Elaboration Tolerant Representation of MDP via pBC+ 1

Appendix A Proofs

Proofs of Theorem 1, 2 and Corollary 1 can be found in the supplimentary material of (Lee and
Wang 2018).

A.1 Propositions and Lemmas

We write {ag, ay . .., a,—1)" (each a; € A)to denote the formula0:agAl:ay - -Am—1:a,,_1.
The following lemma tells us that any action sequence has the same probability under T'r (D, m).
For any multi-valued probabilistic program II, let pf1, . .., pf,, be the probabilistic constants

inIl,and v; 1, ..., v; k,, each associated with probability p; 1, ..., p; i, resp. be the values of pf;
(1 € {1,...,m}). We use T'CTy be the set of all assignments to probabilistic constants in II.
Lemma 1
For any p/BC+ action description D and any action sequence a = {(ag, a1, - - ., Gm—1), We have
1
P, aly= ———.
Tr(D,m)() (|O’aCt‘ ¥ 1)m

Proof.

PTT(D,m) (at)
= Z PTT(D,m) (I)

IEa’
T is a stable models of T'r(D, m)

= (In Tr(D,m) every total choice leads to (|o**| + 1)™ stable models. By Proposition 2 in (Lee and Wang 2018),)

Z WTr(D,m) (I)
t (‘o-act| + 1)m
I is a stable models of T'r(D, m)

> [[Mnu(c=v)

tc€TCry(p,m)Cc=VELc
B (o + 1™
= (Derivations same as in the proof of Proposition 2 in (Lee and Wang 2018))
1

O

The following lemma states that given any action sequence, the probabilities of all possible
state sequences sum up to 1.

Lemma 2

For any pBC+ action description D and any action sequence a = (ag, a1, . .., am—1), we have

> Propm((so,. .., sm)t [af) = 1.

80y--ySm Si ES

2 Wang & Lee

Proof.
Z PTT(D,m)(<SO7~'~7Sm/>t ‘ at)
805.+38m:SiES
= (By Corollary 1 in (Lee and Wang 2018))
Z H p(si, @i, Si1)
50,.-,5m:5;€8i€{0,...,m—1}
= Z (p(s0) - Z H p(si, @i, Sit1))
soES 81,.-,8m:8:€8ie{1,..., m—1}
= (p(s0)- > (p(s0,a0,51) - Y T pGsiaisivn)
soES s1€S 52,..,8m:8;€8i€{2,...,m—1}
= Z (p(So) ! Z (p(807 ao, 81) e Z p(smflv G, Sm) s))
S0ES s1E€S smES
=1.
O

The following proposition tells us that the probability of any state sequence conditioned on
the constraint representation of a policy 7 coincide with the probability of the state sequence
conditioned on the action sequence specified by m w.r.t. the state sequence.

Proposition 4

For any pBC+ action description D, state sequence s = (g, $1, - - - , Sm), and a non-stationary
policy 7, we have

PTT(D,m) (St ‘ Cﬂ',m) =
PTT(D,m) (St ‘ <7T(807 O)a 7T(817 1)5 s ,7T(87,L_1, m— 1)>t)

Proof.

Pro(p,m) (8" | Crim)
_ PTr(D,m)(<SU7 ey 8m>t AN Cﬂ-,m)
B PTr(D,m)(CW,m)
~ Pre(,m)((50,7(50,0) .., W(8m—1,m — 1), 5)"
B PTr(D,m)(Cw,m)
_ Prypm)((m(50,0) .., m(8m—1,m = 1), 8m)" [0:50) - Pry(p,m)(0:50)
Z PTr(D,m)(<SE)’7T(3670)"'77T(S;n—1’m_ 1)’S;n>t) .

