0]
x2_2_ : [ENTIRE] = [0, 0]
x2_3_ : [ENTIRE] = [2, 2.000000000000001]
x2_4_ : [ENTIRE] = [2, 2.000000000000001]
x2_5_ : [ENTIRE] = [0, 0]
x2_6_ : [ENTIRE] = [0, 0]
true_a : Bool = true
false_a : Bool = false
e1_0_ : Bool = false
e1_1_ : Bool = true
e1_2_ : Bool = false
e1_3_ : Bool = false
e1_4_ : Bool = false
e1_5_ : Bool = true
e2_0_ : Bool = false
e2_1_ : Bool = false
e2_2_ : Bool = false
e2_3_ : Bool = true
e2_4_ : Bool = false
e2_5_ : Bool = false
qlabel_init_ : Bool = true
wait_0_ : Bool = true
wait_1_ : Bool = false
wait_2_ : Bool = true
wait_3_ : Bool = false
wait_4_ : Bool = true
wait_5_ : Bool = false
delta-sat with delta = 0.00100000000000000
Total time in milliseconds: 4328

Appendix: Representing Hybrid Automata by Action Language Modulo Theories 13

C.2 Turning Car — Non-convex Invariants

Consider a car that is moving at a constant speed of 1 unit. The car is initially at origin where
x = 0 and y = 0 and θ = 0. Additionally there are pillars defined by the equations (x−6)2+y2 ≤
9,(x− 5)2 + (y− 7)2 ≤ 4,(x− 12)2 + (y− 9)2 ≤ 4. The goal is to find a plan such that the car
ends up at x = 13 and y = 0 without hitting the pillars.

The dynamics of the car is as follows:

• Moving Straight

d[x]

dt
= cos(θ),

d[y]

dt
= sin(θ),

d[theta]

dt
= 0

• Turning Left

d[x]

dt
= cos(θ),

d[y]

dt
= sin(θ),

d[theta]

dt
= tan(

π

18
)

• Turning Right

d[x]

dt
= cos(θ),

d[y]

dt
= sin(θ),

d[theta]

dt
= tan(− π

18
)

We assume the car is a pint. For the car not to hit the pillars, the invariants are (x−9)2 +y2 >

9,(x− 5)2 + (y − 7)2 > 4,(x− 12)2 + (y − 9)2 > 4.

14 J. Lee, N. Loney and Y. Meng

C.2.1 Hybrid Automata Components

• Variables:

— X,X ′, Ẋ

— Y, Y ′, Ẏ

— Theta, Theta′, ˙Theta

• States:

— MoveStraight (mode = 1)
— MoveLeft (mode = 2)
— MoveRight (mode = 3)

• Directed Graph: The graph is given above.
• H-events:

— Straighten
— TurnLeft
— TurnRight

• Invariants:

— Inv(allmodes) : ((X − 9)2 + Y 2 > 9) ∧ ((X − 5)2 + (Y − 7)2 > 4) ∧ ((X −
12)2 + (Y − 9)2 > 4))

• Flow:

— Flow(1)(X,Y, Theta) : Ẋ = sin(Theta) ∧ Ẏ = cos(Theta) ∧ ˙Theta = 0.

Appendix: Representing Hybrid Automata by Action Language Modulo Theories 15

— Flow(2)(X,Y, Theta) : Ẋ = sin(Theta) ∧ Ẏ = cos(Theta) ∧ ˙Theta =

tan(π/18).
— Flow(3)(X,Y, Theta) : Ẋ = sin(Theta) ∧ Ẏ = cos(Theta) ∧ ˙Theta =

tan(−π/18).

• Reset:

— Reset((MoveRight,MoveStraight)) : X ′ = X ∧ Y ′ = Y ∧ Theta′ = Theta

— Reset((MoveLeft,MoveStraight)) : X ′ = X ∧ Y ′ = Y ∧ Theta′ = Theta

— Reset((MoveStraight,MoveLeft)) : X ′ = X ∧ Y ′ = Y ∧ Theta′ = Theta

— Reset((MoveRight,MoveLeft)) : X ′ = X ∧ Y ′ = Y ∧ Theta′ = Theta

— Reset((MoveStraight,MoveRight)) : X ′ = X ∧ Y ′ = Y ∧ Theta′ = Theta

— Reset((MoveLeft,MoveRight)) : X ′ = X ∧ Y ′ = Y ∧ Theta′ = Theta

C.2.2 In the Input Language of CPLUS2ASPMT

% File: car.cp

:- constants
x :: differentiableFluent(0..40);
y :: differentiableFluent(-50..50);
theta :: differentiableFluent(-50..50);
straighten,
turnLeft,
turnRight :: exogenousAction.

:- variables
X,X0,S,Y,X1,X2,D,D1,T,RP,R.

% Reset
constraint (x=D & y=X0 & theta=X1) after x=D & y=X0 & theta=X1 & turnLeft.
constraint (x=D & y=X0 & theta=X1) after x=D & y=X0 & theta=X1 & turnRight.
constraint (x=D & y=X0 & theta=X1) after x=D & y=X0 & theta=X1 & straighten.

% Mode
straighten causes mode=1.
turnLeft causes mode=2.
turnRight causes mode=3.
nonexecutable straighten if mode=1.
nonexecutable turnLeft if mode=2.
nonexecutable turnRight if mode=3.

% Duration
straighten causes duration=0.
turnRight causes duration=0.
turnLeft causes duration=0.

