On the Equivalence Between ADF's and Logic Programs 1

Appendix A Proofs of Theorems
A.1 Theorems and Proofs from Section [3:

Theorem 15
Let D = (S, L,C*) be an ADF™ and, for every s € S, we define C"%® = {R € C! | there is
no R’ € Ct such that R C R'}. Then, for every s € S,

o= \/ A2

ReC™* bepar(s)—R

Proof

According to Equation , Vs = 1 = \/ReC; (/\aERa/\/\bEpar(s)—R —\b). Let ¢o =
V recmen /\bepw(s)fR —b. We will show ¢1 = ¢», i.e., for any 2-valued interpretation v,
v(p1) = v(p2):

o If v(p1) = t, then there exists R € C? such that for all @ € R, v(a) = t and for all
b € par(s) — R, v(b) = f. As there exists R’ € C"*® such that R C R’, we obtain
for all b € par(s) — R/, v(b) = f. Thus, v(p2) = t.

o If v(p1) = f, then for each R € C? there exists a € R such that v(a) = f or
there exists b € par(s) — R such that v(b) = t. In particular, for each R € C"**
there exists a € R such that v(a) = f or there exists b € par(s) — R such that
v(b) = t, andﬂ there exists b € par(s) — R such that v(b) = t, in which R’ =
R — {a € R|v(a) =f}. But then for each R € C"** there exists b € par(s) — R
such that v(b) = t. Thus, v(p2) = f.

O

Theorem 16
Let D = (S,L,C*) be an ADF*. A link (r,s) € L is redundant iff » € R for every
Re M.

Proof
(=)

If (r,s) € L is a redundant link, then, in particular, it is a supporting link, i.e., for
every R C par(s), we have if R € Ct, then (RU{r}) € C*.

By absurd, suppose there exists R € C™% such that r ¢ R. This means R € Ct. But
then we obtain (RU {r}) € Ct. It is an absurd as R € C™%,
(<)

Assume for any R € C"** we have r € R. By absurd, suppose (r,s) € L is not
redundant. Then there exists R’ C par(s) such that Cs(R') =t and Cs(R' U {r}) =f.

As r € R for any R € C"**, there exists R’ € C"* such that R’ U {r} C R” and
Cs(R") = t. But then, as any link in L is attacking, we obtain Cs(R' U {r}) = t. An
absurd. [J

L As D is an ADF*, for each R € C™ for each R’ C R, we have R’ € Ct.
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Corollary 17

Let D = (S,L,C*) be an ADF*. For each s € S, if ¢, is \/ /\ =b and
ReC® bepar(s)—R

L' ={(r,s) | -r appears in s}, then L’ has no redundant link.

Proof

The result is straightforward: from Theorem we know (r,s) € L is a redundant link

iff for any R € C"* we have r € R iff - does not appear in \/ /\ =b iff

ReC™ pepar(s)—R

(r,s)¢ L. O

Theorem 19

Let D = (S,L,C*) be an ADF*, s € S;r € par(s) and C¥(r) = {R€C! |r e R}. A
Ct

link (r,s) € L is redundant iff |C¥(r)| = %

Proof
The proof follows from the definition of ADF ™, a property of Power Sets and the Principle
of Inclusion and Exclusion (PIE).

In D, for every s € S and M C par(s), if Cs(M) = t, then Cs(M') = t for every
M’ C M (Definition [14). Then Ct = {SC R|Re C=} = J{P(R) | R € CI"*},
where C"* = {R € Ct | there is no R' € Ct such that R C R’} and §(R) denotes the
power set of R.

Given a set S, we have [§2(S)| = 25 and that, for each r € S, r is an element of

280 ubsets of S, i.e., of precisely half the subsets of S. Then if r € S N7, we have

2

that r is an element of @ subsets of S, # subsets of T and 2‘S;T| subsets of SNT.

PIE ensures that [§2(S) U §(T)| = [§(S)| + [§(T)| — |§(S) N §£(T)|, which, because

£(SNT) = L(S)NE(T), leads to [§2(S)UL(T)| = |§2(9)|+|82(T)|—|8(SNT)|. That is,
2l T

if € SNT, then [£2(S)U(T)| = 2151 -2/T1 — 215771 and 7 is an element of %S‘Jr? -

2|S;T| = |p(s)§p(T” sets in §2(S) U §2(T). By extension of PIE, if r € ({S1,...,5n},

Ps.... 0.,
then r is an element of lU{ ( 1)2 ( )}l sets in |J {§2(51),...,8(S,)}.
Let (7, s) be a redundant link, then, for all R € C* we have r € R (Theorem ,

|U{@(R) | REC™ and rER}\ ct| ]
= 5= sets in

ie, r € ((Cr*. Then r is an element of

2
O(R) | ReC™™= andr € R} =Ct, e, [Ct(r)| =%l O
2

Corollary 20
Let D = (S,L,C*) be an ADF™. Deciding if a link (r, s) € L is redundant can be solved

in sub-quadratic time on |Ct|.

