
Under consideration for publication in Theory and Practice of Logic Programming 1

Description, Implementation, and
Evaluation of a Generic Design for Tabled CLP

Joaquín Arias1,2

Manuel Carro1,2

joaquin.arias@imdea.org, manuel.carro@{imdea.org,upm.es}
1IMDEA Software Institute, 2Universidad Politécnica de Madrid

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Appendix A CLP Trees and TCLP Forests

Prolog and CLP follow a depth-first search strategy with chronological backtracking. The
computation rule selects constraints and literals from the resolvent from left to right. Lit-
erals are resolved against the clauses of the program, selected from top to bottom. When a
literal unifies with a clause head, it is substituted by the body of the clause after applying
the unifier obtained from the literal-head unification. If a derivation branch fails because
there are no more matching clauses or the constraint store is inconsistent, the evaluation
backtracks to the youngest literal that has a candidate matching clause. Depth-first search is
incomplete and in general not all answers can be computed. Moreover, there are programs
with finite derivations for which logically equivalent programs produce infinite derivations.
The use of TCLP can work around this issue in many cases.

We will show the CLP trees and the TCLP forests for the query ?- D #< 150,
dist(a,Y,D). for two logically equivalent versions of the dist/3 program: with left
recursion (Fig. 1, right) and with right recursion (Fig. 2, right). We use the graph in Fig. A
1, where the length of one of the edges is defined with constraints.

1 edge(a, b, 50).
2 edge(b, a, D) :-
3 D #> 25,
4 D #< 35.

a

b

50

(25,35)

Fig. A 1: Graph definition. (25,35) is the open interval from 25 to 35.

Fig. A 2 and Fig. A 3 (top) are the CLP trees of the right- / left-recursive programs
respectively. Fig. A 3 (bottom) and Fig. A 4 are the TCLP forest of the left- / right-recursive
programs respectively. In these figures, the nodes of the trees represent the states (Def. 2)
of the computation. A state is a tuple 〈R,c〉, where R is a sequence of goals, [g1,g2, . . . ,gn]

and c is a conjunction of constraints. The numbers attached to each state indicates the order
in which they are created.

On the one hand, Fig. A 2 shows a finite CLP tree which finds all the answers and Fig. A
3 (top) shows an infinite CLP tree caused by the left recursion. On the other hand, Fig. A



2 Joaquín Arias and Manuel Carro

3 (bottom) and Fig. A 4 show that the TCLP forest for both programs are finite and all
the answers to the query are found, since the use of tabling makes it terminate with left
recursion as well.

A.1 CLP Tree of dist/3 with Right Recursion

Fig. A 2 shows the CLP tree of the query using the version of dist/3 with right recursion
(Fig. 2, right). We see that the evaluation of the recursive clause generates similar states (s1,
s4, s7 and s10), but in each iteration the domain of the constrained variable D2i is reduced.
As a consequence, the constraint store in state s13 is inconsistent and the evaluation of this
derivation fails. The pending branches are evaluated upon backtracking. We explain now
how we obtain some of the states; the rest are obtained similarly, so we will skip them:

s1 the initial state is the representation of the query.
s2i/ii are obtained by resolving the literal dist(a,Y,D) against the two clauses of the

program. The constraints Y1 = Y∧D1 = D are added to the constraint store.
s3 is obtained from the leftmost state s2i by adding the constraints of the resolvent

[D11#>0, D21#>0, D1#=D11+D21] to the constraint store.
s4 is obtained by resolving the literal edge(a,Z1,D11). The constraint

Z1 = b∧D11 = 50 reduces the domain1 of D21 to D21 > 0∧D21 < 100.
s7 is obtained by resolving the literal edge(b,Z2,D12). The constraint

Z2 = a∧D12 > 25∧D12 < 35 reduces the domain of D22 to D22 > 0∧D22 < 75.
s10 is obtained by resolving the literal edge(a,Z3,D13). The constraint

Z3 = b∧D13 = 50 reduces the domain of D23 to D23 > 0∧D23 < 25.
s13 is obtained by resolving the literal edge(b,Z4,D14). The constraint

Z4 = a∧D14 > 25∧D14 < 35 is inconsistent with the current constraint
store, D< 150∧D> 125+D14+D24∧D24 > 0∧ . . . . Its child is a fail node.

s14 is obtained, upon backtracking to the state s11b by resolving the literal
edge(b,Y,D23). However, it is also a failed derivation because the resulting con-
straint store is inconsistent.

s15 is a final state of a successful derivation, obtained upon backtracking to the state
s8b by resolving the literal edge(a,Y,D22). The constraint Y= a∧ D23 > 25∧
D23 < 35 is consistent with the constraint store.

a1 is the first answer Y= a∧D> 125∧D< 315, projected onto the variables of the
query (vars(Q) = {Y,D}).

s16 is a final state obtained upon backtracking to the state s5b.
a2 is the second answer, Y= a∧D> 75∧D< 85.

s17 is a final state obtained upon backtracking to the state s2ii.
a3 is the third and last answer, Y= b∧D= 50

.

