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Our general aim is to determine the critical mutation rate above which cooperators (or “social” 

genotypes) are displaced by cheaters (or “asocial” genotypes) in a structured population. Our 

approach is to allow only forward mutation from social to asocial genotypes and determine the 

lowest possible mutation rate for which the social-free state is dynamically stable. The rationale 

behind this approach is that even when reversion to social genotypes is re-introduced into the 

model, these genotypes will be maintained at very low frequencies under conditions above the 

critical mutation rate. To determine how the different parameters affect this critical mutation 

rate, we take two approaches: 1) agent-based simulations, and 2) an analytical approximation 

to the structured-population dynamics, employing an extension of the “pair-approximation” 

technique. The agent-based simulations are outlined in the main text, and we focus here on the 

analytical approximation. 

Analytical Approximations 

Generally speaking, a structured population may be represented by a graph (network), in which 

each node represents an individual in the population. Individuals may interact along edges of 

the graph, meaning that the state of one node may be affected by the states of other nodes 

that are connected to it, called “neighboring nodes”. The states of these neighbors, however, 

depend in turn on the states of their neighbors, and so on, until the state of the entire network 
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is taken into account. Computer simulations, such as those described above, take into account 

the state of an entire network – whether the updating scheme be synchronous or asynchronous 

– either explicitly through direct simulation of the entire network or implicitly through the use 

of von Neumann boundary conditions. It can often be difficult, however, to perform exhaustive 

exploration of the parameter space using simulations alone, and gains may therefore be made 

from analytical approaches. 

General “pair approximation” framework. This technique makes the simplifying assumption 

that the state of any given node in a structured population is affected only by the immediate 

neighbors of that node. [Note: Such an assumption is to spatial dimensions what the Markov 

property is to the temporal dimension.]  The name “pair approximation” indicates the strategy 

to be used: graphs ranging from regular lattices to networks with complex structure are 

modeled by considering only randomly-chosen pairs of neighboring nodes (Baalen, 2000; 

Matsuda et al., 1992).  

Nodes in the graph may be in different states. For example, a node may be occupied (denoted 

by a 1) or vacant (denoted by a 0). To generalize, we let the state of a node be denoted by index 

variables such as i or j. (In the forgoing example, these index variables may assume the values 0 

or 1.) The frequency of nodes that are in state i is denoted by ip . Suppose we choose an 

individual node at random – call this the “focal” node – and then choose an immediately 

neighboring node at random. The probability that the focal node is in state i and its immediate 

neighbor is in state j is denoted by ij
p . Now suppose we pick a focal node at random and 

observe that it is in state i. Given that we know that this focal node is in state i, a randomly-

chosen immediate neighbor of the focal node will be in state j with probability 
j i

q . By keeping 

track of such conditional probabilities, the structure of the population is accounted for to some 

extent. For many purposes, this Markov-like simplifying assumption yields analytical models 

that reproduce the population dynamics of spatially explicit computer simulations with 

surprising accuracy. 
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The equations resulting from the “pair approximation” technique encompass dynamics of 

singleton frequencies as well as the dynamics of all possible neighboring pairs. If we model a 

system in which two states are possible (say, 1 and 0, as in the above example), then the 

system of equations is: 

 

where the superscript dots denote time derivatives, i j
r   is the rate at which nodes transition 

from state i to state j and ij kl
r   is the rate at which neighboring pairs of nodes transition from 

state ij to state kl. These rates may themselves be functions of the ip ’s, ij
p ’s and 

i j
q ’s. The 

system of equations is greatly reduced by the identities 
ij j ii j j i

p q p q p  , and because of the 

fact that there are only two states in our example, implying: 1 01p p  , 
10 0 0

1q q   and 

11 01
1q q  .  If we simplify notation by letting 1p p  and 

11
q q , then all variables may be 

expressed in terms of p and q: 
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And the system of equations is reduced to: 
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For a more thorough introduction to the pair approximation technique, and for instruction on 

how to extrapolate our results to more complex networks, see Van Baalen (Baalen, 2000). For a 

brief but clearly-written synopsis of the technique, see the introduction in Ellner (Ellner, 2001). 

 

Mutation and selection on a network of competing social and asocial genotypes.  

