Online appendix for the paper

Omission-based Abstraction for Answer Set Programs

published in Theory and Practice of Logic Programming

Zeynep G. Saribatur and Thomas Eiter

Institute of Logic and Computation
TU Wien, Vienna, Austria
(e-mail: {zeynep,eiter}@kr.tuwien.ac.at)

Appendix A Proofs

Proof of Theorem 14

As for membership in (i), we can compute such a set PB by an elimination procedure as follows. Starting with $A' = \emptyset$, we repeatedly pick some atom $\alpha \in A \setminus A'$ and test the following condition:

(+) for
$$A'' = A' \cup \{\alpha\}$$
, the program $omit(\Pi, A'')$ has no answer set $\widehat{I''}$ such that $\widehat{I''}|_{\overline{A}} = \widehat{I}$.

If (+) holds, we set A' := A'' and make the next pick from $A \setminus A'$. Upon termination, $PB = A \setminus A'$ is a minimal put-back set. The correctness of this procedure follows from Proposition 8, by which the elimination of spurious answer sets is anti-monotonic in the set A of atoms to omit. As for the effort, the test (+) can be done in polynomial time with an **NP** oracle; from this, membership in in **FP**^{NP} follows.

The hardness for $\mathbf{FP}_{\parallel}^{\mathbf{NP}}$ is shown by a reduction from computing, given normal logic programs Π_1, \dots, Π_n on disjoint sets X_1, \dots, X_n of atoms, the answers q_1, \dots, q_n to whether Π_i has some answer set $(q_i = 1)$ or not $(q_i = 0)$.

To this end, we use fresh atoms a_i and b_i and construct

$$\Pi_i' = \{ a_i \leftarrow not \ b_i \\ b_i \leftarrow not \ a_i \\ \bot \leftarrow not \ b_i \\ H(r) \leftarrow B(r), a_i \quad r \in \Pi_i \\ y \leftarrow x, not \ x \quad x, y \in X_i \\ a_i \leftarrow x, not \ x \quad x \in X_i \}$$

Clearly, $\{a_i\}$ is an answer set of $omit(\Pi', X_i \cup \{b_i\})$, as the rule $a_i \leftarrow not\ b_i$ is turned into a choice; it is spurious, as only this rule in Π can derive a_i . However, this violates the constraint $\bot \leftarrow not\ b_i$.

Assuming w.l.o.g. that Π_i includes no constraints, for every set PB of atoms such that $X_i \not\subseteq PB$, the program $omit(\Pi'_i, (X_i \cup \{b_i\}) \setminus PB)$ has some answer set containing a_i , thanks to the abstraction of the rules with $x, not\ x$ in the body; thus $PB = X_i$ is the minimal candidate for

We are indebted to a reviewer pointing out an error in the original reduction, which we replace by an elegant one suggested by the reviewer.

x_i . $\overline{x_i}$.	$i=1\ldots,n$	(A2)
$sat \leftarrow x_i, not \ x_i, \overline{x_i}, not \ \overline{x_i}.$	$i=1\ldots,n$	(A3)
$z_i \leftarrow not \ \overline{z_i}, not \ \overline{x_i}.$	$i=1\ldots,n$	(A4)
$\overline{z_i} \leftarrow not \ z_i, not \ x_i.$	$i=1\ldots,n$	(A5)
$y_j \leftarrow not \overline{y_j}, not sat.$	$j=1,\ldots,m$	(A6)
$\overline{y_j} \leftarrow not \ y_j, not \ sat.$	$j=1,\ldots,m$	(A7)
$sat \leftarrow l_{i_1}^{\circ}, \dots l_{i_{n_i}}^{\circ}.$	$i=1,\ldots,k$	(A8)
$sat \leftarrow y_j, not \ y_j.$	$j=1,\ldots,m$	(A9)
$sat \leftarrow \overline{y_j}, not \ \overline{y_j}.$	$j=1,\ldots,m$	(A10)
$sat \leftarrow z_i, not z_i.$	$i=1\ldots,n$	(A11)
$sat \leftarrow \overline{z_i}, not \ \overline{z_i}.$	$i=1\ldots,n$	(A12)

Fig. A1. Program rules for the proof of Theorem 14-(ii), first part

being a put-back set. Furthermore, if Π_i has no answer set, then \emptyset is the single answer set of $omit(\Pi'_i, \{b_i\})$ while if Π_i has some answer set S, then $omit(\Pi'_i, \{b_i\})$ has the answer set $S \cup \{a_i\}$. That is, X_i is the (unique) \subseteq -minimal put-back set iff Π_i has no answer set.

