

We are proposing a novel approach to address the deconvolution of interferometric images accounting for the spatial AND temporal dependency of the data.

21 ENDE

Conclusions/Perspectives

Test #1: SNR

Dirty cubes Marginal improvement of SNI SNR turn-over below N_t → temporal dilution

CLEANed cubes Higher SNR at low noise

Temporal dilution effect reduced

2D-1D Sparse cube Higher SNR at low & high noise

Slow decrease of SNR due to dilution

One order of magnitude improvement in SNR

with time $\frac{1}{2}$ and $\frac{1}$		T Ten Diete	r enhor	Tee	wirwi 833	_			_	
with time $\begin{bmatrix} 1 & & & \\ 0 & & & \\ & & & & \\ & & & & \\ & & & &$			cuires							
$0 \qquad \qquad$		4								
$0 \qquad = \prod_{i=1\\j=1\\j=1\\j=1\\j=1\\j=1\\j=1\\j=1\\j=1\\j=1\\j$	with time	1.0								
	0									
		0.0	5	200		150		-		. N,
···		1 800E		-		-	20	-	10	
and All Mark and and an		The CL P								1

Test #2: Temporal profiles Dirty & CLEAN Higher RMSE in high noise snapshots Similar error 2D-1D Sparse cube Higher RMSE in high noise snapshots Better overall profile reconstruction

If the problem has the form

Proximal calculus

when g(x) is differentiable

 σ Factor of ~3 reduction of the RMSE of transient profile

 σ

Test #3: Real data: pulsar B0355+55 with the VLA

Normalized & centered reconstruction 2D1D CLEAN

Pulsar fractional period

Candea, E., Romberg, J., & Tao, T. 2008, Information Theory, IEEE, 52, 489 McLaughlin et al., 2008, Nature 439, 817 Candea, E. J., Wakin, M. B., & Bovd, S. P. 2007, ArXiv:0711.1612 Hosborn, J. A. 1974, A&AS, 15, 417 Lorimer, et al. 2013, MNRAS, 438, L5 Petrov, E., Balles, M., Barr, E. D., et al. 2015, MNRAS, 447, 246

R. P. Tablet, M. 2007, H. 2007, Sur. 1287
Patrox, E. Bails, M. 2007, Mallor of the All, 2017, Sur. 1287

R. P. Tablet, M. 2007, L. L. et al. 1057, All, 575, Mall, 504
States, M. 2017, Mallor All, 2017, Sur. 1287

R. H. 10, H. 2017, L. et al. 1057, All, 575, Mall, 504
States, M. 2017, Mallor All, 2017, Sur. 1287

R. 10, H. 11, States, J. L. of all 564, All, 575, Mall, 504
States, M. 2017, Mall, 2014, Sur. 1287, Mall, 119, Mall, 2017, Mall, 2014, Sur. 1287, Mall, 119, Mall, 2014, Sur. 1 Garsden, H., Girard, J. N., Starck, J. L., et al. 2015, A&A, 575, A00 van Haarlen, M. P., Was, M. W., Gunst, A. W., & et al. 2013, A&A, 558, A2 Hogborn, J. A. 1974, A&AS, 15, 417

Novel spatio-temporal sparse method

· Preliminary validation on real data

• Radio transients detection

• Improvements/Applications

error

References

· Based on Condat-Vu primal-dual method

· Automatic setting of relaxation parameters

· 2D-1D dictionary for sparse signal representation

· Sensitivity: one order of magnitude improvement in SNR · Temporal profile: factor of 3 improvement in the profile reconstruction

Validation on spatially resolved transient sources (e.g. VLBI radio cores)

· Code acceleration: Embarrassingly parallelisable => HPC

· Integrate into radio transients detection pipeline