Overview. We model our analytical approximation after the agent-based simulations described 

above, and many features are therefore the same. In our model, each node on the network 

represents an individual (a cell, for example) that can be in one of two states: social or asocial. 

Social individuals help their neighbors by increasing their neighbors’ fitness. Each social 

neighbor increases an individual’s fitness by a factor of (1 ) . Asocial individuals do not help 

their neighbors and the energy they save by not helping their neighbors gives them an intrinsic 

growth advantage, thereby increasing their own fitness by a factor of (1 ) . The maximum 

possible fitness is conferred to an asocial individual surrounded only by social neighbors. If each 

individual in the network has exactly n neighbors, then this maximum possible fitness is equal 

to (1 )(1 )n   . We are interested in how the frequencies of social vs asocial genotypes 

change over time in the population and what their long-term (equilibrium) values are. 

Network structure. In constructing our model, we had in mind a regular lattice network 

structure (modeled after the computer simulations; see Fig. S1a) in which each node has exactly 

n immediate neighbors. Given the generality of the pair approximation technique, however, our 

findings should encompass regular networks in general, and simple modifications (Baalen, 

2000) should extend our results to networks with qualitatively different structures.  
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Selection. With some probability, an individual may “die” and the vacant node left by this death 

is filled by reproduction of a neighboring individual. Which one of an individual’s n neighbors 

gets to reproduce and fill the vacant node depends in part on their fitnesses: the most fit of the 

n neighbors is most likely to be the one to reproduce and fill the vacant node. As in the 

computer simulations, however, there is a role for chance in this analytical model, and the most 

fit neighbor is not always the lucky one. The degree to which chance influences the outcome of 

this competition is determined in 

our model by a sampling exponent 

which we denote by  .    

In Fig S1b, the green node inside 

the blue square represents the 

“focal” node. After one generation 

(one updating), this individual 

leaves no offspring (it “dies”) with 

probability fwe , where fw  

denotes the fitness of the “focal” 

individual. Upon this individual’s 

“death”, the immediate neighbors 

inside the blue circle compete for 

the newly vacant node left by this 

death. In Fig S1b, each internal 

node on the network has 4n   

neighbors. The blue node inside 

the red square is an immediate 

neighbor of the focal individual. 

Let’s suppose that, of the focal 

individual’s four immediate 

neighbors, the one inside the red 

square is the third one to be 

a

b

Figure S1 | Two different regular network configurations. Green 

nodes represent “social” individuals; blue nodes represent “asocial” 

individuals. Focal nodes are indicated by a small blue square; a 

candidate displacement comes from an immediate neighbor indicated 

by a small red square. Immediate neighbors of the focal individual are 

surrounded by a blue line; immediate neighbors of the candidate 

displacing neighbor are surrounded by a red line. a, a regular lattice 

network; b, a regular tree network. 
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considered. If we then let 3w  denote the fitness of this neighbor, then the probability that it 

will outcompete the other three immediate neighbors for the newly vacant focal node is 

4

3

1

i

i

w w 


 , where 1w , 2w , and 4w  are the fitness of the other three immediate neighbors 

(inside the blue circle). In general, if we let kw  denote the fitness of the kth of n immediate 

neighbor, then this neighbor will win the competition 

for the newly vacant node with probability 
1

n

k i

i

w w 




. 

The governing equations. We let s denote “social” 

genotype and we let a denote “asocial” genotype. 

Because we have a two-state system as in the above 

example, the system may be reduced to two 

equations: 

 

Singleton transition rates. The transition rate from asocial to social singletons is ( )r a s . This 

rate is calculated as the probability that the asocial focal individual will 1) die and leave no 

offspring, and 2) be replaced by the offspring of a social neighbor. The probability that the focal 

individual leaves no offspring is fwe . The fitness of the focal individual fw  is calculated by 

accounting for: 1) the growth advantage of being asocial (1  ), and 2) the help received from 

social neighbors (1 )X , where X is the number of immediate neighbors that have the social 

genotype. Assuming multiplicative fitness, the fitness of the focal genotype is therefore: 

(1 )(1 )X

fw       If we knew a priori how many neighbors were social, then we could simply 

substitute the X with that number to calculate fw . In Fig. S2, for example, the fitness of the 

focal individual is 5(1 )(1 )fw     . Unfortunately, in our analytical model, we do not know X 

a priori but we do know what X is on average, and we can use this:  
s a

X nq , where 
s a

q  is the 

Figure S2 | Example neighborhood of an 

asocial focal individual, indicated with an “f”. 

