Learning Distributional Programs for Relational Autocompletion 33

Appendix A Declarative Bias

The use of declarative bias, which allows users to declaratively specify the search space of
possible clauses to be explored while learning, is common in ILP systems such as PRO-
GOL (Muggleton 1995), TILDE (Blockeel and De Raedt 1998), CLAUDIEN (De Raedt
and Dehaspe 1997), ALEPH (Srinivasan 2001), etc. When the space is potentially huge,
it plays an important role in restricting the search to finite and meaningful clauses. For
our purposes, we adapt the bias declarations from (De Raedt 2008). In Dice ML, the bias
consists of four types of declarations, i.e., type, mode, rand, and rank declarations. We
describe them in turn with examples:

Types: All functors are accompanied by type declarations of the form
type(func(ty,--- ,t,)), where t; denotes the type of the i-th argument, i.e., the
domain of the variable. For instance, consider the type declarations in Figure A 1. Since
the first argument of hasacc/2 should be different type than the argument of freq/1,
the clause

age (C)~ gaussian (30, 2.1) < mod(X, (hasAcc(C,A), freq(C)=X),low).

is not type conform, but the following clause is:

age (C)~ gaussian (30, 2.1) < mod(X, (hasAcc(C,A), freg(A)=X),low).

Modes: We also employ modes, which is standard in ILP, for each attribute. Modes
specify the form of literal b; in the body of the clause h ~ Dy <= by,...,bp, My. A
mode declaration is an expression of the form mode(a,aggr, (r(ma,...,m;),az(my))),
where m; are different modes associated with variables of functors, aggr is the name of
aggregation function, r is the link relation, and a; are attributes. The expression specifies
the candidate aggregation functions considered while learning clauses for the attribute
ay. If the link relation is absent, then the aggregation function is not needed, so the mode
declaration reduces to the form mode(aq, none, as(my))). The modes m; can be either
input (denoted by “4”) or output (denoted by “—”). The input mode specifies that at
the time of calling the functor the corresponding argument must be instantiated, the
output mode specifies that the argument will be instantiated after a successful call to
the functor. Consider the mode declarations in Figure A 1. The clause

age (C)~ gaussian(30, 2.1) <4 mod(X, (cliLoan(C,Ll),status(L2)=X),appr) .
is not mode conform since the first argument of cliLoan/2, i.e., the variable Cc does

not satisfy the output mode and the variable 1.2 does not satisfy the input mode. The
following clause, however, satisfies the mode:

age (C)~ gaussian (30, 2.1)4¢ mod(X, (cliLoan(Cl,L1l),status(L1l)=X),appr) .

Rand Declarations: They are used to define the type of random variables (i.e., discrete
or continuous) and to specify the domain of discrete random variables.

Rank Declarations: As we have already seen in Section 3.2, the second validity condition
of the DC program requires the existence of a rank assignment < over predicates of
the program. Hence, we introduce these declarations, to specify the rank assignment

34 Nitesh Kumar, Ondrej KuZelka and Luc De Raedt

% Type declarations
type (client (c)) .
type (loan(l)) .

type (account (a)) .
type (hasAcc(c,a)) .
type (hasLoan(c, 1)) .
type (age(c)) .

type (creditScore(c)) .
type (loanAmt (1)) .
type (status (1)) .
type (savings (a)) .
type (freg(a)) .

% Mode declaration

mode (age, none, creditScore (+)) .

mode (age, sum, (hasAcc (+,—-),savings (+))) .

mode (age, avg, (
mode (age, mod, (hasAcc (+,-), freqg(+))).
mode (age, max, (
mode (age, mod, (

mode (status, none, loanAmt (+)) .

mode (status, mod, (hasLoan (—,+),age(+))) .

% Rank declaration

rank ([age, creditScore, loanAmt,

Figure A 1. An example of input to DiceML,

hasAcc (+,-),savings (+))) .

cliLoan (+,-),loanAmt (+))) .

clilLoan(-,-),status (+))) .

status, savings, freq]) .

% Random variable declaration

rand (age, continuous, [1) .
rand(creditScore, continuous, []) .
rand(loanAmt, continuous, []) .

rand (status,discrete, [appr,pend,decl]) .
rand (savings, continuous, []) .

rand (freqg, discrete, [low,high]) .

% Transformed tables
client (ann) .

loan (1.20) .

account (a-10) .

age (ann) ~ val(33).
creditScore (john) ~ wval(700).
savings (a-10) ~ wval(3050).
freg(a-10) ~ wval (high).
loanAmt (1.20) ~ wval(20050).
hasAcc (ann,a-11).
hasLoan(a-11,1.20) .

% Background knowledge
age (carl) ~ gaussian(40,5.1).

cliloan (C, L) <-hasAcc(C,A),hasLoan(A,L) .

which consists of a transformation of the

spreadsheet in Table 1, along with background knowledge and declarative bias.

over attributes. While learning distributional clauses for a single attribute, the rank

declaration is not used, it is crucial while learning DC programs.

Example Appendix A.1l. An example of the input to DiceML is shown in Figure
A1, where Table 1 is converted into facts, and background knowledge is expressed using
distributional clauses. The first clause in the background knowledge shown in the bottom-
right of the figure states that the age of carl follows a Gaussian distribution, and the
second clause states that if a client has an account in the bank and the account is linked

to a loan account, then the client also has a loan.

