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Appendix A. Prior Probabilities and Concerns Regarding “Double-Counting” 

In Section 3.3, we argue that evidence is never “double-counted” in logical Bayesianism.  
To further expound this argument, suppose we were to accidentally incorporate information into 
the analysis twice, in that some fact X gets included in both the background information and the 
evidence: I =I0 X and E =E' X.  Using the product rule, our posterior probability on hypothesis Hi 
equals:   

P(Hi |E I) = P(Hi |E' X X I0) = P(Hi |E' X I0) = P(Hi |E' I) ,                  (A1) 
because “X and X” in the second term of (A1) is logically equivalent to “X.”  Therefore, all of 
our updating in this case comes from E', and X affects our probabilities only through the 
background information.  Alternatively, suppose we express two pieces of evidence as E1 = Xa Xb 
and E2 = Xb Xc.  The rules of probability dictate that P(H|E1 E2) = P(H|Xa  Xb  Xc), because “Xb 
and Xb” is logically equivalent to “Xb ,” so considering E1 and E2 instead of first decomposing the 
information into Xa, Xb, and Xc should make no difference to the conclusion.     

Nevertheless, one might worry that in practice we could fail to live up to the mathematical 
ideal of logical Bayesianism when assessing priors on an inductively-inspired hypothesis, in a 
manner that does lead in effect to double-counting the evidence—this is a variant of Concern (a) 
regarding subjectively-biased priors discussed in Section 5.1.  The idea here is that something we 
consider to be evidence might inadvertently also have been part of the background knowledge 
that informed a prior, thus its effect mistakenly boosts the probability on the hypothesis twice.  

Our response to this worry is twofold.  First, the risk of substantial double-counting is low.  
For most research that involves original data collection (especially fieldwork), keeping track of 
what we classify as evidence E and what we classify as background information I is a 
straightforward task—background information includes what we read in literature prior to our 
original research, and evidence includes what we discovered thereafter.  Alternatively, if the 
research agenda entails going back through existing research to reevaluate established rival 
hypotheses and assess the current state of cumulative knowledge, then we should start from 
equal (ignorance) priors and incorporate evidence from these existing studies into our analysis 
piece by piece.  In this situation, there is no relevant background information to inform priors, 
and hence there is no risk of accidental double-counting.   

Second, our guidelines for assigning priors in Section 5.1 guard against bias arising from 
subconscious, accidental double-counting of some information X in both I and E.  These 
recommendations include placing a penalty on the prior of an inductively-inspired hypothesis 
relative to established rivals, using equal priors, assessing how sensitive the findings are to 
different priors, or simply focusing on assessing likelihood ratios for the evidence and allowing 
readers to use their own priors, drawing on their own background information.  If readers find a 
hypothesis much less plausible a priori than the author, they will demand evidence that weighs 
more strongly in favor of that hypothesis before they concede that it provides a better 
explanation than the rivals.  This dynamic occurs frequently during the peer review process, 
albeit informally.    

Similar recommendations for handling priors are common in literature on Bayesian 
statistics.  For example, Berger and Berry (1988:162) advocate focusing on likelihood ratios: 
“The investigator... need not be concerned with the initial probability [prior] chosen by a 
possible consumer of the data; it suffices for the investigator to show how the data will change 
this initial probability into a final probability [posterior],” while Greenland (2006:766) notes 
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that: “Acceptability of an analysis is often enhanced by presenting results from different 
priors...”   

A further point on priors merits emphasis.  Priors are sometimes held up as the most 
important feature of Bayesianism,1 but this characterization is not accurate. The most 
fundamental aspect of Bayesianism that distinguishes it from frequentism is the very definition 
of probability—as rational degree of belief, rather than a frequency-based characteristic of a 
population.  The most important inferential step in Bayesian reasoning (especially for qualitative 
research) is not assessing priors, but rather assessing likelihood ratios, which tells us how we 
should update our prior odds.   