1 We are considering a linear constraint solver over the rational numbers that from
D< 150∧D= D11+D21 ∧D11 = 50 it infers that D21 < 100



TCLP: Description, Implementation, Evaluation 3
s1

s2
i

s3 s4

s5
i

s6 s7

s8
i

s9 s1
0

s1
1i

s1
2

s1
3

fa
il

s1
1i

i

s1
4

fa
il

s8
ii

s1
5

a1
Y
=
b
∧

D
>
1
2
5
∧
D
<
1
3
5s5

ii

s1
6

a2
Y
=
a
∧

D
>
7
5
∧
D
<
8
5

s2
ii

s1
7

a3
Y
=
b
∧

D
=
5
0

s1
〈[
di

st
(a

,Y
,D

)]
,
D
<
1
5
0
〉

s2
i〈

[D
1 1
#>

0,
D2

1
#>

0,
D 1
#=

D1
1
+D

2 1
,
ed

ge
(a

,Z
1
,D

1 1
),

di
st

(Z
1
,Y

1
,D

2 1
)]

,
D
<
1
5
0
∧
Y
1
=
Y
∧
D
1
=
D
〉

s3
〈[
ed

ge
(a

,Z
1
,D

1 1
),

di
st

(Z
1
,Y

,D
2 1
)]

,
D
<
1
5
0
∧
D
1
1
>
0
∧
D
2
1
>
0
∧
D
=
D
1
1
+
D
2
1
〉

s4
〈[
di

st
(b

,Y
,D

2 1
)]

,
D
<
1
5
0
∧
D
1
1
>
0
∧
D
2
1
>
0
∧
D
=
D
1
1
+
D
2
1
∧
Z
1
=
b
∧
D
1
1
=
5
0
〉

s5
i〈

[D
1 2
#>

0,
D2

2
#>

0,
D 2
#=

D1
2
+D

2 2
,
ed

ge
(b

,Z
2
,D

1 2
),

di
st

(Z
2
,Y

2
,D

2 2
)]

,
D
<
1
5
0
∧
D
2
1
>
0
∧
D
=
5
0
+
D
2
1
∧
Y
2
=
Y
∧
D
2
=
D
2
1
〉

s6
〈[
ed

ge
(b

,Z
2
,D

1 2
),

di
st

(Z
2
,Y

,D
2 2
)]

,
D
<
1
5
0
∧
D
=
5
0
+
D
2
1
∧
D
1
2
>
0
∧
D
2
2
>
0
∧
D
2
1
=
D
1
2
+
D
2
2
〉

s7
〈[
di

st
(a

,Y
,D

2 2
)]

,
D
<
1
5
0
∧
D
=
5
0
+
D
1
2
+
D
2
2
∧
D
1
2
>
0
∧
D
2
2
>
0
∧
Z
2
=
a
∧
D
1
2
>
2
5
∧
D
1
2
<
3
5
〉

s8
i〈

[D
1 3
#>

0,
D2

3
#>

0,
D 3
#=

D1
3
+D

2 3
,
ed

ge
(a

,Z
3
,D

1 3
),

di
st

(Z
3
,Y

3
,D

2 3
)]

,
D
<
1
5
0
∧
D
>
7
5
+
D
2
2
∧
D
<
8
5
+
D
2
2
∧
D
2
2
>
0
∧
Z
2
=
a
∧
Y
3
=
Y
∧
D
3
=
D
2
2
〉

s9
〈[
ed

ge
(a

,Z
3
,D

1 3
),

di
st

(Z
3
,Y

,D
2 3
)]

,
D
<
1
5
0
∧
D
>
7
5
+
D
2
2
∧
D
<
8
5
+
D
2
2
∧
D
2
2
>
0
∧
D
1
3
>
0
∧
D
2
3
>
0
∧
D
2
2
=
D
1
3
+
D
2
3
〉

s1
0
〈[
di

st
(b

,Y
,D

2 3
)]

,
D
<
1
5
0
∧
D
>
7
5
+
D
1
3
+
D
2
3
∧
D
<
8
5
+
D
1
3
+
D
2
3
∧
D
2
3
>
0
∧
D
1
3
=
5
0
〉

s1
1i
〈[
D1

4
#>

0,
D2

4
#>

0,
D 4
#=

D1
4
+D

2 4
,
ed

ge
(b

,Z
4
,D

1 4
),

di
st

(Z
4
,Y

4
,D

2 4
)]

,
D
<
1
5
0
∧
D
>
1
2
5
+
D
2
3
∧
D
<
1
3
5
+
D
2
3
∧
D
2
3
>
0
∧
Y
4
=
Y
∧
D
4
=
D
2
3
〉

s1
2
〈[
ed

ge
(b

,Z
4
,D

1 4
),

di
st

(Z
4
,Y

,D
2 4
)]

,
D
<
1
5
0
∧
D
>
1
2
5
+
D
1
4
+
D
2
4
∧
D
<
1
3
5
+
D
1
4
+
D
2
4
∧
D
1
4
>
0
∧
D
2
4
>
0
〉

s1
3
〈[
di

st
(a

,Y
,D

2 4
)]