Proof

Because |Ct(r)| = ‘CT:l, where Ct(r) = {R € Ct | r € R}, to find if (r,s) is a redundant
link, it suffices to check for each R € C?, if r € R. For each R € C?, checking if r € R
can be done by checking, for each s € R, if s = r. Clearly, each R € C? has at most
k = max{|R| | R € |JC™**} elements. Because C™* C C? and C? is subset-complete,
we have |Ct| > 2%, Then k is O(In|Ct|), which means that deciding if a link (r,s) € L is
redundant is O(|Ct|.in(|C%])). O
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Theorem 21
Let D = (S,L,C¥%) be an ADF™, v be a 3-valued interpretation over S, and for each
s € 8, ¢s is the formula \/ /\ —b depicted in Theorem It holds for every

ReC bepar(s)—R
s€ S, T'p)(s) =v(ps).

Proof
For each s € S, let 4 be
ViAo
ReCT bepar(s)—R
It is enough to prove for each s € S, v(ps) = [{w(ps) | w € [v]2}, where [v]s =
{w | w is two-valued and v <; w}. We have three possibilities:

o v(ps) = t iff there exists R € C"** such that for each b € par(s) — R, v(b) = f
iff there exists R € C™% such that for each b € par(s) — R, for each w € [v]q,
w(b) = £ iff for each w € [v]2, w(ps) =t iff [ [{w(ps) | w € [v]2} =t.

o v(ps) = f iff for each R € C"** there exists b € par(s) — R such that v(b) =t
iff for each w € [v]a, for each R € C"**, there exists b € par(s) — R such that
w(b) =t iff for every w € [v]a, w(ps) =f iff [ |{w(ps) | w € [v]2} =1.

e v(ps) = u, then for each R € C"* there exists b € par(s) — R such that v(b) €
{t,u} and there exists R € C* such that for each b € par(s) — R, it holds
v(b) € {f,u}. Hence,

— there exists w € [v]y such that for each R € C"**, there exists b € par(s) — R
such that w(b) = t. This means there exists w € [v]z such that w(ps) = f;

— there exists w’ € [v]g, there exists R € C"** such that for each b € par(s) — R,
it holds w’(b) = f. This means there exists w € [v]2 such that w(ps) = t.

But then we have [ [{w(ps) | w € [v]2} = u.

O

Theorem 22
Let D = (S,L,C%) be an ADF*t. Then v is a stable model of D iff v is a 2-valued
complete model of D.

Proof

(=) Let v be a stable model of D. It is trivial v is a complete model of D as every stable
model is a complete model.

(<)

Let v be a 2-valued complete model of D. We will show v is a stable model of D,
i.e., v is a grounded model of DV = (E,,L",C"), in which E, = {s€ S |v(s) =t},
LY = LN (E, x E,) and for every s € E,,, we set ¢? = ¢ [b/f : v(b) = f].

As v is a complete model of D, if v(s) = t, then v(ps) = U(\/Recym Noepar(s)—r 7b) =
t. This means there exists R € C"® such that for each b € par(s) — R, v(b) = f. Thus,
for each s € E,, ¥ = t. As consequence, F, is the grounded extension of D", ie., vis a
stable model of D. [
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A.2 Theorems and Proofs from Section [J):

Proposition 29
Let P be an NLP. The corresponding Z(P) is an ADF*.

Proof

Let Z(P) = (A,L,C*%) be the ADF corresponding to the NLP P over a set of atoms
A. By absurd, suppose Z(P) is not an ADF ™. This means there exists a link (b,a) € L
for which some R C par(a) we have Cy(R) = f and C,(R U {b}) = t (Definition [13).
As C,(RU{b}) = t, from Definition 28] we obtain there exists B € Supp(a) such that
RU{b} C {c€ par(a) | ~c & B}. Then we can say there exists B € Supp(a) such that
R C {c € par(a) | ~¢ ¢ B}. But then C,(R) = t. An absurd! [

Proposition 30
Let P be an NLP and Z(P) = (A, L,C*%) the corresponding ADF™. The acceptance
condition ¢, for each a € A is given by

Pa \/ (/\ﬁb>.

BeSupp(a) \—beEB

In particular, if Supp(a) = {0}, then ¢, =t and if Supp(a) = (), then p, = f.