Ideally, one would like to be in a situation where the evidence overwhelms the role of prior 
probabilities.  In qualitative research, assignment of priors will usually be the analytical step that 
is most subject to arbitrariness, because we cannot hope to fully list and carefully consider all 
elements of our background information that influence our beliefs about the plausibility of 
hypotheses.  While background information also matters for assessing likelihoods, it is easier to 
identify a few key elements of I that matter most for P(E|H I).  Moreover, assessing (or 
approximating) likelihoods, P(E|H I), while challenging, is an inherently easier task than 
assessing priors, P(H|I), because evidence is concrete, specific, and observable, whereas 
hypotheses are abstractions that cannot be directly observed.	
  

Let us return to our state-building example (Sections 3.2 and 4) and assess to what extent 
we should worry about the possibility of erroneously using the same information both to assess a 
prior and to update that prior.  Suppose Study S in the state-building literature includes fact 
X=E2, and analytical findings from this study inform our priors on HW and HR—but we forget 
that Study S included E2.  We then come across E2 in a different context; it leads us to devise 
HLRA, at which point we must go back to our background information and reassess priors for the 
three hypotheses.  With regard to prior odds on HW vs. HR, forgetting that E2 was actually in the 
background information on existing state-building literature does not create any bias, because E2 
does not discriminate between these two hypotheses—this evidence is essentially equally likely 
under each.  If we then move forward and incorporate E2 into our analysis as evidence (still 
unaware that I included E2), the odds on HW vs. HR remain unchanged, again because E2 is 
equally likely under each.  In practice then there is no “double-counting” with respect to 
inferences about HW vs. HR.   

Turning to prior odds on HLRA vs. the rivals, the fact that state-building literature mentioned 
E2 but we have forgotten is also irrelevant, because that literature does not discuss HLRA, so any 
aggregate analytical findings we do remember from that literature have no direct relevance for 
priors on HLRA.  Similarly, analytical findings from literature on other macro-political outcomes 
that treats labor-repressive agriculture as a salient causal variable have no direct relevance for 
priors on HLRA, because this literature (by definition) does not consider HLRA.  Any bias on HLRA’s 
prior would therefore have to arise by digging through literature that includes E2, noticing that E2 
is relevant for the relative plausibility of HLRA vs. the rivals, including E2 in the background 
information, and then going on to treat E2 as evidence to update a prior that was already 
informed by E2.  Here we either have an obvious and rather improbable accounting error in 
classifying information as background vs. evidence, or there is a problem of subconscious bias in 
that the author knows E2 is not part of the background information that should inform the prior 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 As MacKay (2003:347) observes: “There is a popular myth that states that Bayesian methods differ from orthodox 
statistical methods only by the inclusion of subjective priors, which are difficult to assign, and which usually don't 
make much difference to the conclusions.”  
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odds on HLRA vs. rivals, but is not able to objectively assess the prior odds without subjective 
contamination from knowing about E2.  This situation brings us back to Concern (a) in Section 
5.1 and our guidelines for protecting against such subconscious bias.  In Section 4, we proceeded 
by considering both a low prior on HLRA relative to HR, and equal prior odds.        
 
 

Appendix B.  Resolving the “New Problem of Old Evidence” 

We noted in Section 3.3 that scholars from the psychological/subject school of 
Bayesianism often diverge from the logical Bayesian tenet that relative timing is irrelevant for 
inference.  We mentioned the example of Jeffrey’s (1983) “probability kinematics,” which 
allows the order in which evidence is learned to affect posterior probabilities—thereby violating 
the fundamental product rule of probability.  Another salient example in philosophy of science is 
the so-called “new problem of old evidence” (e.g., Glymour 1980, Earman 1992), which poses 
that even within a Bayesian framework, we cannot learn from old evidence.   