,
D
<
1
5
0
∧
D
>
1
2
5
+
D
1
4
+
D
2
4
∧
D
<
1
3
5
+
D
1
4
+
D
2
4
∧
D
2
4
>
0
∧
Z
4
=
a
∧
D
1
4
>
2
5
∧
D
1
4
<
3
5
〉

fa
il

s1
1i

i〈
[e
dg

e(
b,

Y,
D2

3
)]

,
D
<
1
5
0
∧
D
>
1
2
5
+
D
2
3
∧
D
<
1
3
5
+
D
2
3
∧
D
2
3
>
0
〉

s1
4
〈[

],
D
<
1
5
0
∧
D
>
1
2
5
+
D
2
3
∧
D
<
1
3
5
+
D
2
3
∧
D
2
3
>
0
∧
Y
=
a
∧
D
2
3
>
2
5
∧
D
2
3
<
3
5
〉

fa
il

s8
ii
〈[
ed

ge
(a

,Y
,D

2 2
)]

,
D
<
1
5
0
∧
D
=
5
0
+
D
1
2
+
D
2
2
∧
D
2
2
>
0
∧
D
1
2
>
2
5
∧
D
1
2
<
3
5
〉

s1
5
〈[

],
D
<
1
5
0
∧
D
=
5
0
+
D
2
1
∧
D
2
2
>
0
∧
D
2
1
=
D
1
2
+
D
2
2
∧
D
1
2
>
2
5
∧
D
1
2
<
3
5
∧
Y
=
b
∧
D
2
2
=
5
0
〉

a1
Y
=
b
∧
D
>
1
2
5
∧
D
<
1
3
5

s5
ii
〈[
ed

ge
(b

,Y
,D

2 1
)]

,
D
<
1
5
0
∧
D
2
1
>
0
∧
D
=
5
0
+
D
2
1
〉

s1
6
〈[

],
D
<
1
5
0
∧
D
=
5
0
+
D
2
1
∧
Y
=
a
∧
D
2
1
>
2
5
∧
D
2
1
<
3
5
〉

a2
Y
=
a
∧
D
>
7
5
∧
D
<
8
5

s2
ii
〈[
ed

ge
(a

,Y
,D

)]
,
D
<
1
5
0
〉

s1
7
〈[

],
Y
=
b
∧
D
=
5
0
〉

a3
Y
=
b
∧
D
=
5
0

Fig. A 2: CLP tree of the query ?- D #< 150, dist(a,Y,D)
for dist/3 with right recursion



4 Joaquín Arias and Manuel Carro

A.2 CLP Tree of dist/3 with Left Recursion

Fig. A 3 (top) shows the CLP tree of the query to dist/3 with left recursion (Fig. 1, right).
We see that the recursive clause also generates similar states (s1, s3, s5, . . . ) but in this
example the domain of the constrained variable D1i remains unchanged, and the evaluation
therefore enters a loop. As before, we only explain how we obtain some of the states:

s3 is obtained from the leftmost state s2i. The domain of D11 is D11 > 0∧D11 < 150.
s5 is obtained from the leftmost node s4i. The domain of D12 is D12 > 0∧D12 < 150.
. . . the evaluation enters a loop.

Although the program that generates this CLP tree is logically equivalent to the previous
one, this tree is infinite and no answers are found.

A.3 TCLP Forest of dist/3 with Left Recursion

Fig. A 3 (bottom) shows the TCLP forest for the query we have been using with the dist/3
program written using left recursion (Fig. 1, right), where the set of tabled predicates is
TabP = {dist/3}. The main point is that at state s3 the tabling engine detects that the eval-
uation of 〈dist(a,Z1,D11), D11 > 0∧D11 < 150〉 entails the generator 〈dist(a,V0,V1),
V1< 150〉 and therefore it suspends the execution and waits until another generator feeds
the suspended goal with answers. The evaluation of the state s2ii generates the first answer
a1 upon backtracking. Then, the tabling engine resumes the consumer with a1 and gener-
ates a2 which is used to generate a3. Finally, the evaluation fails after consuming a3 and,
since all the clauses have been evaluated and there are no more consumers to be resumed
or answers to be consumed, the generator is marked as complete and all the answers are
returned. We explain below how some of the states are obtained. The rest of the states are
obtained similarly, so we skip them for brevity:

s0 We omit the representation of the TCLP tree for the query
τP(dist(a,Y,D),D< 150) and its answer resolution.

s1 the initial state of the TCLP tree τP(dist(a,V01,V11),V11 < 150) is the re-
named generator. (Def. 3).

s2i/ii are obtained by resolving the literal dist(a,V0,V1) against the two clauses of
the program.

s3 is obtained from the leftmost state s2i by adding the constraints to the constraint
store as in the CLP tree.