’ TARYU
805 »Siy 185 ES

We use k(so, . . ., Sm) as an abbreviation of

PTr(D,m)(<7T(507 0)7 s 77T(5m—17 m— 1)>t)

Elaboration Tolerant Representation of MDP via pBC+ 3

We have

PTT(D,m) (St | Cﬂ',m)

Pryp,m) ({153 8m)" | (50, 7(50,0), ..., T(Sm—1,m — 1)) - Prp(p,m)(0:50) - k(s0,...,5m)

E PTr(D,m)(<5/17 sy 8{rn>t | <S/Oa W(Séa 0)7 sy W(S;rz—hm - 1)>*) : PTT(D,m) (086) : k‘(Sé, ceey 3;71)

’ 7!
8018018, €S

1
= (By Lemma 1, for any sq, ..., s$mn(s; € S), we have k(sg,...,8n) = ——————)
(o-act| + 1)m
PTT(D,m)(<817 ey Sm>t ‘ <807 71—(80’ 0)7 ey T‘—(smflv m—]-)>t) : PTT(D,'m)(O : SO) : m
Z PT'r(D,m)(<S/17 ceey Slm>t | <563 71—(563 O)a oo 371—(5;11717 m — 1)>t) : PTT'(D,m)(O:Sz)) ! m

S{yyeeesSh,1SLES
PTT'(D,’!YL)(<517 cees 5m>t ‘ <50a ’/T('SOa 0)7 R ’/T('Sm—lv m— 1)>t)) PTT(DJ”) (0 : 50)
E PTT(D,M)(<5/1> SR S;n>t | <367 77(56’ 0)7) W(S;n—la m— 1)>t) : PTT(Dml)(O:S/O)

! !
8{yeeesSh, 185 ES

= (By Lemma 2, the denominator equals 1)
PTT(D,m)(<Sl7 ceey Sm>t ‘ <SU7 ﬂ—(SOu 0)7 ey ﬂ—(smfl? m — 1)>t) . PTT(D,m)(O : 80)

= PTT(D,m)(<307 8154 Sm>t | <7T(SOv 0)7 R 7T(5m —1,m— 1)>t)

O

A.2 Proofs of Proposition 2, Proposition 3, Theorem 3 and Theorem 4

The following proposition tells us that, for any states and actions sequence, any stable model of
Tr(D,m) that satisfies the sequence has the same utility. Consequently, the expected utility of
the sequence can be computed by looking at any single stable model that satisfies the sequence.
Proposition 2 For any two stable models X1, X2 of T'r(D,m) that satisfy a history

h = (sp, a0, $1,01,...,Am_1, Sm), we have

Urr(p,m)(X1) = Urr(pm)(X2) = E[Ury(p,m)(h")].

Proof. Since both X; and X, both satisfy h?, X; and X, agree on truth assignment on
0%t U of!. Notice that atom of the form utility(v,t) in 7r(D,m) occurs only of the form
(21), and only atom in 0%¢ U 0'7];[occurs in the body of rules of the form (21).

e Suppose an atom utility(v,t) is in X;. Then the body B of at least one rule of the form
(21) with utility(v,t) in its head in Tr(D,m) is satisfied by X;. B must be satisfied
by X5 as well, and thus utility(v,t) is in X5 as well.

e Suppose an atom utility(v,t),isnotin X;. Then, assume, to the contrary, thatutility(v, t)
is in X5, then by the same reasoning process above in the first bullet, utility(v, t) should
be in X as well, which is a contradiction. So utility(v,t) is also not in Xs.

So X and X, agree on truth assignment on all atoms of the form utility(v,t), and conse-

4 Wang & Lee
quently we have Ury(p m) (X1) = Upr(p,m)(X2), as well as

E[Ur(p,m)(h")]

= 3 Prewum (|0 Urymy (1
IEh?

=Urr(D,m)(X1) - ZPTT(D,m)(I | h')
IFht

= (The second term equals 1)
UTr(D,m) (Xl) .

O

The following proposition tells us that the expected utility of an action and state sequence can
be computed by summing up the expected utility from each transition.