We construct the final program as $\Pi' = \bigcup_{i=1}^n \Pi'_i$. Then, $\hat{I} = \{a_1, \dots, a_n\}$ is a spurious answer set of $omit(\Pi', \bigcup_{i=1}^n X_i \cup \{b_i\})$, and every minimal put-back set PB for \hat{I} satisfies $b_i \in PB$ iff Π_i is satisfiable; this proves $\mathbf{FP}_{\parallel}^{\mathbf{NP}}$ -hardness.

As for (ii), the membership in $\mathbf{FP}^{\Sigma_2^p}[log, wit]$ holds as we can decide the problem by a binary search for a put-back set of bounded size using a Σ_2^p witness oracle, where the finally obtained put-back set is output.

The $\mathbf{FP}^{\Sigma_2^F}[log, wit]$ hardness is shown by a reduction from the following problem. Given a QBF $\Phi = \exists X \forall Y E(X,Y)$, compute a smallest size truth assignment σ to X such that $\forall Y E(\sigma(X),Y)$ evaluates to true, knowing that some σ with this property exists, where the size of σ is the number of atoms set to true.

More specifically, we assume similar as in the proof of Theorem 12 that $E(X,Y) = \bigvee_{i=1}^k D_i$ is a DNF where every $D_i = l_{i_1} \wedge \cdots \wedge l_{i_{n_i}}$ is a conjunction of literals over $X = \{x_1, \dots, x_n\}$ and $Y = \{y_1, \dots, y_m\}$ that contains some literal over Y; moreover, we assume that E(X,Y) is a tautology if all literals over X are removed from it. To verify the latter assumption, we may rewrite Φ to

$$\exists X \forall Y \bigvee_{x_i \in X} (x_i \land \neg x_i \land y_j) \lor (x_i \land \neg x_i \land \neg y_j) \lor E(X, Y), \tag{A1}$$

for an arbitrary $y_i \in Y$, which has the desired property.

We set up a program Π with rules shown in Figure Appendix A, where $\overline{X} = \{\overline{z}_i \mid x_i \in X\}$, $Z = \{z_1, \dots, z_n\}$ and $\overline{Z} = \{\overline{z}_i \mid z_i \in Z\}$ are copies of X and $\overline{Y} = \{\overline{y}_j \mid y_j \in Y\}$ is a copy of Y, and l° maps a literal l over $X \cup Y$ to default literals over $Y \cup \overline{Y} \cup Z \cup \overline{Z}$ as follows:

$$l^{\circ} = \begin{cases} not \ z_i, & \text{if } l = \neg x_i, \\ not \ \overline{z_i}, & \text{if } l = x_i, \\ y_j, & \text{if } l = y_j, \\ \overline{y}_j & \text{if } l = \neg y_j. \end{cases}$$

We note that Π has no answer set: due to the facts x_i and \bar{x}_i , none of the rules (A3)–(A5) is

applicable and z_i , \bar{z}_i must be false in every answer set of Π . This in turn implies that in (A8) all not z_i , not \bar{z}_i literals are true. Now if we assume that sat would be true in an answer set of Π , then no rule in (A6) or (A7) would be applicable to derive y_j resp. \bar{y}_j , and then by the assumption on E(X,Y) no rule (A8) is applicable; this means that sat is not reproducible and thus not in the answer set, which is a contradiction. If on the other hand sat would be false in an answer set, then the rules (A6) and (A7) would guess a truth assignment to Y; by the tautology assumption on E(X,Y), some rule (A8) is applicable and derives that sat is true, which is again a contradiction.

We then set $A = \mathcal{A}$ and $\hat{I} = \emptyset$; clearly \hat{I} is a spurious answer set of $omit(\Pi, A) = \emptyset$.