Ans(s1) the tabled literal dist(a,Z1,D11) has to be resolved by answer
resolution (Def. 3) using the answer from the current TCLP tree
τP(dist(a,V01,V11),V11 < 150) because, after renaming, the projection
of the current constraint store onto the variables of the literal entails the
projected constraint store of the generator: V11 > 0∧ V11 < 150 v V11 < 150.
Since the current TCLP tree is under construction and depends on itself, this
branch derivation is suspended.

s4 is a final state of a successful derivation. It is obtained, upon backtracking to the
state s2ii, by resolving with edge(a,V0,V1). The equations V0= b∧V1= 50

are consistent with the constraint store.



TCLP: Description, Implementation, Evaluation 5
s1

s2
i

s3

s4
i

s5

s6
i

..
.

s6
ii

s4
ii

s2
ii

s1
〈[
di

st
(a

,Y
,D

)]
,
D
<
1
5
0
〉

s2
i〈

[D
1 1
#>

0,
D2

1
#>

0,
D#

=D
1 1
+D

2 1
,
di

st
(a

,Z
1
,D

1 1
),

ed
ge

(Z
1
,Y

,D
2 1
)]

,
D
<
1
5
0
∧
Y
1
=
Y
∧
D
1
=
D
〉

s3
〈[
di

st
(a

,Z
1
,D

1 1
),

ed
ge

(Z
1
,Y

,D
2 1
)]

,
D
<
1
5
0
∧
D
1
1
>
0
∧
D
2
1
>
0
∧
D
=
D
1
1
+
D
2
1
〉

s4
i〈

[D
1 2
#>

0,
D2

2
#>

0,
D1

1
#=

D1
2
+D

2 2
,
di

st
(a

,Z
2
,D

1 2
),

ed
ge

(Z
2
,Z

1
,D

2 2
),

ed
ge

(Z
1
,Y

,D
2 1
)]

,
D
<
1
5
0
∧
D
1
1
>
0
∧
D
2
1
>
0
∧
D
=
D
1
1
+
D
2
1
∧
Y
2
=
Z
1
∧
D
2
=
D
1
1
〉

s5
〈[
di

st
(a

,Z
2
,D

1 2
),

ed
ge

(Z
2
,Z

1
,D

2 2
),

ed
ge

(Z
1
,Y

,D
2 1
)]

,
D
<
1
5
0
∧
D
1
1
>
0
∧
D
2
1
>
0
∧
D
=
D
1
1
+
D
2
1
∧
D
1
2
>
0
∧
D
2
2
>
0
∧
D
1
1
=
D
1
2
+
D
2
2
〉

s6
i

..
.

s6
ii

s4
ii
〈[
ed

ge
(a

,Z
1
,D

1 1
),

ed
ge

(Z
1
,Y

,D
2 1
)]

,
D
<
1
5
0
∧
D
1
1
>
0
∧
D
2
1
>
0
∧
D
=
D
1
1
+
D
2
1
∧
Y
2
=
Z
1
∧
D
2
=
D
1
1
〉

s2
ii
〈[
ed

ge
(a

,Y
,D

)]
,
D
<
1
5
0
∧
Y
1
=
Y
∧
D
1
=
D
〉

s1

s2
i

s3

A
ns

(s
1)

s5 s6

a2
V
0
=
a
∧

V
1
>
7
5
∧
V
1
<
8
5

s7 s8

a3
V
0
=
b
∧

V
1
>
1
2
5
∧
V
1
<
1
3
5

s9 s1
0

fa
il

s2
ii

s4

a1
V
0
=
b
∧

V
1
=
5
0

(a
1)

(a
2)

(a
3)

s1
〈[
di

st
(a

,V
0,

V1
)]

,
V
1
<
1
5
0
〉

s2
i〈

[D
1 1
#>

0,
D2

1
#>

0,
D 1
#=

D1
1
+D

2 1
,
di

st
(a

,Z
1
,D

1 1
),

ed
ge

(Z
1
,Y

1
,D

2 1
)]

,
V
1
<
1
5
0
∧
Y
1
=
V
0
∧
D
1
=
V
1
〉

s3
〈[
di

st
(a

,Z
1
,D

1 1
),

ed
ge

(Z
1
,V

0,
D2

1
)]

,
V
1
<
1
5
0
∧
D
1
1
>
0
∧
D
2
1
>
0
∧
V
1
=
D
1
1
+
D
2
1
〉

A
ns

(d
is
t(

a,
V
0 1

,V
1 1

),
V

1 1
<

15
0)

is
en

ta
ile

d
b
ec

au
se

V
1 1

>
0
∧

V
1 1

<
15

0
v

V
1 1

<
15

0

s5
〈[
ed

ge
(b

,V
0,

D2
1
)]

,
V
1
<
1
5
0
∧
D
1
1
>
0
∧
D
2
1
>
0
∧
V
1
=
D
1
1
+
D
2
1
∧
Z
1
=
b
∧
D
1
1
=
5
0
〉

s6
〈[

],
V
1
<
1
5
0
∧
D
2
1
>
0
∧
V
1
=
5
0
+
D
2
1
∧
V
0
=
a
∧
D
2
1
>
2
5
∧
D
2
1
<
3
5
〉

a2
V
0
=
a
∧
V
1
>
7
5
∧
V
1
<
8
5

s7
〈[
ed

ge
(a

,V
0,

D2
1
)]