A green square represents a “social” 

individual; a blue square represents an 

“asocial” individual. Neighbors 1, 3 and 4 are 

asocial; the others are social. 

1 2 3

4

567

8 f
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probability that a randomly chosen neighbor of an asocial individual is social. The fitness of the 

focal individual is therefore calculated as: (1 )(1 ) s anq

fw     . To simplify the mathematics a 

bit, we assume that   and   are small, and the fitness of the focal individual is therefore: 

1f s a
w nq     

Next, in order to calculate the probability that the asocial focal individual will be replaced by 

the offspring of a social neighbor, we must know the fitnesses of all immediate neighbors. The 

trouble is, the fitness of an immediate neighbor depends on the states of its immediate 

neighbors. This is illustrated in Fig. S3, where the fitness of neighbor number 3 is calculated 

from the fact that it is asocial and has 4 social neighbors:  4

3 (1 )(1 )w     . From this, the 

probability that neighbor number 3 displaces the focal individual is calculated as: 

3

1

f

n
w

i

i

e w w 


 . Again, however, in practice we do not know exactly how many neighbors of 

neighbor number 3 are social. But in this case, we do know the state of one neighbor: we know 

that one neighbor is the focal individual and we know that it is asocial. So that leaves only 1n   

neighbors whose states are unknown. The average number of social neighbors of neighbor 

number 3 is therefore ( 1)
s a

n q , and the fitness of neighbor number 3 may be calculated as  

( 1)

3 (1 )(1 ) 1 ( 1)s an q

s a
w n q   


       . This 

calculation will apply to all asocial neighbors of the 

focal individual, and we will therefore define:  

1 ( 1)a s a
w n q     . Similar logic applies to social 

neighbors of the focal individual, each of whose 

average fitness is defined as: 1 ( 1)s s s
w n q   . On 

average, the asocial focal individual will be 

surrounded by 
s s a

n nq  social neighbors each of 

whose fitness is, on average, 1 ( 1)s s s
w n q    and 

by 
a a a

n nq  asocial neighbors each of whose fitness 

1 2 3

4

567

8 f

Figure S3 | Example neighborhood of an asocial 

focal individual, and the neighborhood of 

neighbor number 3. A green square represents a 

“social” individual; a blue square represents an 

“asocial” individual. Neighbor number 3 has four 

social and four asocial neighbors. 
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is, on average, 1 ( 1)a s a
w n q     . Given that the asocial focal individual dies and leaves no 

offspring, therefore, the probability that the vacant node will be filled by a social individual is: 

s ss a s as s

s s a a s a s as a a a s a a a

nq w q wn w

n w n w nq w nq w q w q w

 

      
  

. In addition to displacement of the asocial 

focal individual by the offspring of a social neighbor, there is another way that the individual on 

the focal node can transition from asocial to social, namely through mutation. Let a s   denote 

the per-generation rate of mutation from asocial to social genotype. When all of the above 

factors are accounted for, the transition rate becomes: 
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 ( )

fw

ss a

a s

s as a a a

e q w
r a s

q w q w



  


  


  

where:  1f s a
w nq     

1 ( 1)s s s
w n q    

1 ( 1)a s a
w n q    

   (1.1)
 

 

 

Likewise, similar logic leads to: 

 

 ( )

fw

aa s

s a

a sa s s s

e q w
r s a

q w q w



  


  


  

where:  1f s s
w nq   

1 ( 1)s s s
w n q      

1 ( 1)a s a
w n q      

   (1.2)
 

 

 

Pair transition rates. Calculation of these rates follows similar logic to the calculation of 

singleton rates. The principle difference is that now, in addition to the state of the focal 

individual, the state of one neighbor is also treated as known, i.e., the states of pairs are 

treated as known. This approach is depicted in Fig. S4, where the pair in question is indicated by 

a white square. This figure depicts the transition from an {as} pair to an {ss} pair. Here, we treat 

the a in the {as} pair as the focal individual. The fitness of this focal individual can be directly 

calculated from the explicit configuration depicted in Fig. S4: 5(1 )(1 )fw     . In practice, our 
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analytical model does not specify the explicit 

configuration; however, we do know that one 

neighbor of the asocial focal individual is social; 

we know this from the fact that the pair in 

question is an {as} pair.  In our analytical model, 

the fitness of the focal individual is calculated as 

1 ( 1)
(1 )(1 ) 1 ( 1)s an q

f s a
w n q    

 
        . 