The idea behind this construction is as follows. As long as we do not put back sat, the abstraction program $omit(\Pi, A')$ will have some answer set. Furthermore, if we do not put back (a) either x_i or $\overline{x_i}$, for all i = 1, ..., n, (b) both z_i and $\overline{z_i}$ for all i = 1, ..., n and (c) all y_i , $\overline{y_i}$, for $j = 1, \dots, m$, then we can guess by (A3) resp. (A9)–(A12) that sat is true, which again means that some answer set exists. The rules (A4)–(A5) serve then to provide with z_i and $\overline{z_i}$ access to x_i and its negation $\neg x_i$, respectively. More in detail, if we put back x_i but not $\overline{x_i}$, then $omit(\Pi, A')$ contains the guessing rule $r_i: \{z_i\} \leftarrow not \ \overline{z_i}$ and the rule $\overline{r_i}: \overline{z_i} \leftarrow not \ z_i, not \ x_i$ resulting from (A4) and (A5), respectively. As in $omit(\Pi, A')$ the rule $\overline{r_i}$ is inapplicable and no other rule has $\overline{z_i}$ in the head, the atom $\overline{z_i}$ must be false; hence the rule r_i amounts to a guess $\{z_i\}$. If z_i is guessed to be true, then not z_i and not $\overline{z_i}$ faithfully represent the value of the literals $\neg x_i$ and x_i (where x_i is true); this is injected into the rules (A8). On the other hand, if z_i is guessed false, then both not z_i and not $\overline{z_i}$ are true, which represents that both $\neg x_i$ and x_i are true; if guessing z_i false leads to a (spurious) answer set of the abstract program $omit(\Pi, A')$ (in which sat must be necessarily false), no rule (A8) in which z_i or $\overline{z_i}$ occurs can fire. As z_i and $\overline{z_i}$ occur only negated in the rules (A8), guessing z_i true (where z_i and $\overline{z_i}$ faithfully represent x_i and $\neg x_i$, respectively) leads then also to an answer set of $omit(\Pi, A')$. Thus, with respect to answer set existence, z_i and $\overline{z_i}$ serve to access x_i and $\neg x_i$. The case of putting back $\overline{x_i}$ but not x_i is symmetric.

The rules (A6)–(A7) serve to guess an assignment μ to Y (but this only works if sat is false). The rules (A8) check whether upon a combined assignment $\sigma \cup \mu$, the formula $E(\sigma(X), \mu(Y))$ evaluates to true; if this is the case, sat is concluded which then however blocks the guessing in (A6)–(A7), and thus no answer set exists. Consequently, $E(\sigma(X), \mu(Y))$ evaluates to true for all assignments $\mu(Y)$, i.e., $\forall Y E(\sigma(X), Y)$ is true iff sat can be concluded for each guess on y_i and $\overline{y_i}$, i.e., no answer set is possible for it.

In conclusion, it holds that some put-back set of size s = |X| + 2|X| + 2|Y| + 1, which is the smallest possible here, exists iff Φ evaluates to true. Note that if we put back a single further atom, for some $x_i \in X$ we have that $\overline{x_i}$ is also a fact in $omit(\Pi, A')$, and thus by the special form of E(X,Y) in (A1), regardless of how one guesses on y_j and $\overline{y_i}$, one can derive *sat* again. Thus the closest put-back set has either size s or s+1.

In order to discriminate among different $\sigma(X)$ and select the smallest, we add further rules:

$$sat \leftarrow not \, \overline{z_i}, c_i \qquad i = 1, \dots, n$$
 (A13)

$$sat \leftarrow not \, \overline{z_i}, not \, z_i, c_1, \dots, c_l$$
 (A14)

where all c_i are fresh atoms; we fix l below.² Intuitively, when x_i is put back, then $\neg z_i$ evaluates to true and c_i must be put back as well in order to avoid guessing on sat. Furthermore, if both x_i and $\overline{x_i}$ are put back, which means that $not z_i$ and $not \overline{z_i}$ are true in every answer set, then all

² Alternatively, for (A14) rules $sat \leftarrow not \ \overline{z_i}, not \ z_i, c_j, \ j=1,...,l$ may be used.

 c_1, \ldots, c_l must be put back as well. If exactly one of x_i and $\overline{x_i}$, for all $i=1,\ldots,n$ is put back and the corresponding assignment $\sigma(X)$ makes $\forall YE(\sigma(X),Y)$ true, then the closest put-back set has size $s+1+|\sigma|$; if we let l be large enough, then putting both x_i and $\overline{x_i}$ back is more expensive than putting back a proper assignment and the associated c_i atoms; in fact l=n is sufficient. As the final program Π is constructible in polynomial time from Φ , and the desired smallest $\sigma(X)$ is easily obtained from any smallest put-back set PB for \hat{I} the claimed result follows. \square