,
V
1
<
1
5
0
∧
D
1
1
>
0
∧
D
2
1
>
0
∧
V
1
=
D
1
1
+
D
2
1
∧
Z
1
=
a
∧
D
1
1
>
7
5
∧
D
1
1
<
8
5
〉

s8
〈[

],
V
1
<
1
5
0
∧
D
2
1
>
0
∧
V
1
>
7
5
+
D
2
1
∧
V
1
<
8
5
+
D
2
1
∧
V
0
=
b
∧
D
2
1
=
5
0
〉

a3
V
0
=
b
∧
V
1
>
1
2
5
∧
V
1
<
1
3
5

s9
〈[
ed

ge
(b

,V
0,

D2
1
)]

,
V
1
<
1
5
0
∧
D
1
1
>
0
∧
D
2
1
>
0
∧
V
1
=
D
1
1
+
D
2
1
∧
Z
1
=
b
∧
D
1
1
>
1
2
5
∧
D
1
1
<
1
3
5
〉

s1
0
〈[

],
V
1
<
1
5
0
∧
D
2
1
>
0
∧
V
1
>
1
2
5
+
D
2
1
∧
V
1
<
1
3
5
+
D
2
1
∧
V
0
=
a
∧
D
2
1
>
2
5
∧
D
2
1
<
3
5
〉

fa
il

s2
ii
〈[
ed

ge
(a

,V
0,

V1
)]

,
V
1
<
1
5
0
∧
Y
1
=
V
0
∧
D
1
=
V
1
〉

s4
〈[

],
V
1
<
1
5
0
∧
V
0
=
b
∧
V
1
=
5
0
〉

a1
V
0
=
b
∧
V
1
=
5
0

w
it
h

re
na

m
in

g
Z
1
=

V
0 1
∧

D
1 1

=
V

1 1

(a
1)

(a
2)

(a
3)

Fig. A 3: CLP tree (top) and TCLP-forest (bottom) of the query
?- D #< 150, dist(a,Y,D) for dist/3 with left recursion



6 Joaquín Arias and Manuel Carro

a1 is the first answer, V0= b∧V1= 50 (Def. 4). Since is the first one, it is also the
more general one.

s5 is obtained from the state s3 (because there are no more branches) by answer
resolution consuming a1 (Def. 4).

s6 is a final state obtained by resolving the literal edge(b,V0,D21).
a2 is the second answer, V0= a∧V1> 75∧V1< 85. It is neither more particular

nor more general than a1.
s7 is obtained from the state s3 by consuming a2.
s8 is a final state.
a3 is the third answer, V0= b∧V1> 125∧V1< 135. It is neither more particular

nor more general than a1 or a2.
s9 is obtained from the state s3 by consuming, a3.

s10 is a failed derivation because the resulting constraint store is inconsistent,
V1< 150∧ . . .∧V1> 125+D21∧D21 > 25. Its child is a fail node.

Note that the CLP execution entered a loop when resolving the state s3. Under TCLP,
answer resolution avoids looping and the resulting TCLP forest is finite and complete (i.e.,
the leaves of the trees are either fail nodes or answers).

A.4 TCLP Forest of dist/3 with Right Recursion

Fig. A 4 shows the TCLP forest corresponding to querying the right recursive dist/3
program (Fig. 2, right). This example is useful to show how the algorithm works with
mutually dependent generators2 and to see why not all the answers from a generator may
be directly used by its consumers.

Unlike the left-recursive version, which shows only one TCLP tree (Fig. A 3, bottom),
Fig. A 4 has two TCLP trees (one for each generator). That is because the left recursive
version only sought paths from the node a, but the right recursive version creates a new
TCLP tree at the state s4 to collect the paths from the node b, since edge(a,b) had been
previously evaluated at state s3. As before we only explain how we obtain some of the
states:

s1 the TCLP tree τP(dist(a,V0,V1), V1< 150) is created.
s4 is obtained by resolving the literal edge(a,Z1,D11).

Ans(s5) the tabled literal dist(b,V0,D21) is a new generator and a new TCLP tree
τP(dist(b,V2,V3), V3> 0∧V3< 100) is created (Def. 3).

s5 is the root node of the new TCLP tree.
s6i/ii are obtained by resolving the literal dist(b,V2,V3) against the clauses of the

program.
s8 is obtained by resolving the literal edge(b,Z1,D11).

In the state s8, the call 〈dist(a,V2,D21), D21 > 0∧D21 < 75〉 is suspended be-
cause it entails the former generator 〈dist(a,V01,V11), V11 < 150〉.