Proof
As Z(P) is an ADF™, we obtain from Theorem [15| that for every a € A,

Vol A )

ReCme \ bepar(a)—R

Pa

where C7"** = {R € Ct | there is no R’ € Ct such that R C R'}. From Definition [28] we
know C** = {R C {b € par(a) | =b & B} | B € Supp(a) and there is no R’ € Ct such
that R C R'} = {{b € par(a) | -b & B} | B € min {Supp(a)}}, in which min {Supp(a)}
returns the minimal sets (w.r.t. set inclusion) of Supp(a). Thus for every a € A,

VA w)s v (A

ReC* \bepar(a)—R Bemin{Supp(a)} \—bEB

Pa

But then, we obtain
Vo = \/ (/\ _\b> \/ (/\ —\b>,
Bemin{Supp(a)} \—bEB Besupp(a) \—beEB

O

Theorem 32
Let P be an NLP and Z(P) be the corresponding ADF ™. v is a partial stable model of
P iff v is a complete model of Z(P).
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Proof
Let P be an NLP and Z(P) = (A, L,C*) be the corresponding ADF™. Let v be a 3-
valued interpretation. We will prove v is a partial stable model of P iff v is a complete
model of Z(P), i.e., Qp(v) = v iff for each a € A4, v(a) = v(pa).

We will prove by induction on j that for each a € A, \IITEj (a) = t iff there exists

Supp(r) € Supp(a) such that for each x € Sup;j(r), v(z) =t.

Base Case: We know Uh'(a) =t iffa € % iff there is a rule a <— not by,...,not b, €
P (n > 0) such that for each b;, (1 < i < n), v(b;) = f iff there exists Supp(r) € Supp(a)
such that Suph ' (r) = {=b1,...,—b,} and for each —b; € Sup}l(r)7 v(=b;) = t.

Inductive Hypothesis: Assume for each o’ € A, ¥1,"(a’) = t iff there exists Supp(r) €
Supp(a’) such that for each z € Sup;”(r), v(x) =t.

Inductive Step: We will prove W',"*(a) = t iff there exists Supp(r) € Supp(a) such
that for each z € Sup}," ™' (r), v(z) = t:

We know \IJTB"H(a) =t iff there exists a < a1,...,a,, € % such that for each a;, 1 <
1< m, \I!Tgn(ai) = t iff there exists a < a1,...,a;,,not by,...,not b, € P such that
for each a;, 1 <i < m, \IITE”(ai) =t, and for each b;, 1 < j <n, v(b;) = f iff according
to the Inductive Hypothevsis, there exists a < a1, ...,am,,not by,...,not b, € P such
that for each a;, 1 < ¢ < m, there exists Supp(r;) € Supp(a;) such that for each
x € Sup;”(ri), v(z) = t, and for each b;, 1 < j < n, v(b;) = f iff there exists
@4 aj,...,am,not by,...,not b, € P and there are statements r, r;, (1 <i < m) in
P with Concp(r) = a and Concp(r;) = a; such that for each r;, for each z € Sup;"(ri)7
v(z) = t, and for each bj, 1 < j < n, v(=b;) = t iff there exists Supp(r) € Supp(a)

1

such that for each z € Sup;n'|r (r), v(z) =t.

The above result guarantees for a 3-valued interpretation v of P, Qp(v)(a) = t iff there

exists B = Supp(r) € Supp(a) such that for each x € B, v(z) =t, i.e.,

Qp(v)(a) =t iff v \/ (/\w) =t iff v(pa) = t. (A1)

BeSupp(a) \—-beEB

Similarly now we will prove by induction on j that for each a € A, \IITBj (a) # f iff
there exists Supp(r) € Supp(a) such that for each = € Sup;j(r)7 v(x) #f.

Base Case: We know Wl '(a) # f iff either a € % ora< uc % iff there exists a
rule a < not by,...,not b, € P (n > 0) such that for each b;, (1 <i < n), v(b;) £t
iff there exists Supp(r) € Supp(a) such that Sup}l(r) = {=by,..., b, } and for each
bi, (1 < i < n), v(b;) # t iff there exists Supp(r) € Supp(a) such that for each
—b; € SuplTDl(r)7 v(—b;) # f£.

Inductive Hypothesis: Assume for each o’ € A, U1,"(a’) # £ iff there exists Supp(r) €
Supp(a’) such that for each € Supp"(r), v(z) # f.

