
D A Grades of Measurement Model for Mixed Data

We observe a vector of j = 1, . . . , J covariates, xi = (xi1, . . . , xiJ), for each of the i ∈ 1, . . . , I

politicians in our dataset. To provide an overall picture of variability in the dataset, we use

a grades of measurement (GoM) approach to model politicians’ characteristics in terms of

a lower-dimensional set of latent groups. As we outline in the main text, we assume each

politician i ∈ 1, . . . , I exhibits potentially partial membership in K underlying latent classes.

We represent subject i’s membership profile with a vector of scores, gi = (gi1, . . . , gik), where

0 ≤ gik ≤ 1 and
∑K

k=1 gik = 1 for i = 1, . . . , I. Thus, each gik indicates the extent to which

subject i is associated with group k and any gik = 1 implies that subject i belongs only

to group k. After estimation, these parameters provide a tool for evaluating the extent to

which each individual belongs to each of the K ideal types discovered by the model.

While traditional GoM models deal only with polytomous observed items (Erosheva

2002), one might include both nominal and interval-level variables in such an analysis. There-

fore, we develop a mixed-mode generalization of the standard GoM setup. Specifically, we

describe each xij by a density function fjk(xij|gik) and the form of this density depends on

the mode of indicator j. Formally, when indicator j is continuous we assume

fjk(xij|gik = 1) = N (µjk, σ
2
jk). (1)

In other words, each continuous indicator is associated with a set of group-specific normal

densities. After fitting the model to the data, one can interpret µjk as the expected level

of observed variable j for a randomly drawn full member of group k. Similarly, σ2
jk is the

variance in observed variable j among full members of k. For example, were we to include

politician age as an interval variable in a two-group model, we might find that politicians

with full membership in group one had an expected age of 40 years with a variance of 10

years, while full members of group two might be expected to be 50 with a variance of 5 years.

Alternatively, when indicator j is a categorical variable with lj = 1, . . . , Lj categories, we
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assume

fjk(xij = lj|gik = 1) = pjklj (2)

where 0 ≤ pjklj ≤ 1 and
∑Lj

lj=1 pjklj = 1 for k = 1, . . . , K and j = 1, . . . , J . After estimation,

pjklj is the probability that a randomly drawn full member of group k will exhibit category

lj on observed variable j. So, for example, if variable j is a binary indicator of gender, an

estimated value of pj11 = 0.7 would indicate that a randomly selected full member of group

one has a 70 per cent chance of being a woman.

Putting the pieces together, we assume that, conditional on the GoM scores, the proba-

bility of observing a given outcome on indicator j for subject i is

f(xij|gi,p,µ,σ) =
K∑
k=1

[gik · fjk(xij|gik = 1)] . (3)

This key assumption maintains that the density of each individual item response is a con-

vex combination of group-specific densities, weighted by subject-specific group membership

scores, and establishes the core structure of the GoM model. It is this structure that allows

for a soft clustering of the observed data; essentially, we model each individual observation

as a mixture over pure types.

Estimation of the model relies on number of other technical assumptions. First, we

assume that, after conditioning on g, each xij is independent across all values of j. In other

words, we assume that covariances across observed indicators are completely explained by

latent class memberships. Or, mathematically, we assume that

f(xi|gi,p,µ,σ) =
J∏
j=1

K∑
k=1

[gik · fjk(xij|gik = 1)] . (4)

We also assume that each vector of observed characteristics, xi, is independent across all

values of i, or, in other words, that individual observations are drawn randomly from the

underlying population. Taken together, the above assumptions yield the following sampling
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density:

f(x|g,p,µ,σ) =
I∏
i=1

J∏
j=1

K∑
k=1

[gik · fjk(xij|gik = 1)] . (5)

D.1 Estimating the Mixed-Mode GoM Model

D.1.1 Prior Distribution

We use a Bayesian estimation approach and, therefore, must specify prior distributions for the

model parameters. We assume, a priori, that the subject-level membership parameters are

independent of the structural parameters and that the categorical and continuous structural

parameters are independent of one another: p(g,p,µ,σ) = p(g)p(p)p(µ,σ). First, we adopt

a conjugate Dirichlet prior on the GoM parameters, assuming that

gi ∼ Dk(α), (6)

where α = (α1, . . . , αk) and α is known. Similarly, we use Dirichlet priors for the categorical

structural parameters, and assume that categorical response probabilities are independent

across items and groups, such that

p(p) ∝
K∏
k=1

∏
j∈JP

Lj∏
lj=1

p
βjlj−1
jklj

(7)

where βj = (βj1, . . . , βjLj
) is known and JP is the subset of j = 1, . . . , J for which item j

is polytomous. For the normal parameters describing the continuous item responses, we use

standard, semi-conjugate priors, again assuming prior independence across both groups and

parameters. Specifically, we adopt normal priors on the group means and inverse gamma