The other immediate neighbors of the focal 

individual (the neighbors outside of the white 

square) have fitness 1 ( 1)a s a
w n q      if they 

are asocial and 1 ( 1)s s s
w n q    if they are 

social. 

 

 

 
(1 ( 1) )

( )
(1 ( 1) ) ( 1)

fw

ss a

a s

s as a a a

e n q w
r as ss

n q w n q w



  




 
  

   
  

where:  1 ( 1)f s a
w n q      

     
 

1 ( 1)s s s
w n q    

1 ( 1)a s a
w n q    

     (1.3)
 

 

 

In the transition from {ss} pairs to {as} pairs, the left-hand side of the pair is treated as the focal 

node (i.e., the side that transitions from s to a). Logic similar to that used above leads to: 

  

f

f

( )r as ss

Figure S4 | Example neighborhood for calculation of 

pair transition rates. A green square represents a 

“social” individual; a blue square represents an 

“asocial” individual. The left-hand member of the 

pair is taken to be the “focal” individual because it is 

the one that changes. 
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e n q w
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n q w n q w


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




  

   
  

where:  1 ( 1)f s s
w n q    

             
 

1 ( 1)s s s
w n q      

1 ( 1)a s a
w n q    

     (1.4)
 

 

 

The system of equations is reduced by the identities 
as s aa s s a

p q p q p   and 
ss ss s

p q p , and 

because of the fact that there are only two states in our model, implying: 1a sp p  , 

1
s a a a

q q   and 1
s s a s

q q  .  If we simplify notation by letting sp p  and 
s s

q q , then all 

variables may be expressed in terms of p and q: 
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   (1.5) 

And the system of equations is reduced to: 

 

          The governing equations: 

              (1.6) 
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Solution procedure. 

The dynamics of “social” genotype frequency, p , are determined by solution of the governing 

equations (1.6). This is achieved by substituting into these governing equations the expressions 

for the rate terms – equations (1.1) through (1.4) – and then making the substitutions listed in 

(1.5) to put everything in terms of p  and q . 

Example numerical solution. If we start with a population of cooperators with very few isolated 

cheaters, then our initial conditions would be something like this: 4(0) 1 10p    and 

4(0) 1 10q   . For the parameters of our model, we will use the values: 0.01  , 0.1  , 

8n   and 2  . Cooperators that become cheaters by mutation do so by losing a cooperation 

function, i.e., by receiving any one of hundreds of possible knockout mutations in a gene 

encoding for some aspect of cooperation. Cheaters that become cooperators by mutation, on 

the other hand, do so by either recuperating a lost 

function by receiving exactly the right mutation or 

acquiring a novel cooperating function. The 

mutation rate from cooperator to cheater, s a  , is 

therefore likely to be much higher than the 

mutation rate from cheater to cooperator, a s  . 

Initially, we will assume that 0a s   . (This 

assumption is convenient for analysis of the 

governing equations (see below), because looking 

for conditions under which cooperation is lost then 

reduces to the problem of finding the requirements 

for the absorbing state ˆ 0p   to be stable.)  

Numerical solution of the governing equations is 

plotted in Fig. S5 for 0.1s a   . This plot elucidates 

a characteristic of the spatial structure that will 

become instrumental in our analysis of the system 

Figure S5b | Numerical solution of the governing 

pair-approximation equations. Cheater frequencies. 

Mutation rate is below the threshold. 
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Figure S5a | Numerical solution of the governing 

pair-approximation equations. Cooperator 

frequencies. Mutation rate is above the threshold. 
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and our understanding of the mutation rate threshold: when cooperators are common, there is 

little difference between cooperator frequency, p(t), and the probability that a given 

cooperator has an immediate neighbor who is also a cooperator, q(t); when cooperators are 

rare, however, there is a big difference between p(t) and q(t), indicating that while a cooperator 

might be hard to find, when you do find one you will likely find that it has a cooperating 

neighbor as well (following the adage “where there’s one there’s two”). Their very small 

presence, therefore, is due more to extremely rare clusters of cooperators and less to isolated 

individual cooperators. The same is true for cheaters, as shown in Fig S5b: their very small 

presence is due more to extremely rare clusters of cheaters and less to isolated individual 

cheaters. Clustering is disadvantageous to cheaters, however, and this helps to keep cheaters in 

check below the threshold mutation rate. 