2 I.e., generators which consume answers from each other.



TCLP: Description, Implementation, Evaluation 7

s1

s2i

s3

s4

Ans(s5)

s11

a2 V0=a ∧
V1>75∧V1<85

s14

a3 V0=b ∧
V1>125∧V1<135

s2ii

s10

a1 V0=b ∧
V1=50

(b1) (b2)

s5

s6i

s7

s8

Ans(s1)

s12

b2 V2=b ∧
V3>75∧V3<85

s13

fail

s15

fail

s6ii

s9

b1 V2=a ∧
V3>25∧V3<35

(a1) (a2) (a3)

s1 〈[dist(a,V0,V1)], V1<150〉
s2i 〈[D11#>0, D21#>0, V11#=D11+D21, edge(a,Z1,D11), dist(Z1,Y1,D21)],

V1<150∧Y1=V0∧D1=V1〉
s3 〈[edge(a,Z1,D11), dist(Z1,V0,D21)], V1<150∧D11>0∧D21>0∧V1=D11+D21〉

s4 〈[dist(b,V0,D21)], V1<150∧D11>0∧D21>0∧V1=D11+D21∧Z1=b∧D11=50〉

Ans(dist(b,V2,V3), V 3 > 0∧V 3 < 100)

s11 〈[ ], V1<150∧D21>0∧V1=50+D21∧V0=a∧D21>25∧D21<35〉
a2 V0=a∧V1>75∧V1<85

s14 〈[ ], V1<150∧D21>0∧V1=50+D21∧V0=b∧D21>75∧D21<85〉
a3 V0=b∧V1>125∧V1<135

s2ii 〈[edge(a,V0,V1)], V1<150∧Y1=V0∧D1=V1〉
s10 〈[ ], V1<150∧V0=b∧V1=50〉

a1 V0=b∧V1=50

with renaming V 0 =V 2 ∧ D21 =V 3

(b1)

(b2)

s5 〈[dist(b,V2,V3)], V3>0∧V3<100〉
s6i 〈[D11#>0, D21#>0, D1#=D11+D21, edge(b,Z1,D11), dist(Z1,Y1,D21)],

V3>0∧V3<100∧Y1=V2∧D1=V3〉
s7 〈[edge(b,Z1,D11), dist(Z1,V2,D21)], V3>0∧V3<100∧D11>0∧D21>0∧V3=D11+D21〉

s8 〈[dist(a,V2,D21)], V3>0∧V3<100∧D11>0∧D21>0∧V3=D11+D21∧Z1=a∧D11>25∧D11<35〉

Ans(dist(a,V01,V11), V 11 < 150) is entailed because V 11 > 0∧V 11 < 75 v V 11 < 150

s12 〈[ ], V3>0∧V3<100∧D21>0∧V3>25+D21∧V3<35+D21∧V2=b∧D21=50〉
b2 V2=b∧V3>75∧V3<85

s13 〈[ ], V3>0∧V3<100∧D21>0∧V3>25+D21∧V3<35+D21∧V2=a∧D21>75∧D21<85〉
fail

s15 〈[ ], V3>0∧V3<100∧D21>0∧V3>25+D21∧V3<35+D21∧V2=b∧D21>125∧D21<135〉
fail

s6ii 〈[ edge(b,V2,V3)], V3>0∧V3<100∧Y1=V2∧D1=V3〉
s9 〈[ ], V3>0∧V3<100∧V2=a∧V3>25∧V3<35〉

b1 V2=a∧V3>25∧V3<35

with renaming V 2 =V 01 ∧ D21 =V 11

(a1)

(a2)

(a3)

Fig. A 4: TCLP-forest of the query ?- D #< 150, dist(a,Y,D)
for dist/3 with right recursion



8 Joaquín Arias and Manuel Carro

Ans(s1) the tabled literal dist(a,V2,D21) is resolved with answer reso-
lution (Def. 3) using the answers from the previous TCLP tree
τP(dist(a,V01,V11),V11 < 150) because the renamed projection3 of the
current constraint store onto the variable of the literal entails the projected
constraint store of the generator: (V11 > 0∧V11 < 75) v V11 < 150. Since
the initial TCLP forest is under construction and depends on itself, the current
branch derivation is suspended.
This suspension also causes the former generator to suspend at the state s4.

s9 is a final state obtained upon backtracking to the state s6ii.
b1 is the first answer of the second generator.

At this point the suspended calls can be resumed by consuming the answer b1
or by evaluating s2ii. The algorithm first tries to evaluate s2ii and then it will
resume s4 consuming b1.

s10 is a final state obtained upon backtracking to the state s2ii.
a1 is the first answer of the first generator: V0= b∧V1= 50.

s11 is a final state obtained from the state s4 by consuming b1.
a2 is the second answer of the first generator: V0= a∧V1> 75∧V1< 85.

s12 is a final state obtained from the state s8 by consuming a1.
b2 is the second answer of the second generator.

s13 is a failed derivation obtained from s8 by consuming a2. It fails because the con-
straints V0= a∧V1> 75∧V1< 85 are inconsistent with the current constraint
store. Note that the projection of the constraint store of s8 onto V1 is V1> 0∧
V1< 75. Its child is a fail node.

s14 is a final state obtained from the state s4 by consuming b2.
a3 is the third answer of the first generator: V0= b∧V1> 125∧V1< 135.

s15 is a failed derivation obtained from s8 by consuming a3. Its child is a fail node.