priors on the group variances, such that,

p(µ,σ) =
K∏
k=1

∏
j∈JC

p(µjk)p(σ
2
jk), (8)
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each

µjk ∼ N (µj0, σ
2
j0), (9)

and each

σ2
jk ∼ Γ−1(cj0, dj0), (10)

where Γ−1(·) is the inverse gamma density function and JC is the subset of j = 1, . . . , J for

which item j is continuous. In sum, we assume the prior distribution:

p(g,p,µ,σ) ∝
K∏
k=1

[ I∏
i=1

gαk−1
ik

]∏
j∈JP

Lj∏
lj=1

p
βjlj−1
jklj

[∏
j∈JC

1

σj0
φ

(
µjk − µj0

σj0

)
(σ2

jk)
−(cj0+1)e−dj0/σ

2
jk

] ,

(11)

where φ(·) is the standard normal density function.

For actual estimation we use the flat priors αk = 1 ∀k for the GoM parameters and

βjl = 1 ∀j, l for the categorical structural parameters. For the continuous parameters we

set each µj0 to the sample mean for variable j and each σ2
j0 = R2

j , where Rj is the observed

range of variable j. Moreover, we set each cj0 = 2 and each dj0 = 2
R2 . In general, these

priors are quite uninformative.

D.1.2 A Gibbs Sampler for the Mixed-Mode GoM Model

Erosheva (2002) shows that the GoM model is equivalent to a parameterization of latent class

model proposed by Haberman (1995). One obtains this latent class representation by aug-

menting the data with latent binary vectors, zij = (zij1, . . . , zijK), where zij ∼ MK(1,gi),

where MK(·) is the multinomial distribution with K dimensions. Thus, the GoM model

where each individual i is considered a partial member of K groups is equivalent to a pure

latent class model where each individual i belongs to one, and only one, of KJ latent groups.

This equivalence allows one to rewrite the GoM sampling density in equation 5 as the aug-
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mented likelihood

f(x, z|g,p,µ,σ) =
I∏
i=1

J∏
j=1

K∏
k=1

[gik · fjk(xij|gik = 1)]zijk , (12)

yields—after multiplying by equation 11—the posterior distribution

p(g,p,µ,σ2|x, z) ∝
I∏
i=1

J∏
j=1

K∏
k=1

[gik · fjk(xij|gik = 1)]zijk

×
K∏
k=1

[ I∏
i=1

gαk−1
ik

]∏
j∈JP

Lj∏
lj=1

p
βjlj−1
jklj

[∏
j∈JC

1

σ0
φ

(
µjk − µ0

σ0

)
(σ2

jk)
−(c0+1)e−d0/σ

2
jk

] ,

(13)

and motivates a Gibbs sampling algorithm for estimating the model parameters.

In its first step, the Gibbs sampler imputes z, drawing each zij from its full conditional

distribution,

zij ∼MK (1, ρ1, . . . , ρK) . (14)

When item j is nominal,

ρk ∝ gik

Lj∏
lj=1

p
xijlj
jklj

, (15)

where

xijlj =


1 if xij = lj

0 otherwise.

On the other hand, when item j is continuous,

ρk ∝ gik ·
1

σjk
φ

(
xij − µjk
σjk

)
. (16)

After the imputation step for z, the algorithm proceeds to the posterior step, first sam-

5



pling each gi from the full conditional distribution

gi ∼ DK

(
α1 +

J∑
j=1

zij1, . . . , αK +
J∑
j=1

zijK

)
. (17)

Next, it samples the item parameters, p, µ, and σ2. For the nominal item parameters the

conditional distribution of each pjk is

pjk ∼ DLj

(
βj1 +

I∑
i=1

xij1zijk, . . . , βjLj
+

I∑
i=1

xijLj
zijk

)
. (18)

If, on the other hand, item j is continuous, the conditional distributions are

µjk ∼ N

 µ0
σ2
0

+
∑I

i=1 zijk
σ2
jk

·
∑I

i=1 zijkxij∑I
i=1 zijk

1
σ2
0

+
∑I

i=1 zijk
σ2
jk

,
1

1
σ2
0

+
∑I

i=1 zijk
σ2
jk

 (19)

and

σ2
jk ∼ Γ−1

(
c0 +

∑I
i=1 zijk

2
, d0 +

∑I
i=1 zijk(xij − µjk)2

2

)
. (20)

D.1.3 Handling Missing Data

We can easily extend the Gibbs sampler to deal with missing data by treating missing values

as additional model parameters, and sampling from the conditional posterior distributions

of the missing values at each sampler iteration to augment the observed data. Specifically,

the sampler draws missing nominal values from

xijlj ∼MLj
(1,pjk′) , (21)

where k′ is the value of k for which zij = 1.1 The sampler draws missing continuous values

from

xij ∼ N
(
µjk′ , σ

2
jk′

)
. (22)

1By definition zij is a K-vector with all values but one set to zero, and the remaining value set to one.
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