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Appendix A Proofs of Some Theorems

In the following we report the main theorems presented in the paper with their proofs.

Theorem 1
Let P be an ASP program, and let Π be the ASP(Q) program of the form (2), where n = 1,
�1 = ∃st , P1 = P, and C = /0. Then, AS(P) = QAS(Π).

Proof
By definition, M is a quantified answer set of Π if and only if M is an answer set of P and
/0∪ f ixP(M) = f ixP(M) is coherent. The latter condition is trivially true as M is an answer set of
f ixP(M).

Theorem 2
The COHERENCE problem is PSPACE-complete, even under the restriction to normal ASP(Q)
programs.

Proof
(Membership) It is well known that answer sets of a disjunctive logic program can be enumerated
in polynomial space in the size of the program. Let us assume that p is a polynomial providing
that bound. We prove that the coherence of an ASP(Q) program Π of the form (2) can be decided
in space O(n× p(s(Π))), where s(Π) is the size of Π, and n is the number of quantifiers in Π.

To this end, we consider the following recursive algorithm. It consists of enumerating all an-
swer sets of P1. If n = 1, we have Π =�P1 : C. To decide coherence, for each enumerated answer
set M of P1, we decide whether C∪ f ixP1(M) is coherent. Depending on whether �= ∃st or ∀st , if
for some (every) answer set M of P1, C∪ f ixP1(M) is coherent, we return that Π is coherent. Oth-
erwise, we return that Π is not coherent. For n≥ 2, for each enumerated answer set M of P1, we
recursively check whether Π′ = (�2P2 . . .�nPn : C)P1,M is coherent, and decide about coherence
of Π similarly as in the case n = 1, depending on the outermost quantifier.
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By the comment above, we can enumerate all answer sets M of P1 in space O(p(s(Π))) (in-
deed, s(P1) = O(s(Π))). Moreover, if n = 1, testing coherence of C∪ f ixP1(M) can be accom-
plished in time and so, also in space O(s(C ∪ f ix(M))) = O(s(Π)). Thus, if n = 1, the algo-
rithm requires O(p(s(Π))) space, establishing the base case of the induction. If n ≥ 2, we need
O(p(s(Π))) space for enumerating answer sets and, using the induction hypothesis, O((n−1)×
p(s(Π))) space for each recursive call. Thus, the total space requirement is O(n× p(s(Π))),
completing the inductive step.

We now observe that n = O(s(Π)), which shows that the algorithm we described runs in space
O(s(Π)× p(s(Π))). This implies the assertion.

(Hardness) We give a reduction from the problem of deciding the validity of a QBF formula
Φ = Q1x1 . . .Qnxnϕ , where for every i = 1, . . . ,n, Qi ∈ {∃,∀} and xi is a propositional variable,
and where ϕ is a propositional formula over {x1, . . . ,xn}. The problem is PSPACE-complete
even when ϕ is in 3-CNF. Thus, let us assume that ϕ = C1 ∧ . . .∧Cm, where C j = l1

j ∨ l2
j ∨ l3

j

and l1
j , l

2
j , l

3
j ∈ {xi,¬xi | i = 1, . . . ,n}, for each j = 1, . . . ,m. We construct an ASP(Q) program Π

as follows. For each i = 1, . . . ,n, we define Pi = {xi← not nxi; nxi← not xi} and �i = Qst
i . We

also define C = {ok j← σ(lh
j ) | j = 1, . . . ,m and h = 1,2,3}∪{← not oki | i = 1, . . . ,m}, where

σ(l) = xi if l = xi, and σ(l) = nxi if l = ¬xi. It is easy to see that Π is coherent iff Φ is valid.
Moreover, as each program Pi is normal, Π is a normal ASP(Q) program.

Theorem 3
The COHERENCE problem is (i) ΣP

n -complete for normal existential ASP(Q) programs with n
quantifiers in the prefix; and (ii) ΠP

n -complete for normal universal ASP(Q) programs with n
quantifiers in the prefix.

Proof
(Membership) We proceed by induction on n. We start with n = 1. If Π = ∃stP1 : C then deciding
coherence amounts to checking whether there is an answer set I of P1 such that f ixP1(I)∪C is
coherent. This problem is in NP (= ΣP

1 ) because one can check coherence of a normal stratified
program with constraints in polynomial time (Dantsin et al. 2001). If Π = ∀stP1 : C then deciding
coherence amounts to checking whether there is no answer set I of P1 such that f ixP1(I)∪C is
not coherent. This problem is in co-NP (= ΠP

1 ) because its complement, the problem to decide
whether there is an answer set I of P1 such that f ixP1(I)∪C is not coherent, is in NP (indeed, one
can check coherence of a normal stratified program with constraints in polynomial time).