Glymour (1980) argued that if probabilities are evaluated at a time when evidence E is 
already known, then P(E|I)=1, which in turn directly implies that P(E|HI)=1.  Substituting into 
Bayes’ rule, he finds: 

P(H|EI) = P(H|I)×P(E|HI) ⁄P(E|I) = P(H|I)×(1) ⁄ (1) ,               (B1) 
which yields P(H|EI)=P(H|I), such that “old” evidence purportedly cannot alter our degree of 
belief in hypothesis H.   

From a logical Bayesian perspective, the flaw in this reasoning lies in confusing temporal 
relationships with logical ones.  If we wish to evaluate probabilities in the light of knowing 
evidence E, then E must explicitly appear in our notation as “conditioning information” 
alongside I to the right of the vertical bar.  In essence, Glymour can only assert that P(E|EI)=1. 
His argument then collapses, because Bayes’ rule accordingly yields:  

P(H|E(EI)) = P(H|(EI))×P(E|H(EI)) / P(E|(EI)) = P(H|EI),      (B2) 
such that P(H|EEI) = P(H|EI), which we already knew from the logical identity EE=E.  In 
debunking Glymour's argument, astrophysicist Bill Jefferys (2007:7) notes: “...what Glymour 
has actually proved is the (well-known) fact that...quite sensibly...[we] cannot validly manipulate 
the Bayesian machinery to get additional information out of information that has already been 
used.”   

The crucial point is that when evaluating probabilities, the information upon which we 
condition our probabilities does not include whatever is in our heads at a particular moment in 
time.  Instead, we condition on propositions located to the right of the vertical bar, which are 
explicitly specified and assumed to be true.   

 
 

Appendix C.  Ad-Hoc Hypotheses and Occam Factors    

Section 3.4 introduced the logical Bayesian concept of Occam factors, which penalize 
hypotheses that over-fit the data.  This appendix discusses Occam factors in more detail and 
provides two examples to show how they can arise in qualitative research.   

To appreciate the importance of Occam factors, it is worth stressing that over-fitting can be 
a major problem within a frequentist framework that does not allow prior probabilities on 
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hypotheses or fixed parameters. When working with quantitative datasets, analytical models can 
be made arbitrarily complex with a multitude of adjustable parameters that end up fitting not just 
the signal of interest, but the noise as well.  Detecting over-fitting can be particularly challenging 
in orthodox statistics, because adding extra parameters can always improve the likelihood of the 
data under the model.   

Within logical Bayesianism, however, an ad-hoc hypothesis that is too closely tailored to 
fit the arbitrary details of the data incurs a low prior probability via Occam factors that arise 
automatically from correctly applying probability theory.  These Occam factors keep us from 
favoring an overly complex hypothesis compared to a simpler hypothesis that adequately 
explains the data.  

Recall that generally speaking, an ad-hoc hypothesis is properly regarded as one member 
of a family of hypotheses characterized by multiple parameters that take on different, but equally 
arbitrary values.  To restate this point in slightly different terms, an ad-hoc hypothesis emerges 
from a model with multiple parameters that a priori could have taken on a large range of 
different values.  As a model becomes more complex, its prior probability becomes spread out 
over a larger parameter space, and the posterior odds are reduced to the extent that this parameter 
space must be fine-tuned to fit the observed data.  Similarly, whenever we include another 
parameter in the model and find that the range of values it must assume to account for the data is 
much narrower than the prior range of values deemed feasible given the background information 
alone, the model receives an Occam penalty.  

Whether the posterior odds favor a more complex model relative to a simpler model 
depends on whether the complex model fits the data sufficiently better to overcome its Occam 
penalty.  Compared to complex models, simpler models are generally ruled out more easily, 
because they are less able to explain a diversity of possible outcomes. On the other hand, Bayes’ 
theorem rewards the simpler model for sticking its neck out and making less flexible predictions 
if those predictions come true. Bayesian analysis therefore helps find the signal without over-
fitting the noise. 