Inductive Step: We will prove W1, (a) # f iff there exists Supp(r) € Supp(a) such

that for each z € Sup}," "' (r), v(z) # f:
We know \IITE"H(a) = f iff there exists a < a1,...,a;, € % such that for each a;, 1 <
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i <m, W;”(ai) # f iff there exists a < aq,...,a;,,n0t by,...,not b, € P such that
for each a;, 1 < i <m, \IITE"(ai) # £, and for each b;, 1 < j < n, v(b;) # t iff according
to the Inductive Hypotheéis, there exists a < a1,...,am,not by,...,not b, € P such
that for each a;, 1 < ¢ < m, there exists Supp(r;) € Supp(a;) such that for each
x € Supph”(r;), v(z) # f, and for each b;, 1 < j < n, v(b;) # t iff there exists
a4 ai,...,0m,,0n0t by,...,not b, € P and there are statements r, r;, (1 <7 <m) in
P with Concp(r) = a and Concp(r;) = a; such that for each r;, for each x € Sup;”(ri)7
v(z) # f, and for each bj, 1 < j < n, v(=b;) # f iff there exists Supp(r) € Supp(a)
such that for each = € Suph" ' (r), v(z) # f.

The above result guarantees for a 3-valued interpretation v of P, Qp(v)(a) # f iff there
exists B = Supp(r) € Supp(a) such that for each x € B, v(z) #f, i.e.,

Qp(v)(a) =f iff v \V} (/\4;) =1 iff v(pa) = f. (A2)

Besupp(a) \—bEB
From (Al) and (A2), we conclude v is a partial stable model of P iff for all a € A,

v(a) = Qp(v)(a) =v (\/BESupP(a) (/\ﬁbeB —J))) = v(pq), i.e., v is a complete model of
(P). O

[1]

Theorem 33
Let P be an NLP and Z(P) = (A, L, C*) the corresponding ADF ™. We have

o v is a well-founded model of P iff v is a grounded model of Z(P).
e v is a regular model of P iff v is a preferred model of Z(P).

e v is a stable model of P iff v is a stable model of Z(P).

e v is an L-stable model of P iff v is an L-stable model of Z(P).

Proof
This proof is a straightforward consequence from Theorem

e v is a well-founded model of P iff v is the <;-least partial stable model of P iff
(according to Theorem v is the <;-least complete model of Z(P) iff v is the
grounded model of Z(P).

e visaregular model of P iff v is a <;-maximal partial stable model of P iff (according
to Theorem [32) v is a <;-maximal complete model of Z(P) iff v is a preferred model
of E(P).

e v is a stable model of P iff v is a partial stable model of P such that unk(v) =
{s € S| v(s) =u} = 0 iff (according to Theorem [32) v is a complete model of Z(P)
such that unk(v) = 0 iff (based on Theorem v is a stable model of Z(P).

e v is an L-stable model of P iff v is a partial stable model of P with minimal
unk(v) = {s € S| v(s) = u} (w.r.t. set inclusion) among all partial stable models
of P iff (according to Theorem [32)) v a complete model of Z(P) with minimal unk(v)
among all complete models of P iff v is an L-stable model of Z(P).

O
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A.3 Propositions and Proofs from Section [5:

Proposition 37

Let P be an NLP, where each rule is either a fact or its body has only default literals as
in a + not by,...,not b,. Let Z(P) be the ADF obtained from P via Definition [28 and
Z2(P) the ADF obtained from P via Definition [36] Then Z(P) = E3(P).

Proof

Firstly, let P be an NLP defined over a set A of atoms, where each rule is like a <«
not by,...,not b,. We know from Definitions [25 and [26| Supp(a) = {{-b1,..., by} |
a ¢ not by,...,not b, € P}. Then, according to Definition we obtain the ADF
E(P) = (A, L,C"), where

e L ={(c,a) | a<+mnot by,...,not b, € P and c € {by,...,b,}};
e Foraec A, Ct ={B’' C {be par(a)|-b ¢ {b1,...,bn}|a <« not by,...,not b, € P}}
={B’ Cpar(a) | a + not by,...,not b, € P and {by,...,b,} N B' =0}

According to Deﬁnition we obtain the ADF Z5(P) = (A, Lz, C%), where

o Ly ={(c,a) | a < mnot by,...,not b, € P and c € {by,...,b,}} =L;
e For each a € A, C§, = {B’ € par(a) | a < not by,...,not b, € P,{b1,...,b,} N
B' =0} =Ct.

Hence, 2(P) = Z2(P). O

Proposition 39
Let SF = (A, R) be a SETAF and DFSF = (A, L, C) be the corresponding ADF'. Then,
DF®F is an ADF™.

Proof
In order to show DFF = (A, L,C) is an ADFT, we will guarantee any (r,s) € L is an
attacking link, i.e., for every B C par(s), if Cs(BU{r}) = t, then Cs(B) = t:

Suppose Cs(B U {r}) = t. Then according to the translation from SETAF to ADF,
there is no (Xj;, s) € R such that X; C B U {r}. Thus there is no (X;,s) € R such that
X; C B. This implies Cs(B) =t. [
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