% Wait
default wait.
straighten causes ˜wait.
turnLeft causes ˜wait.
turnRight causes ˜wait.

16 J. Lee, N. Loney and Y. Meng

% Rates
derivative of theta is 0 if mode=1.
derivative of y is sin(theta) if mode=1.
derivative of x is cos(theta) if mode=1.

derivative of theta is tan(0.226893) if mode=2.
derivative of y is sin(theta) if mode=2.
derivative of x is cos(theta) if mode=2.

derivative of theta is tan(-0.226893) if mode=3.
derivative of y is sin(theta) if mode=3.
derivative of x is cos(theta) if mode=3.

% Invariant
constraint (x=X & y=Y ->> (X-9)*(X-9) + Y*Y > 9).
always_t (x=X & y=Y ->> (X-9)*(X-9) + Y*Y > 9) if mode=1.
always_t (x=X & y=Y ->> (X-9)*(X-9) + Y*Y > 9) if mode=2.
always_t (x=X & y=Y ->> (X-9)*(X-9) + Y*Y > 9) if mode=3.

constraint (x=X & y=Y ->> (X-5)*(X-5) + (Y-7)*(Y-7)>4).
always_t (x=X & y=Y ->> (X-5)*(X-5) + (Y-7)*(Y-7)>4) if mode=1.
always_t (x=X & y=Y ->> (X-5)*(X-5) + (Y-7)*(Y-7)>4) if mode=2.
always_t (x=X & y=Y ->> (X-5)*(X-5) + (Y-7)*(Y-7)>4) if mode=3.

constraint (x=X & y=Y ->> (X-12)*(X-12) + (Y-9)*(Y-9)>4).
always_t (x=X & y=Y ->> (X-12)*(X-12) + (Y-9)*(Y-9)>4) if mode=1.
always_t (x=X & y=Y ->> (X-12)*(X-12) + (Y-9)*(Y-9)>4) if mode=2.
always_t (x=X & y=Y ->> (X-12)*(X-12) + (Y-9)*(Y-9)>4) if mode=3.

:- query
label :: test;
0:x=0;
0:y=0;
0:theta=0.69183;
0:mode=1;
3:x=13;
3:y=0.

Appendix: Representing Hybrid Automata by Action Language Modulo Theories 17

C.2.3 Output

Command: cplus2aspmt car.cp -c maxstep=3 -c query=test

Output:
Solution:
duration_0_ : [ENTIRE] = [8.250457763671875, 8.25128173828125]
duration_1_ : [ENTIRE] = [0, 0]
duration_2_ : [ENTIRE] = [11.80044126510621, 11.80111503601076]
mode_0_ : [ENTIRE] = [1, 1]
mode_1_ : [ENTIRE] = [1, 1]
mode_2_ : [ENTIRE] = [3, 3]
mode_3_ : [ENTIRE] = [3, 3]
theta_0_ : [ENTIRE] = [0.6918, 0.6918000000000001]
theta_0_t : [ENTIRE] = [0.6918, 0.6918000000000001]
theta_1_t : [ENTIRE] = [0.6918, 0.6918000000000001]
theta_2_t : [ENTIRE] = [-2.031548557285888, -2.03139307087505]
x_0_ : [ENTIRE] = [0, 0]
x_0_t : [ENTIRE] = [6.353669267319927, 6.354303809342038]
x_1_t : [ENTIRE] = [6.353669267319927, 6.354303809342038]
x_2_t : [ENTIRE] = [13, 13]
y_0_ : [ENTIRE] = [0, 0]
y_0_t : [ENTIRE] = [5.263168261764744, 5.263693895267374]
y_1_t : [ENTIRE] = [5.263168261764744, 5.263693895267374]
y_2_t : [ENTIRE] = [0, 0]
true_a : Bool = true
false_a : Bool = false
qlabel_test_ : Bool = true
straighten_0_ : Bool = false
straighten_1_ : Bool = false
straighten_2_ : Bool = false
turnLeft_0_ : Bool = false
turnLeft_1_ : Bool = false
turnLeft_2_ : Bool = false
turnRight_0_ : Bool = false

18 J. Lee, N. Loney and Y. Meng

turnRight_1_ : Bool = true
turnRight_2_ : Bool = false
wait_0_ : Bool = true
wait_1_ : Bool = false
wait_2_ : Bool = true
delta-sat with delta = 0.00100000000000000
Total time in milliseconds: 296721

Appendix D Experiments

Steps 1 3 6 8 10

dReach (encoding from (Bryce et al. 2015)) 0.098 0.225 0.690 2.123 3.143

CPLUS2ASPMT 0.198 7.55 18.23 88.93 > 600

Table D 1. Runtime Comparison (seconds)

We compare the run time of the system in (Bryce et al. 2015) and CPLUS2ASPMT for the
car domain (Fox and Long 2006) and the result is shown in Table D 1. In (Bryce et al. 2015),
the encoding was in the language of dReach, which calls dReal internally. The computation
is optimized for pruning invalid paths of a transition system. It filters out invalid paths using
heuristics described in their paper, generates a compact logical encoding, and makes a call to
dReal to decide reachability properties. On the other hand CPLUS2ASPMT generates a one-time
large encoding without filtering paths and calls dReal once. From the table we see that the system
presented in (Bryce et al. 2015) does perform better than CPLUS2ASPMT. As steps increases the
difference in run time also increases.

It may be possible to improve the run time of CPLUS2ASPMT by leveraging incremental answer
set computation and path heuristics, which we leave for future work.