Proposition 5

For any pBC+ action description D and a history h = (s, ag, S1,- .., @m—1, Sm), such that
there exists at least one stable model of T'r(D, m) that satisfies h, we have

E[UTT(D,m)(ht)] = Z u(si,ai,si+1).
1€{0,...,m—1}

Proof. Let X be any stable model of T'r(D,m) that satisfies ht. By Proposition 2, we have

EUz(p,m)(h")]
= UTT(D,m) (X)

= > > v)

i€{0,...,m—1} utility(v,i,x)«(i+1:F)A(i:G)eTr(D,m)
X satisfies (i +1: F) A (i : G)

= > > v)

1€{0,...,m—1} utility(v,(_),x)<—(1:F)/\(O:G)ETT(D,WL)
0: X" satisfies (1 : F) A (0: G)

Z Urr(p,1)(0: X")

1€{0,...,m—1}

(By Proposition 2)
Z ElUrr(p,1)(0: 5,0 a4,1: si41)]
= Z U(Si, a;, Si+1).
1€{0,...,m—1}
O

Proposition 3 Given any initial state s that is consistent with D, ;:, for any policy w, we have

E[UTT(D,m) (Cﬂ,m A <50>t)] =
Z RD(hTF(S)t) X PTT(D,m) (St A Cﬂ,m)-

Elaboration Tolerant Representation of MDP via pBC+ 5

Proof. We have

E[UTT(D,m) (Cﬂ',m A <50>t)]
= Z PTr(D,m) (I ‘ 0:50 A Cﬂ,m) : UTT(D,m) (I)

IF0:50ACr

= Z PTT(D,m) (I | 0:50 A CTF,M) : UTT(D,m) (I>
IF0:50 ACr m
I is a stable model of T'r (D, m)

= (We partition stable models I according to their truth assignment on Uﬁ)

> > Pro(p.m) (I 0:50 A Crm) - Urr(p.my (1)

S=(81,...,5m):86,ES IES'ACr,m
I is a stable model of T'r(D, m)

= (Since I F s' A Cy ,,, implies I F h(s), by Proposition 2 we have)
> > Pry(pm)(I | 0:50 A Crm) - ElUry(D.m) (B (5))]

S=(81,..-,8m):8; €S IES'ACr m
I is a stable model of T'r (D, m)

= Z PrT'r’(D,m) (St | 0:s0 A Cw,m) : E[UTT(D,m) (hﬂ'(s)t)]

= Z PTTT(D,m) (St | 0:50 A Cﬂ’m) . E[UTT(D,m) (St A Cﬂ,m)]

S=(81,...,8m):8; €S

= Z RD (hﬂ(s)t) X PT?"(D,nL) (St A Cﬂ',m)~

S=(S1,...,8m):8; €S

0
Theorem 3 Given an initial state s) € S that is consistent with D,,;;, for any non-stationary
policy 7 and any finite state sequence s = (Sg, $1,- - -, Sm—1, Sm) such that each s; in S (i €

{0,...,m}), we have

o Rp(hx(s)) = Rap)(hx(s))
L PTT(D,m)(St | (s0)' A Crm) = PM(D)(hTr(S))~

Proof. We have

Rp(hx(s))
= E[UTT(D,m) (St A C‘n’,mﬂ
= (By Proposition 5)
Z U(Siaﬂ-(siai)asiﬁ‘l)

1€{0,....m—1}

= Z R(s;,m(84,1), 8i+1)

6 Wang & Lee

and

PTr(D,m) (St | <50>t A C‘n’,m)

= (By Proposition 4)
PrTr(D,m) (St | hﬂ'(s)t)

= (By Corollary 1 in (Lee and Wang 2018))

H p(<8iaﬂ-(8iai)a3i+l>)

i€{0,...,m—1}

= Pr(py(hx(s))

O

Theorem 4 For any nonnegative integer m and an initial state sy € S that is consistent with
D;it, we have

argmax E[Ur,(p,m)(Cr,m A (s0)")] = argmax ERy(p) (T, 50).