This example illustrates why left recursion reduces the execution time and memory re-
quirements when using tabling / TCLP: left recursion will usually create fewer generators.
We have also seen that using answers from a more general call, as in the answer resolution
of state s8 (i.e., the constraint store of the consumer V11 > 0∧V11 < 75 is more particu-
lar than the constraint store of the generator V11 < 150), makes it necessary to filter the
correct ones (i.e., answer resolution for a2 and a3 failed). This is not required in variant
tabling because the answers from a generator are always valid for its consumers.

Appendix B Step by Step Execution of dist/3 under TCLP(Q)

The trace below shows the step by step execution of the TCLP version of the left recursive
distance traversal program in Fig. 5, left, with the query ?- D #< 150, dist(a,Y,D).
using the graph in Fig. A 1. In this example we are using the TCLP(Q) interface (Sec-
tion 4.3). Each step is annotated with the labels used in Fig. 8. The execution starts with
the query ?- D #< 150, dist(a,Y,D):

3 The projection of V3> 0∧V3< 100∧D11 > 0∧D21 > 0∧V3= D11+D21 ∧Z1 = a∧D11 > 25∧D11 < 35
onto D21 is D21 > 0∧D21 < 75. After renaming D21 = V11, the resulting projection is V11 > 0∧V11 < 75.



TCLP: Description, Implementation, Evaluation 9

0 the constraint D#<150 in the query is added to the current store (state s0). Then
〈dist(a,Y,D), D< 150〉 is called and the tabling engine takes the control of the exe-
cution calling tabled_call(dist_aux(a,Y,D)).

1 call_lookup_table/3 initializes and saves (after renaming) dist_aux(a,V0,V1),
because it is the first occurrence, and returns Vars=[D] and Gen=$1, where $1 is the
reference for this generator.

2 store_projection([D],ProjStore) returns ProjStore=([V1],[V1#<150]).
3 member/2 fails because the list of projected constraint stores associated to Gen=$1 is

empty.
4 save_generator/3 saves ([V1],[V1#<150]) in the list of projected constraint stores

associated to Gen=$1 (state s1).
7 execute_generator/2 evaluates the generator against the first clause of dist_aux/3

and adds the body of the clause to the resolvent of the state s2i. Then the constraints
of the resolvent, [D1#>0, D2#>0, D#=D1+D2], are added to the constraint store (state
s3) and 〈dist(a,Z,D1), D< 150∧D1> 0∧D2> 0∧D= D1+D2〉 is called.

0 the tabling engine reenters the tabled execution with
tabled_call(dist_aux(a,Z,D1)).

1 call_lookup_table(dist_aux(a,Z,D1),Vars,Gen) returns Vars=[D1] and
Gen=$1, the reference to the previous generator, dist_aux(a,V0,V1).

2 store_projection([D1], ProjStore) returns ProjStore=([V1], [V1#>0,
V1#<150]). For clarification, the projection of the current constraint store D< 150∧
D1> 0∧D2> 0∧D= D1+D2 onto D1 is D1> 0∧D1< 150.

3 member/2 retrieves the projected constraint store ProjStore_G=([V1],
[V1#<150]).

5 call_entail/2 succeeds because (D< 150 ∧ D1> 0 ∧ D2> 0 ∧
D= D1+D2)v D1< 150.

6 suspend_consumer/1 suspends the current call dist_aux(a,Z,D1) (state s3, wait-
ing for the answer of the current TCLP tree, Ans(s1)).

7 The evaluation of the generator backtracks to evaluate the other clause (state s2ii). Now
the current constraint store is D#<150 and the call 〈edge(a,Y,D), D< 150〉 unifies with
edge(a,b,50) (state s4). The first answer is found and new_answer/0 is invoked to
collect the answer.

8 answer_lookup_table/2 stores the Herbrand constraints4 of the answer,
Y= b∧D= 50, returning Vars=[] and Ans=$a1, where $a1 is the reference for
this answer.

9 store_projection/2 returns ProjStore=([],[]).
10 member/2 fails because the list of projected constraint stores associated to $a1 is

empty.
11 save_answer/2 saves ([],[]) in the list of the answer constraints associated to $a1

(state a1). The first answer is collected.
14 the tabling engine resumes the goal suspended at state s3 and member/2 retrieves the

Herbrand constraints Y= b∧D= 50 and the answer constraint ([],[]).

4 In solvers written in Prolog and implemented using attributed variables, such as CLP(Q) and CLP(R), it is
usual that variables lose their association with the constraints where they appeared when these variables become
ground. As ground terms do not have attributes attached, D= 50 is handled as part of the Herbrand constraints.



10 Joaquín Arias and Manuel Carro

1 fib(N,F) :-

2

...
3 F #= F1 + F2,
4 fib(N1, F1),
5 fib(N2, F2).