Cheater fitness.  

Global relative fitness. On average, cooperators and 

cheaters will have absolute fitnesses given by 

1a s a
w nq      and  1s s s

w nq   , 

respectively. The global relative fitness of cheaters 

is therefore calculated as: 

. 

Figure S6 here and Fig. 3 in the main text plot this 

global relative fitness of cheaters as a function of 

cheater frequency for high and low mutation rates. 

Local relative fitness. The absolute fitness of a 

cheater’s immediate neighborhood is calculated as 

the sum of two terms: 1) the frequency of 

cooperators in the neighborhood, 
s a

q , multiplied by 
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Figure S6 | Global relative fitness of cheaters as a 

function of cheater frequency. Curves plot numerical 

solution of pair-approximation equations, and points 

plot simulation results. Mutation rate is above the 

critical mutation rate in the top plot and below the 

critical mutation rate in the bottom plot.  
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their average fitness, 1 ( 1)
s s

n q   , and 2) the frequency of cheaters in the neighborhood, 
a a

q , 

multiplied by their average fitness, 1 ( 1)
s a

n q    . The absolute fitness averaged over the 

cheater and its immediate neighbors is therefore: 

 (1 ( 1) ) (1 ( 1) ) /( 1)
a as a s s a a s a

w nq n q nq n q w n            

and the local relative fitness of cheaters is: 

/a a aw w  . 

Figure S7 here and Fig. 3 in the main text plot this 

local relative fitness of cheaters as a function of 

cheater frequency for high and low mutation rates. 

Analysis. 

The goal in our analysis is to determine the conditions 

under which cooperation is lost. Initially, we make the 

convenient assumption that 0a s   , as discussed 

above, so that it is possible for cooperators to achieve 

a frequency of zero. If cooperation is lost completely, 

then the absorbing state ( ) 0p t   is reached and is 

stable (meaning biologically that if you re-introduce a 

small number of cooperators after they have been 

completely eliminated from the population, they will 

not subsequently grow in frequency but will be 

eliminated again). We therefore proceed with a standard stability analysis, defining the new 

functions p
f  and q

f  to be the right-hand-sides of the governing equations (1.6), so that these 

equations simply read:   and . The Jacobian is then computed as usual:  
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Figure S7 | Local relative fitness of cheaters as a 

function of cheater frequency. Curves plot numerical 

solution of pair-approximation equations, and points 

plot simulation results. Mutation rate is above the 

critical mutation rate in the top plot and below the 

critical mutation rate in the bottom plot.  
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, and evaluated at the steady state defined by: ˆ 0p   and 0q̂ q . We find that 

the eigenvalues of the resulting matrix are both negative, implying stability of this steady state, 

when mutation rate is greater than a critical value equal to: 

0

1

(1 )(1 ) 0 0
0 0

1 ( 1) 1 (( 1) 1)
(1 ) 1 1

1 1

nq

c

n q n q
q e e q

 
  


  



  

                                

    (1.7) 

By numerical methods, we generated 

parameter values at random with the ranges: 

(0,0.3)  , (0, )  , (2,50)n , and 

10 ( 5, 1)Log    . Using these randomly-

generated parameter values, we solved the 

equation 
0

0q p
f


  for q, thereby giving a 

computed value for 0q . We repeated this for 

500 different randomly-generated sets of 

parameters and found that 0q  was sensitive 

almost exclusively to the number of neighbors, 

n , and a plot of 0lnq  as a function of lnn  is shown in Fig. S8. A linear regression of  0lnq  on 

lnn  yields the equation: 2

0 1

kq k n , where regression constants were estimated to be 1 1.16k   

and 2 1.06k    with small error, from which we make the reasonable approximation, 0 1/q n . 