7 is a policy

Proof. We show that for any non-stationary policy 7,

E[UTT(D,m) (C'rr,m A <50>t)} = ERJW(D) (71—7 50)'
We have

E[UT’r'(D,m) (CTF.,m A <50>t)]
= (By Proposition 3)

Z Rp(ha(s)) X Pro(p,m) (s’ | (s0)* A Crom).

S=(81,..-,8m):8; €S
= (By Theorem 3)

> R (py(hx(s)) - Papy(hx(s))

= ERM(D)(W,S()).

Appendix B PBCPLUS2MDP System Description

We describe the exact procedure performed by PBCPLUS2MDP in Algorithm 2. PBCPLUS2MDP
uses LPMLN2ASP, which is component of LPMEN 10 system (Lee et al. 2017), for exact infer-
ence to find states, actions, transition probabilities and transition rewards. PBCPLUS2MDP uses
MDPTOOLBOX for solving the MDP generated from the input action description.

The input is the LPM™Y translation Tr(D, m) of a pBC+ action description D, a time horizon
T, and a discount factor +y. In the input LpMLN program, we use atoms of the form £1_x(v1, ..., vy, t, 1),
(and £1_x(v1, ..., Um, f,1)) to encode fluent constant z(vy, ..., v,,) is true, (and false, resp.) at
time step 7. Similarly, action constants and pf constants are encoded with atoms with prefix act _
and pf_, resp. Tr(D,m) is parametrized with maximum step m, for executing with different
settings of maximum time step. As an example, The LPMIN translation of the pBC+ action
description in Section 5 (robot and blocks) is listed in Appendix C.

Elaboration Tolerant Representation of MDP via pBC+ 7

Algorithm 2 PBCPLUS2MDP system
Input:

1. Tr(D, m): A pBC+ action description translated into LPMEN program, parameterized with maxstep m, with
states set S and action sets A

2. T': time horizon

3. ~y: discount factor

Output: Optimal policy
Procedure:

1. Execute LPMLN2ASP on T'r(D, m) with m = 0 to obtain all stable models of T'r(D, 0); project each stable
model of Tr(D,0) to only atoms corresponding to fluent constant (marked by £1_ prefix); assign a unique
number idz(s) € {0, ..., |S| — 1} to each of the projected stable model s of T'r(D, 0);

2. Execute LPMLN2ASP on T'r(D,m) with m = 1 and the clingo option ——project to project stable models

to only atoms corresponding to action constant (marked by act._ prefix); assign a unique number idz(a) €

{0,...,|A| — 1} to each of the projected stable model a of Tr(D, 1);

Initialize 3-dimensional matrix P of shape (|A/[, |S|, |S|);

Initialize 3-dimensional matrix R of shape (|A[, [S],|S|);

For each state s € S and action a € A:

(a) execute LPMLN2ASP on T'r(D,m) U {0 : s} U {0 : a} U ST_DEF with m = 1 and the option —q
"end_state", where ST_DFEF contains the rule

vk

{end_state(idz(s)) + 1:s|s € S}.

(b) Obtain Pp,p 1y(1:s | 0:s,0: a) by extracting the probability of Pr,(p 1)(end-state(idz(s")) |
0:s,0: a) from the output;

(¢) P(idz(a),idz(s),idz(s")) <= Pry(p,1y(1:s'[0:5,0:a);

(d) Obtain E[Up,.(p,1)(1:s",0: 5,0 : a)] from the output by selecting an arbitrary answer set returned that
satisfies 1 : s A0 : s A0 : aand sum up the first arguments of all atoms with predicate name utility
(By Proposition 2, this is equivalent to E[Up,(p 1)(1:s',0:5,0: a))).

() R(idxz(a),idx(s),idx(s")) <= E[Upp(p,1y(1:5,0:5,0:a)l;

6. Call finite horizon policy optimization algorithm of PYMDPTOOLBOX with transition matrix P, reward matrix
R, time horizon T" and discount factor ~y; return the output.

