Under consideration for publication in Theory and Practice of Logic Programming 1

Beyond NP: Quantifying over Answer Sets
Supplementary Material

GIOVANNI AMENDOLA!
FRANCESCO RICCA!

MIREK TRUSZCZYNSKI?

YUniversity of Calabria, Rende, Italy
(e-mail: {amendola,ricca}@mat.unical.it)
2University of Kentucky, KY, USA
(e-mail: mirek@cs.uky.edu)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Appendix A Proofs of Some Theorems

In the following we report the main theorems presented in the paper with their proofs.

Theorem 1
Let P be an ASP program, and let IT be the ASP(Q) program of the form (2), where n = 1,
0O; =3, P, =P, and C = 0. Then, AS(P) = QAS(II).

Proof
By definition, M is a quantified answer set of II if and only if M is an answer set of P and
0OU fixp(M) = fixp(M) is coherent. The latter condition is trivially true as M is an answer set of

fixP(M). O

Theorem 2
The COHERENCE problem is PSPACE-complete, even under the restriction to normal ASP(Q)
programs.

Proof
(Membership) It is well known that answer sets of a disjunctive logic program can be enumerated
in polynomial space in the size of the program. Let us assume that p is a polynomial providing
that bound. We prove that the coherence of an ASP(Q) program IT of the form (2) can be decided
in space O(n x p(s(I1))), where s(II) is the size of I1, and # is the number of quantifiers in IT.
To this end, we consider the following recursive algorithm. It consists of enumerating all an-
swer sets of P;. If n = 1, we have IT =P, : C. To decide coherence, for each enumerated answer
set M of P, we decide whether CU fixp (M) is coherent. Depending on whether (] = 3% or v, if
for some (every) answer set M of P, CU fixp, (M) is coherent, we return that IT is coherent. Oth-
erwise, we return that IT is not coherent. For n > 2, for each enumerated answer set M of P;, we
recursively check whether IT' = ([P ..., P, : C) p,,m 1s coherent, and decide about coherence
of IT similarly as in the case n = 1, depending on the outermost quantifier.

2 G. Amendola, F. Ricca, M. Truszczynski

By the comment above, we can enumerate all answer sets M of Py in space O(p(s(IT))) (in-
deed, s(Py) = O(s(IT))). Moreover, if n = 1, testing coherence of CU fixp, (M) can be accom-
plished in time and so, also in space O(s(C U fix(M))) = O(s(IT)). Thus, if n = 1, the algo-
rithm requires O(p(s(IT))) space, establishing the base case of the induction. If n > 2, we need
O(p(s(IT))) space for enumerating answer sets and, using the induction hypothesis, O((n— 1) x
p(s(I1))) space for each recursive call. Thus, the total space requirement is O(n x p(s(IT))),
completing the inductive step.

We now observe that n = O(s(IT)), which shows that the algorithm we described runs in space
O(s(IT) x p(s(IT))). This implies the assertion.

(Hardness) We give a reduction from the problem of deciding the validity of a QBF formula
D = Qx1...0nx, @, where for every i = 1,...,n, Q; € {3,V} and x; is a propositional variable,
and where ¢ is a propositional formula over {xi,...,x,}. The problem is PSPACE-complete
even when ¢ is in 3-CNF. Thus, let us assume that ¢ = C; A ... ACy,, where C; = l} V 1]2 \% 113
and l},ljz-,l; € {x;,—x;|i=1,...,n}, foreach j=1,...,m. We construct an ASP(Q) program IT
as follows. For each i = 1,...,n, we define P, = {x; < not nx;; nx; < not x;} and [J; = QY. We
also define C = {ok; + 0'(17) |j=1,....mand h=1,2,3} U{ < not ok; | i=1,...,m}, where
o(l) =x; if I = x;, and o(I) = nx; if [= —;. It is easy to see that IT is coherent iff & is valid.
Moreover, as each program P; is normal, IT is a normal ASP(Q) program. []

Theorem 3

The COHERENCE problem is (i) £F-complete for normal existential ASP(Q) programs with n
quantifiers in the prefix; and (ii) I17-complete for normal universal ASP(Q) programs with n
quantifiers in the prefix.