Proof of Theorem 19

- 1. Assume towards a contradiction that $X' = X \cup \{ko(n_r) \mid r \in \Pi_A^c\} \cup \{ap(n_r) \mid r \in \Pi^X\} \cup \{bl(n_r) \mid r \in \Pi \setminus \Pi^X\}$ is not answer set of $\Pi' \cup Q_{\hat{I}}^{\overline{A}}$, where $\Pi' = \mathcal{T}_{meta}[\Pi] \cup \mathcal{T}_{P}[\Pi] \cup \mathcal{T}_{C}[\Pi, \mathscr{A}] \cup \mathcal{T}_{A}[\mathscr{A}]$. This means that either (i) X' is not a model of $(\Pi' \cup Q_{\hat{I}}^{\overline{A}})^{X'}$, or (ii) X' is not a minimal model of $(\Pi' \cup Q_{\hat{I}}^{\overline{A}})^{X'}$.
 - (i) There is some rule $r \in (\Pi' \cup Q_{\hat{I}}^{\overline{A}})^{X'}$ such that $X' \models B(r)$, but $X' \not\models H(r)$. We know that X is an answer set of $\Pi \cup Q_{\hat{I}}^{\overline{A}}$, and thus $X \in AS(\Pi)$. By Theorem 17, we know that $X \cup \{ap(n_r) \mid r \in \Pi^X\} \cup \{bl(n_r) \mid r \in \Pi \setminus \Pi^X\}$ is an answer set of $\mathscr{T}_{meta}[\Pi]$. As X' contains no ab atoms, r cannot be in $\mathscr{T}_{P}[\Pi] \cup \mathscr{T}_{C}[\Pi,\mathscr{A}] \cup \mathscr{T}_{A}[\mathscr{A}]$. So r must be in $Q_{\hat{I}}^{\overline{A}}$. The rule r can be in two forms: (a) $\bot \leftarrow not \alpha$. for some $\alpha \in \hat{I}$, or (b) $\bot \leftarrow \alpha$. for some $\alpha \in \overline{A} \setminus \hat{I}$.
 - (a) As $X' \models B(r)$, then $\alpha \notin X'$ which means $\alpha \notin X$. However having $r \in (\Pi \cup Q_{\hat{I}}^{\overline{A}})^X$ contradicts that X is an answer set of $\Pi \cup Q_{\hat{I}}^{\overline{A}}$.
 - (b) Similarly as (a), we reach a contradiction.
- (ii) Let $Y' \subset X'$ be a model of $(\Pi' \cup Q_{\hat{I}}^{\overline{A}})^{X'}$, for some $Y' = Y \cup \{ko(n_r) \mid r \in \Pi_A^c\} \cup \{ap(n_r) \mid r \in \Pi^X\} \cup \{bl(n_r) \mid r \in \Pi \setminus \Pi^X\}$. As the auxiliary atoms are fixed, $Y \subset Y'$ must hold. We claim that Y is then a model of $(\Pi \cup Q_{\hat{I}}^{\overline{A}})^X$, which is a contradiction. Assume Y is not such a model. Then there is a rule $r \in (\Pi \cup Q_{\hat{I}}^{\overline{A}})^X$ such that $Y \models B(r)$ but $Y \nvDash H(r)$. There are two cases: (a) $r \in \Pi$, or (b) $r \in Q_{\hat{I}}^{\overline{A}}$.
 - (a) By definition of Y', this means that $Y' \models B(r)$ and $Y' \not\models H(r)$. However, this contradicts that Y' is a smaller model of $(\Pi' \cup \mathcal{Q}_{\hat{I}}^{\overline{A}})^{X'}$ than X' since $H(r)' \in Y'$.
 - (b) In both versions of r in $Q_{\hat{I}}^{\overline{A}}$, we get that $r \in (\Pi' \cup Q_{\hat{I}}^{\overline{A}})^{X'}$ which contradicts that Y' is a model of $(\Pi' \cup Q_{\hat{I}}^{\overline{A}})^{X'}$.
- 2. Assume towards a contradiction that $(Y \cap \mathscr{A})$ is not an answer set of $\Pi \cup Q_{\hat{I}}^{\overline{A}}$. This means that either (i) $(Y \cap \mathscr{A})$ is not a model of $(\Pi \cup Q_{\hat{I}}^{\overline{A}})^{(Y \cap \mathscr{A})}$, or (ii) $(Y \cap \mathscr{A})$ is not a minimal model of $(\Pi \cup Q_{\hat{I}}^{\overline{A}})^{(Y \cap \mathscr{A})}$.
 - (i) There is some rule $r \in (\Pi \cup \mathcal{Q}_{\hat{I}}^{\overline{A}})^{(Y \cap \mathscr{A})}$ such that $(Y \cap \mathscr{A}) \models B(r)$ but $(Y \cap \mathscr{A}) \nvDash H(r)$. As we have $(Y \cap \mathscr{A}^+) \in AS(\mathscr{T}_{meta}[\Pi])$, by Theorem 17, we get $(Y \cap \mathscr{A}) \in AS(\Pi)$, thus r cannot be in Π . However, $r \in \mathcal{Q}_{\hat{I}}^{\overline{A}}$ also cannot hold, since then r will be in $(\mathcal{Q}_{\hat{I}}^{\overline{A}})^Y$ and we know that $Y \models \mathcal{Q}_{\hat{I}}^{\overline{A}}$. Thus $(Y \cap \mathscr{A})$ must be a model of $(\Pi \cup \mathcal{Q}_{\hat{I}}^{\overline{A}})^{(Y \cap \mathscr{A})}$.
- (ii) Assume there exists some $Z \subset (Y \cap \mathscr{A})$ such that $Z \models (\Pi \cup Q_{\hat{f}}^{\overline{A}})^{(Y \cap \mathscr{A})}$. We claim that then $Z' = Z \cup \{ko(n_r) \mid r \in \Pi_A^c\} \cup \{ap(n_r) \mid r \in \Pi'^Y\} \cup \{bl(n_r) \mid r \in \Pi' \setminus \Pi'^Y\}$ is a model of $(\Pi' \cup Q_{\hat{f}}^{\overline{A}})^Y$, which achieves a contradiction. Now let us assume that this is not the case. Then there is some rule $r \in (\Pi' \cup Q_{\hat{f}}^{\overline{A}})^Y$ such that $Z' \models B(r)$ and $Z' \nvDash H(r)$. The rule r cannot