To see how Occam factors emerge from the mathematics of Bayesian probability, we 
reconsider the card-draw example presented in Section 3.4 (adapted from Jefferys 2003), where 
we draw the six of spades from a deck held by a stranger at a party.  We are interested in 
comparing two hypotheses: HR = The card was arbitrarily selected from a randomly shuffled 
deck, and an ad-hoc rival, H6♠ = The stranger is a professional magician with a trick deck that 
forces the six of spades.  The first step is to recognize that H6♠ is one member of a family of 52 
equally plausible related hypotheses, HM = HM c1 or HM c2 or ... or HM c52 , where HM ck = The 
magic trick forces card ck.  In other words, we must compare HR against HM, a more complex 
model with a parameter ck that can be adjusted to fit the data.  We wish to calculate the posterior 
odds: 

𝑃 𝐻! 𝐸  𝐼
𝑃 𝐻! 𝐸  𝐼

=
𝑃 𝐻!   𝐼)
𝑃 𝐻!|  𝐼

×
𝑃 𝐸 𝐻!  𝐼
𝑃 𝐸 𝐻!   𝐼

                                                                                                                                                                                                                                                  (C1)  

     
Expanding the numerator of the likelihood ratio (the right-most term in C1), we have: 
 

𝑃 𝐸 𝐻!  𝐼
𝑃 𝐸 𝐻!   𝐼

=     
∑𝑃 𝑐! 𝐻!  𝐼   𝑃 𝐸 𝐻!  𝑐!  𝐼   
                                            𝑃 𝐸 𝐻!   𝐼

,                                                                                                                                                                                                                          (C2)  
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where we have used the law of total probability to introduce a sum over all 52 possible values of 
the card parameter c.  In essence, we are averaging the likelihoods under each sub-hypothesis in 
the magic-trick family, weighted by the prior probability that the card parameter takes a 
particular value.  When we plug in the 6 of spades for the evidence E, the sum in the numerator 
picks out that single value for the parameter c, because the likelihood of E=6♠ is zero for every 
sub-hypothesis except for that which forces the 6 of spades:   
 

𝑃 𝐸 𝐻!  𝐼
𝑃 𝐸 𝐻!   𝐼

=     
( 152×0 +

1
52×0 +⋯+ 𝟏

𝟓𝟐×𝟏 +
1
52×0 +⋯ )  

                                  ( 𝟏𝟓𝟐)  
  .                                                                                                                                                    (C3)  

 
In the denominator above, we have used the fact that the likelihood of E=6♠ under the random 
draw hypothesis is 1/52.  Substituting (C3) into (C1), we can now rewrite the posterior odds ratio 
as the product of three factors: 
 

𝑃 𝐻! 𝐸  𝐼
𝑃 𝐻! 𝐸  𝐼

=
𝑃 𝐻!   𝐼)
𝑃 𝐻!|  𝐼

×
   1
52   

  1  
  ×   

  1  

  ( 152)  
  .                                                                                                                                                                                                                            (C4)  

 
These three factors on the right-hand side of (C4) are the model-level prior, the Occam penalty—
a factor of 1/52 in the numerator, and the “fitted likelihood”—a factor of 1/52 in the 
denominator.  The model-level prior remains to be assessed, using any salient background 
information about the chances that the stranger is a skilled magician as opposed to an ordinary 
partygoer with a randomly shuffled deck.  The Occam penalty arises from the prior probability 
that a magic trick would favor the six of spades.  The fitted likelihood, P(E|HM 6♠ I) ⁄ P(E|HR I), 
assesses how surprising or expected our evidence is under H6♠ relative to HR once we have 
chosen the six of spades as the parameter value for the magician model.  
        In essence, the more complex model HM receives an Occam penalty when the data obtained 
rules out all but one of the 52 parameter values that were plausible a priori.  This Occam factor 
keeps us from favoring the ad-hoc six of spades hypothesis, which on its own makes the card we 
chose much more likely than the random-draw hypothesis.  Note that in general, the Occam 
factor will not exactly cancel the fitted likelihood; that effect is a special feature of this example.  
It is also important to emphasize that the posterior odds could end up favoring the more complex 
model, if the fitted likelihood is good enough to overcome the Occam factor.  Accordingly, 
logical Bayesianism does not always favor simplicity—it balances simplicity against explanatory 
power.   