To construct the MDP instance M (D) = (S, A, T, R) corresponding to D, PBCPLUS2MDP
constructs the set .S of states, the set A of actions, transition probability function 7" and reward
function R one by one.

By definition, states of D are interpretations I/! of o/! such that 0: I7! are residual stable mod-
els of Dy. Thus, PBCPLUS2MDP finds the states of D by projecting the stable models of Tr(D, 0)
to atoms with prefix £1_. LPMLN2ASP is executed to find the stable models of T'r(D, 0). The
CLINGO option ——option is used to project stable models to only atoms with £1_ prefix. Simi-
larly, PBCPLUS2MDP finds the actions of D by projecting the stable models of T'r(D, 1) to atoms
with prefix act_.

The transition probability function 7" and the reward function R are represented by three di-
mensional matrices, specifying the transition probability and transition reward for each transition
(s, a, s"). Transition probabilities are obtained by computing conditional probabilities Pr,p,1)(1:
s'| 0:s,0:a) for every transition (s, a, s’), using LPMLN2ASP. Transition reward of each transi-
tion (s, a, s’) are obtained by computing the utility of any stable model of T'r(D, 1) that satisfies
0:sA0:aA1:s. Thisis justified by Proposition 2.

Finally, the constructed MDP instance M (D), along with time horizon 7" and discount factor
7, is used as input to MDPTOOLBOX to find the optimal policy.

The system has the following dependencies:

e PYTHON 2.7

8 Wang & Lee

e CLINGO python library: https://github.com/potassco/clingo/blob/master/
INSTALL.md

e LPMLN2ASP system: http://reasoning.eas.asu.edu/lpmln/index.html

¢ MDPTOOLBOX: https://pymdptoolbox.readthedocs.io/en/latest/

The system PBCPLUS2MDP, source code, example instances and outputs can all be found at
https://github.com/ywang485/pbcplus2mdp.

Appendix C PBCPLUS2MDP Input Encoding of the Robot and Block Example

astep(0..m-1).
step(0..m).
boolean(t; f).

block (bl; b2; b3).
location(11; 12).

%% UEC

:— f1_Above (X1, X2, t, I), fl_Rbove(X1l, X2, £, I).

:— not fl_Above (X1, X2, t, I), not fl Above(X1l, X2, £, I), block(X1l), block(X2), step(I).
:— f1 _TopClear(X, t, I), fl_TopClear(X, £, I).

:— not fl TopClear(X, t, I), not fl TopClear(X, £, I), block(X), step(I).

:— f1_GoalNotAchieved(t, I), fl GoalNotAchieved(f, I).

:— not fl GoalNotAchieved(t, I), not fl GoalNotAchieved(f, I), step(I).

- f1 At (X, L1, I), fl At(X, L2, I), L1 !=12.

:—not f1 At(X, 11, I), not f1 At(X, 12, I), block(X), step(I).

:— f1_OnTopOf (X1, X2, t, I), fl_OnTopOf (X1, X2, £, I).

:— not f1_OnTopOf (X1, X2, t, I), not f1 OnTopOf (X1, X2, £, I), block(X1l), block(X2), step(
I).

:— act_StackOn (X1, X2, t, I), act_StackOn(X1l, X2, £, I).

:— not act_StackOn (X1, X2, t, I), not act_StackOn(X1l, X2, f, I), block(X1l), block (X2),
astep(I).

:— act_MoveTo(X, L, t, I), act_MoveTo(X, L, £, I).

:— not act_MoveTo(X, L, t, I), not act MoveTo(X, L, £, I), block(X), location(L),astep(I).

:— pf_Move(t, I), pf Move(f, I).
:— not pf_Move(t, I), not pf Move(f, I), astep(I).

$ — PF(D) —————

%% Probability Distribution
@log(0.8) pf_Move(t, I) :— astep(I).
@log(0.2) pf_Move(f, I) :— astep(I).