be in $(Q_{\hat{I}}^{\overline{A}})^Y$, since it contradicts that $Y \models (Q_{\hat{I}}^{\overline{A}})^Y$. The rest of the cases for r also results in a contradiction.

- (a) If $r \in \mathscr{T}_{meta}[\Pi]^Y$, then r can only be of form $H(r) \leftarrow ap(n_r)$, $not\ ko(n_r)$, where $H(r) \neq \bot$. So we have $ap(n_r) \in Z'$, $ko(n_r) \notin Z'$ and $H(r) \notin Z'$. For rule r, rules of form 1 in Definition 9 are created in $\mathscr{T}_P[\Pi]$. However, since having $H(r) \notin Y$ causes to have the rule $ab_p(n_r) \leftarrow ap(n_r)$, $not\ H(r)$ in $\mathscr{T}_P[\Pi]^Y$, $H(r) \in Y \setminus Z'$ should hold, which however contradicts that $Z \subset (Y \cap \mathscr{A})$, as then $H(r)' \in Z'$ would hold.
- (b) If $r \in \mathscr{T}_P[\Pi]^Y$, then r can only be of form $H(r) \leftarrow ap(n_r)$. As $Z' \nvDash H(r)$ we have $H(r)' \in Z'$ which contradicts that $Z \subset (Y \cap \mathscr{A})$. A similar contradiction is reached if $r \in \mathscr{T}_C[\Pi, \mathscr{A}]^Y$, since that means $\alpha \in Z'$ while $\alpha \notin Y$.
- (c) Having $r \in \mathscr{T}_A[\mathscr{A}]^Y$ means that $Z' \nvDash ab_l(\alpha)'$ for some $\alpha \in \mathscr{A}$, i.e., $ab_l(\alpha) \in Z'$, which contradicts $Y \cap AB_A(\Pi) = \emptyset$.