1 fib(N,F) :-

2

...
3 fib(N1, F1),
4 fib(N2, F2),
5 F #= F1 + F2.

Fig. C 1: Two versions of fib/2: Q and R (left) vs. D≤ (right).

15 apply_answer/2 adds the answer to the current constraint store (state s5).
7 the execution continues resolving 〈edge(b,Y,D2), . . .∧D2< 100〉 which unifies with

the clause edge(b,a,D2):- D2#>25, D2#<35 (state s6). The second answer is found.
8 answer_lookup_table/2 stores the Herbrand constraints of the answer, V0= a, re-

turning Vars=[D] and Ans=$a2.
9 store_projection/2 returns ProjStore=([V1], [V1#>75,V1#<85]).

10 member/2 fails because the list of projected constraint stores associated to Ans=$a2 is
empty.

11 save_answer/2 saves ([V1],[V1#>75,V1#<85]) in the list of answer constraints
associated to $a2 (state a2). The second answer is collected.

14, 15, 7 the tabling engine resumes the suspended goal at state s3 and consumes the sec-
ond answer following the same steps as with the first one and generating the states s7
and s8. The third answer has been found.

8, 9, 10, 11 the answer is collected and ([V1],[V1#>125,V1#<135]) is saved in the list
of answer constraint associated to $a3 (state a3).

14, 15 the tabling engine resumes the suspended goal at state s3 and consumes the third
answer.

7 the execution fails resolving 〈edge(b,V0,D21), V1< 150∧ . . .∧D11 < 135〉 (states s9
and s10)

14, 15 the generator has exhausted all the answers and it does not have any more de-
pendencies, so complete/0 marks the generator as complete. The query retrieves the
answers from the generator one by one and returns them.

Appendix C Comparison of Mod TCLP using R, Q and D≤

This section highlights that the modularity of TCLP makes it possible to choose the most
adequate constraint solver for the specific problem, and that decision should not always
be based solely on the performance of the constraint solver, but also on its expressiveness
and/or precision. Since TCLP, unlike CLP, uses entailment checking extensively to decide
whether to suspend and save / discard answers or not, the performance of entailment is
more relevant than in CLP. It also makes its soundness (which can be challenged by e.g.
numerical accuracy) critical, as incorrect entailment results can lead to non-termination or
to unexpected termination.

We use the doubly recursive Fibonacci program (Fig. C 1). It is well-known that tabling
reduces its complexity from exponential to linear, but, in addition, CLP makes it possible
to run exactly the same program fib/2 backwards to find the index of some Fibonacci



TCLP: Description, Implementation, Evaluation 11

Mod TCLP(R) Mod TCLP(Q) Mod TCLP(D≤)
fib(N, 832040) 25 61 147
fib(N, 28657) 16 40 69
fib(N, 610) 8 19 24
fib(N, 89) 5 12 13

Table C 1: Run time (ms) comparison for the fib/2 using R, Q and D≤.

number by generating a system of equations whose solution is the index of the given Fi-
bonacci number. Under CLP, the size of this system of equations grows exponentially with
the index of the Fibonacci number. However, under TCLP, entailment makes redundant
equations not to be added and solving them becomes less expensive.

We have run this benchmark usingR, Q andD≤. Due to the characteristics ofD≤ (Sec-
tion 5.1), the program for this constraint system is slightly different from the ones for Q
and R (Section 4.3). In these two, constraints are placed before the recursive calls. How-
ever, D≤ can have at most two variables per constraint, and therefore we had to move the
constraint F #= F1 + F2 to the end of the clause (Fig. C 1). This can be detrimental to the
performance of Mod TCLP(D≤), as value propagation in the constraints is less effective.

Table C 1 shows the experimental results. First, note that the Mod TCLP(D≤) version
is slower than any of the other two. While the implementation of CLP(D≤) is compara-
tively faster than CLP(R) and CLP(Q), moving the F #= F1 + F2 to the end of the clause
(which is necessary to satisfy the instantiation requirements of D≤) reduces its usefulness
to prune the generation of redundant constraints.

Additionally, note that although the solvers for R and Q are practically the same,
Mod TCLP(R) is fastest in all cases, since it uses directly CPU floating point numbers
while CLP(Q) implements rational numbers by software. However, there is a drawback:
floating point arithmetic is not accurate, and when CLP(R) approximates its results, it
can cause (depending on the particular program) non-termination. That would be the case
for a query such as ?- fib(N, 23416728348467685), which terminates correctly with
Mod TCLP(Q), but it does not (in under five minutes) with Mod TCLP(R), since the ter-
mination condition never holds.


	Appendix A CLP Trees and TCLP Forests
	A.1 CLP Tree of dist/3 with Right Recursion
	A.2 CLP Tree of dist/3 with Left Recursion
	A.3 TCLP Forest of dist/3 with Left Recursion
	A.4 TCLP Forest of dist/3 with Right Recursion

	Appendix B Step by Step Execution of dist/3 under TCLP(Q)
	Appendix C Comparison of Mod TCLP using R, Q and D