Proof

(Membership) We proceed by induction on n. We start with n = 1. If IT= 3*P; : C then deciding
coherence amounts to checking whether there is an answer set I of P; such that fixp, (I) UC is
coherent. This problem is in NP (= Zf) because one can check coherence of a normal stratified
program with constraints in polynomial time (Dantsin et al. 2001). If IT= V" P, : C then deciding
coherence amounts to checking whether there is no answer set I of Py such that fixp (I) UC is
not coherent. This problem is in co-NP (= Hf) because its complement, the problem to decide
whether there is an answer set I of Py such that fixp, (I)UC is not coherent, is in NP (indeed, one
can check coherence of a normal stratified program with constraints in polynomial time).

Next, let us assume that n > 2. Further, let IT be a normal ASP(Q) program of the form (2).
If O; = 3%, then to decide coherence of IT we have to decide whether there is an interpretation
I such that I is an answer set of P; and Ilp, ; is coherent. Checking that / is an answer set of P
is a polynomial-time task (we recall that P; is normal). Checking that Ilp, ; is coherent can be
accomplished with a call to an oracle for a problem in £ | or in IT?_, depending on whether
O, in ITis 3% or V. Indeed, by the induction hypothesis, the problem of deciding coherence for
normal ASP(Q) programs with n — 1 quantifiers and with the outermost quantifier fixed to 3%
(v, respectively) is in 2 | (ITF_,, respectively).

If O; = V¥, to decide coherence of IT we have to decide that for every answer set of Py, Ip, 4
is coherent. The complement to this problem consists of deciding whether there is an an answer
set I of Py such that Ilp ; is not coherent. By a similar argument as above, this problem is in Zf:
(observe that an oracle deciding whether an ASP(Q) program is coherent, can be used to decide

Beyond NP: Quantifying over Answer Sets 3

whether an ASP(Q) program is not coherent). It follows that deciding coherence for programs
with n quantifiers in the prefix and with V"' as the outermost quantifier is in IT%.

(Hardness) Let us consider a QBF ® = QX ...(0,X,@, where Xi,...,X, are disjoint sets of
propositional variables, each Q; = 3 or V, the quantifiers alternate, and ¢ is a 3-CNF or 3-DNF
formula over the variables in X; U...UX,. We encode ® as an ASP(Q) program I1g of the form
(2) as follows. For every i = 1,...,n, we set [J; = O} and P, = {x < not nx | x € X;} U {nx «
not x | x € X} (similarly as in the previous proof). If ¢ is a 3-CNF formula, we define a normal
stratified program with constraints C as in the previous proof. So, assume ¢ is a 3-DNF formula,
say =DV...V Dy, where D; = l} /\l?/\l; and l},ljz,l; €eX1U...UX,, foreach j=1,...,m.
In this case, we set C = {ok; + G(l}),c(lf),o(l;) | j=1,...,m}U{« not oky,...,not oky},
where 6(l) =xif [= x, and 6(I) = nxif [= —x.

It is easy to see that in both cases @ is valid iff I1g is coherent. Moreover, both encodings
can be obtained by a polynomial-time procedure. Now, according to well-known complexity
results (Stockmeyer 1976) the problem to decide validity for QBFs such that (1) Q; =3, ¢ is in
3-DNF, and n is even; (2) Q1 = 3, ¢ is in 3-CNF, and » is odd; (3) Q; =V, ¢ is in 3-CNF, and
nis even; (4) Q1 =V, ¢ is in 3-DNF and n is odd is Zf,) -complete for the cases (1) and (2), and
Hﬁ -complete for the cases (3) and (4). Thus, the hardness follows. [

Theorem 7

(i) There is a polynomial-time reduction that assigns to every propositional nested combined
program IT of depth n, a normal existential ASP(Q) program I, with n > 2 quantifiers such that
answer sets of IT and Iy, correspond to each other.

(i1) There is a polynomial-time reduction that assigns to every propositional normal existential
ASP(Q) program I with n > 2 quantifiers in the prefix, a propositional nested combined program
I1. of depth n such that answer sets of Il and I, correspond to each other.

Proof

Follows from the fact that checking the existence of stable unstable model of combined programs
of depth n is £/ -complete as well as checking coherence of a normal existential ASP(Q) program
with n quantifiers. [

Proposition 1

Unless the polynomial hierarchy collapses, there exists no polynomial reduction that encodes
formulas ¥ = VX 3Y y, where v is a 3-CNF formula, as a combined program P = (P, P,), where
Py and P, are normal logic programs, such that ¥ is valid iff P admits stable unstable models.

Proof
The thesis follows from the observation that checking the validity of ¥ is a IT5-complete prob-
lem, whereas the existence of stable unstable model of the combined program P is £ -complete.

O