Next, let us assume that n ≥ 2. Further, let Π be a normal ASP(Q) program of the form (2).
If �1 = ∃st , then to decide coherence of Π we have to decide whether there is an interpretation
I such that I is an answer set of P1 and ΠP1,I is coherent. Checking that I is an answer set of P
is a polynomial-time task (we recall that P1 is normal). Checking that ΠP1,I is coherent can be
accomplished with a call to an oracle for a problem in ΣP

n−1 or in ΠP
n−1 depending on whether

�2 in Π is ∃st or ∀st . Indeed, by the induction hypothesis, the problem of deciding coherence for
normal ASP(Q) programs with n− 1 quantifiers and with the outermost quantifier fixed to ∃st

(∀st , respectively) is in ΣP
n−1 (ΠP

n−1, respectively).
If �1 = ∀st , to decide coherence of Π we have to decide that for every answer set of P1, ΠP1,I

is coherent. The complement to this problem consists of deciding whether there is an an answer
set I of P1 such that ΠP1,I is not coherent. By a similar argument as above, this problem is in ΣP

n
(observe that an oracle deciding whether an ASP(Q) program is coherent, can be used to decide
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whether an ASP(Q) program is not coherent). It follows that deciding coherence for programs
with n quantifiers in the prefix and with ∀st as the outermost quantifier is in ΠP

n .

(Hardness) Let us consider a QBF Φ = Q1X1 . . .QnXnϕ , where X1, . . . ,Xn are disjoint sets of
propositional variables, each Qi = ∃ or ∀, the quantifiers alternate, and ϕ is a 3-CNF or 3-DNF
formula over the variables in X1∪ . . .∪Xn. We encode Φ as an ASP(Q) program ΠΦ of the form
(2) as follows. For every i = 1, . . . ,n, we set �i = Qst

i and Pi = {x← not nx | x ∈ Xi}∪{nx←
not x | x ∈ X} (similarly as in the previous proof). If ϕ is a 3-CNF formula, we define a normal
stratified program with constraints C as in the previous proof. So, assume ϕ is a 3-DNF formula,
say ϕ = D1∨ . . .∨Dm, where D j = l1

j ∧ l2
j ∧ l3

j and l1
j , l

2
j , l

3
j ∈ X1∪ . . .∪Xn, for each j = 1, . . . ,m.

In this case, we set C = {ok j ← σ(l1
j ),σ(l2

j ),σ(l3
j ) | j = 1, . . . ,m}∪{← not ok1, . . . ,not okm},

where σ(l) = x if l = x, and σ(l) = nx if l = ¬x.
It is easy to see that in both cases Φ is valid iff ΠΦ is coherent. Moreover, both encodings

can be obtained by a polynomial-time procedure. Now, according to well-known complexity
results (Stockmeyer 1976) the problem to decide validity for QBFs such that (1) Q1 = ∃, ϕ is in
3-DNF, and n is even; (2) Q1 = ∃, ϕ is in 3-CNF, and n is odd; (3) Q1 = ∀, ϕ is in 3-CNF, and
n is even; (4) Q1 = ∀, ϕ is in 3-DNF and n is odd is ΣP

n -complete for the cases (1) and (2), and
ΠP

n -complete for the cases (3) and (4). Thus, the hardness follows.

Theorem 7
(i) There is a polynomial-time reduction that assigns to every propositional nested combined
program Π of depth n, a normal existential ASP(Q) program Πq with n≥ 2 quantifiers such that
answer sets of Π and Πq, correspond to each other.
(ii) There is a polynomial-time reduction that assigns to every propositional normal existential
ASP(Q) program Π with n≥ 2 quantifiers in the prefix, a propositional nested combined program
Πc of depth n such that answer sets of Π and Πc correspond to each other.

Proof
Follows from the fact that checking the existence of stable unstable model of combined programs
of depth n is ΣP

n -complete as well as checking coherence of a normal existential ASP(Q) program
with n quantifiers.

Proposition 1
Unless the polynomial hierarchy collapses, there exists no polynomial reduction that encodes
formulas Ψ = ∀X∃Y ψ , where ψ is a 3-CNF formula, as a combined program P = (P1,P2), where
P1 and P2 are normal logic programs, such that Ψ is valid iff P admits stable unstable models.

Proof
The thesis follows from the observation that checking the validity of Ψ is a ΠP

2 -complete prob-
lem, whereas the existence of stable unstable model of the combined program P is ΣP

2 -complete.