A second example illustrates how Occam factors can emerge in explicit Bayesian process 
tracing.2  Suppose we have two plausible explanations for why the government of Gonduria, a 
developing country on the Pandor continent, expanded social programs to reach a larger 
proportion of the poor:  

HWB =Expanding social programs was a condition for a World Bank loan;  
HR =The government designed these measures to improve its approval ratings after the 

latter dropped below a critical threshold, rc.   
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 For the sake of illustration, we are explicitly identifying and evaluating an Occam penalty, but Occam factors arise 
automatically if Bayesian analysis is correctly employed.  In actual practice, we need not think about Occam factors 
as a separate step in Bayesian analysis. 



Fairfield & Charman, “The Bayesian Foundations of Iterative Research,” Perspectives on Politics, 2018. 

 6 

HR denotes a family of hypotheses, where rc could take on many different values.  A priori, it 
would be reasonable to assume that the threshold rating rc falls between 25% and 50%.  
Regarding the upper limit, we reason that democratic governments tend to become concerned 
once approval ratings drop below 50%.  We set the lower limit drawing on background 
information that approval ratings in Pandorian democracies generally have not dropped below 
25% during periods of normal politics.  We wish to calculate the posterior odds ratio (equation 3) 
for the two hypotheses in light of evidence E0 =The government’s approval rating at the time, r*, 
was 44%.  

We begin by evaluating the likelihood of the evidence under HR:  
P(E0|HR I) = ∑P(rc|HR I)×P(E0|rc HR I)         (C5) 

where as in the previous example, we have used the law of total probability to introduce a sum 
over all possible values of the critical threshold (recall that each value of rc defines a specific 
hypothesis in the HR family); for simplicity we sum over integers instead of integrating over a 
continuum.3  When rc >50% or <25%, we have P(rc|HR I)=0.  We take the prior likelihood of the 
threshold parameter to be uniform over the range of 25%–50%, such that P(rc|HR I)=1/25.  
Denoting evidence E0 as r*=44%, we have:  

P(E0|HR I) = (1/25) ∑P(r*=44% | 25%≤rc≤50% HR I)      (C6) 
The summand vanishes unless rc ≥44%; otherwise the threshold hypothesis would be 
contradicted.  For rc ≥44%, we take all values of P(r*=44% | rc HR I) to be equal, assuming that 
approval ratings at the time the government expanded social spending are independent of the 
critical threshold.4  We can then replace the sum in equation (C6) with a factor of 7: 

P(E0|HR I) = (7/25) P(r*=44% | 44%≤rc≤50% HR I)      (C7) 
More generally, for evidence E that includes r*=44% along with other salient observations, we 
have: 

P(E|HR I) = (7/25)×P(E | 44%≤ rc≤50% HR I)         (C8) 
We can now calculate the posterior odds ratio for HR vs. HWB:   

 P(HR|E I )  =  (7/25)×P(HR|I)×P(E | 44%≤rc≤50% HR I)         (C9) 
P(HWB|E I )                 P(HWB|I)×P(E|HWB I)   

We find that HR is penalized relative to HWB by an Occam factor of 7/25, regardless of how 
plausible we find the family of hypotheses HR relative to the World Bank hypothesis.  This 
moderate penalty arises because the data r*=44% rules out a moderate portion of the parameter 
space judged feasible given the background information.  Had the value of r* been lower, the 
Occam penalty would have been less significant.  If the government’s approval ratings at the 
time fell below 25%, this evidence would be consistent with any value of the threshold between 
25–50%, and HR would not incur an Occam penalty relative to HWB.    
 
 
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 We would not expect arbitrarily close values to be observationally distinguishable so this approximation seems 
reasonable.  
4 This assumption is an oversimplification—there could be many dependencies.   
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