%% Initial State and Actions are Random

{f1 OnTopOf (X1, X2, B, 0)} :— block(X1l), block(X2), boolean(B) .

{f1. At(X, L, 0)} :— block(X), location(L), boolean(B) .

{act_StackOn(X1, X2, B, I)} :— block(X1l), block(X2), boolean(B), astep(I).
{act_MoveTo(X, L, B, I)} :— block(X), location(L), boolean(B), astep(I).

%% No Concurrency
:— act_StackOn (X1, X2, t, I), act_StackOn(X3, X4, t, I), astep(I), X1 !=X3.

Elaboration Tolerant Representation of MDP via pBC+ 9

act_StackOn (X1, X2, t, I), act_StackOn(X3, X4, t, I), astep(I), X2 != X4.
:— act_MoveTo(X1, L1, t, I), act MoveTo(X2, L2, t, I), astep(I), X1 !=X2.
:— act_MoveTo(X1, L1, t, I), act MoveTo(X2, L2, t, I), astep(I), L1 !=1L12.
:— act_StackOn (X1, X2, t, I), act_MoveTo(X3, L, t, I), astep(I).

%% Static Laws

fl GoalNotAchieved(t, I) :- f1_At(X, L, I), L !=12.

f1 GoalNotAchieved(f, I) :- not fl GoalNotAchieved(t, I), step(I).

:— f1 OnTopOf (X1, X, t, I), f1 OnTopOf (X2, X, t, I), X1 !=X2.

:— f1_OnTopOf (X, X1, t, I), f1 OnTopOf(X, X2, t, I), X1 !=X2.

fl Above (X1, X2, t, I) :— fl OnTopOf(X1l, X2, t, I).

fl Above (X1, X2, t, I) :— fl1_Above(X1l, X, t, I), fl Above(X, X2, t, I).
= f1 Above (X1, X2, t, I), fl Above(X2, X1, t, I).

fl At (X1, L, I) :- fl Above(Xl, X2, t, I), f1L At(X2, L, I).

fl Above (X1, X2, £, I) :— not fl Above(X1, X2, t, I), block(X1l), block(X2), step(I).
fl TopClear(X, £, I) :— fl OnTopOf(X1, X, t, I).

fl TopClear(X, t, I) :— not fl TopClear(X, £, I), block(X), step(I).

%% Fluent Dynamic Laws

fl At (X, L, I+l) :— act MoveTo(X, L, t, I), pf Move(t, I), fl GoalNotAchieved(t, I).

fl OnTopOf (X1, X2, t, I+l) :— act _StackOn(X1l, X2, t, I), X1 != X2, fl TopClear(X2, t, I),
not fl1_Above(X2, X1, t, I), fl1_At(X1, L, I), fl At(X2, L, I), fl_GoalNotAchieved(t, I)

fl OnTopOf (X1, X2, £, I+l) :— act MoveTo(X1l, L2, t, I), pf Move(t, I), fl At(X1, L1, I),
£l OnTopOf (X1, X2, t, I), L1 != L2, fl_GoalNotAchieved(t, I).

fl OnTopOf (X1, X, f, I+l) :— act_StackOn(X1l, X2, t, I), X1 != X2, fl TopClear(X2, t, I),
not fl Above (X2, X1, t, I), fl1 At(X1, L, I), f1_At(X2, L, I), fl OnTopOf(X1l, X, t, I),
X 1= X2, fl_GoalNotAchieved(t, I).

{f1_OnTopOf (X1, X2, B, I+l)} :— f£1_OnTopOf (X1, X2, B, I), astep(I), boolean(B) .

{fl At (X, L, I+1)} :— f1_At(X, L, I), astep(I), boolean(B) .

%% Utility Laws
utility(-1, X, L, I) :— act MoveTo(X, L, t, I).
utility(10) :— fl_GoalNotAchieved(f, I+l), fl GoalNotAchieved(t, I).