Inserting this approximation into (1.7) and eliminating small terms gives an approximate 

expression for the critical mutation rate: 

                       (1 ) 1 1 (1 ) 1 11 n

c

n
e e e e

n

                 
     (1.8) 
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Figure S8 | Computed values for q0 show a power-

law relationship with mean number of immediate 

neighbors, n.  
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Inaccuracies of the pair approximation technique due to demographic stochasticity are well-

documented (Baalen, 2000); in comparing this analytical result with those of simulations, we 

have found the analytical result was off by an apparently constant factor, such that: 

(1 ) 1 1 ,c e e         
 
 

where the proportionality constant was estimated by least squares to be 0.081 (see following 

section). For 0.081k   and for small values of   and  , therefore, we have: 

1( 1)( ).c ke       

 

Estimating the constant, k. The constant k accounts for demographic stochasticity, i.e., it 

accounts for well-documented shortcomings of the “pair approximation” technique used in our 

analysis (Baalen, 2000), and is estimated by least-squares fitting to the results of simulations to 

be; this estimate is remarkably consistent across a wide variety of regular lattices, random 

networks and scale-free networks. Figure S9 plots values for c  calculated by routine of 

bisection(Press, 1992) from simulated populations on regular lattices, random networks and 

scale-free networks. The constant k was estimated by least squares fit of equation (1.8) to the 

values for c  computed from simulations on all the different networks.   
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The loss of cooperation as a second-order phase transition. 

 

Phase transition indications. 

 

 

Some indications that the loss of cooperation is a second-order phase transition. Figure 1 in the main text 

shows a sharp inflection separating the region in which cooperation can persist from the region where it 

is lost. The frequency of cooperators in the context of phase transitions is the order parameter. The 

sharp inflection in this order parameter is suggestive of second-order phase-transition behavior. Other 

evidence in support of this classification is the divergence of the “susceptibility” to increases in   at the 

critical point c  -- determined numerically as an essentially vertical increase in the order parameter as 

  increases when c  .  Further supporting evidence is found in Fig. 4 of the main text: the fraction 

of populations in which the largest cluster is a cheater cluster goes very quickly from zero to one, 

marking the transition to the loss of cooperation. Finally, when c    , for small  , the cluster size 

distribution has a power-law tail, as shown in Fig. S10.    

 

Figure S9 | Dependence of critical mutation rate c
  on the various parameters. The red solid lines plot the full 

analytical expression for the equilibrium obtained by solving the simultaneous equations 0
p

f   and 0
q
f  , the red 

dashed lines plot the approximate expression given in the main text, and the red triangles represent critical mutation 

rates derived from numerical solution of the dynamic equations 
 
p  f

p
 and 

 
q  f

q
. Critical mutation rates were 

determined from simulations and are plotted as: blue bars for a regular two-dimensional grid, grey bars for random 

networks, and green bars for scale-free networks. (In panel (d), the increasing discrepancy among results from the 

different network structures is due to the fact that the mean-shortest-path is affected differently by increasing n: it is 

drastically reduced in random and scale-free networks but is not changed in the regular grid.) We believe that the 

absolute mutation rate values plotted in this figure could in fact be quite conservatively high because of the large 

discrepancy between our default values of 0.1   and 0.01  ; when these values are closer together, critical 

mutation rates can be much lower, as intuited from our analytical expression (main text). Other default parameters were: 

2   and 8n  . 

 



- 18 - 

 

 

 

  

  

 

 

 

Baalen, V. 2000 In The Geometry of Ecological Interactions: Simplifying Spatial Complexity(Eds, 

Dieckmann, U., Law, R. and Metz, J.A.J.) Cambridge University Press, pp. 359-387. 

Ellner, S.P. 2001, J. Theor. Biol., 210(4), pp. 435-447. 

Matsuda, H., Ogita, N., Sasaki, A., Sato, K. 1992, Prog. Theor. Phys., 88, pp. 1035-1049. 

Press, W.H. 1992 Numerical recipes in C : the art of scientific computing, Cambridge University Press, pp. 

xxvi, 994 p. 

 

y = -6.824x + 26.71

R² = 0.975

-1

0

1

2

3

4

5

6

7

3 3.2 3.4 3.6 3.8 4 4.2
Lo

g
 f

re
q

u
e

n
cy

Log cluster size

Figure S10 | Some evidence of a power-law tail on the cluster-size distribution. 


