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To the dynamics of the two-body problem with variable masses

IN the presence of reactive forces

Abstract. The dynamics of celestial bodies with variable masses, especially the non-stationary stage of the gravitating system is little studied. We have considered the gravitational system consisting of two spherical celestial bodies
with variable masses in the relative coordinate system. We studied the general case where the masses of bodies change non-isotropically at different rates, in the presence of reactive forces. The problem was investigated by methods of
perturbation theory based on aperiodic motion along a quasi-conic section. WWe used perturbed motion equations in the Newton form equations with variables a, e, I, 7, Q, 4, which are analogs of Keplerian elements. The equations of perturbed
motion of the osculating variables are obtained. Averaging over the mean longitude we obtained the evolution equations of the two-body problem with variable masses in the presence of reactive forces. The evolution equations have an exact
analytic integral a®e*=const. The derived evolution equations of the two-body problem with variable masses in the presence of reactive forces will be used to study binary systems with variable masses.
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1. Introduction Since there is no general solution for arbitrary mass change laws of the Gulden-Meshchersky m =m, (z) =m, (to) — (‘ mlD + (mh) =m, (tl) _ I (‘ ml‘)dt 1 I (m1+ )dz , (2.1.3)
Real celestial bodies are nonstationary, their masses, sizes, shapes and structures changes in the problem, it seems promising to study the dynamics of gravitating systems with variable masses by methods o f
evolution process. The mass variability of celestial bodies, especially in the nonstationary stage of of perturbation theories. The development of this idea was carried out in papers [17-19] in which the ‘ ‘
gravitational systems, significantly affects the further dynamical evolution of this system generally [1, 2]. perturbation theory based on aperiodic motion along the quasiconical section in different systems of m, =m, (t) =m, (IO) — (‘m2 D + (m2+) =m, (to) — J (‘mz‘)dt + I (n'ﬁ!2+ )dt , (2.1.4)
For the first time this problem appeared in astronomy due to the hypothesis of C. Dufour [3] about the oscillating elements and in different forms, including the canonical perturbation theory were constructed. fo fo
possible role of meteor accretion in the parameters evolution of the Earth-Moon system. Later LV. The perturbation theory based on aperiodic motion along a conic section developed by T.B. Omarov [12] t t
Meshchersky found an exact solution to this problem in special cases of mass change laws [4]. So the two- is contained as a special case of the perturbation theory based on aperiodic motion along a quasi-conic _("’”1_ D =— J. (‘ml_ Ddt <0, —(‘mz_ ‘) =— I (\mz_ Ddt <0 (2.1.5)
body problem with isotropically varying masses, the Gulden-Meshchersky problem, a general solution of section [18]. In [20-24], various forms of the equation of perturbed motion were used to study the dynamics f f
this problem, for arbitrary changes of masses, is unknown. of two, three, and many bodies with variable masses in various cases. In [19], new forms of the equation of - the masses of particles separating from the body B, and B, during ,
The Gulden-Meshchersky problem in astronomy is especially actual when the body masses change perturbed motion based on aperiodic motion along a quasi-conic section, in the form of Newton's equation , : ? )
according to the Eddington-Jeans law were obtained, which were used in this work. (m, )=+ J (i, )t >0, (m,, )=+ I (rin,, Yt >0 (2.1.6)
dm — & = const | n=const . (1.1) In the current paper, we investigated the problem of two spherical bodies with non-isotropically ; "

dr
B.E. Gelfgat found an integrable case of the Gulden-Meshchersky problem for the case n=1 and
n=3/2 [5]. An overview of integrable cases for concrete mass change laws and interesting results obtained

varying masses in the presence of reactive forces, using the methods of perturbation theory [19]. The
perturbation equations of secular perturbations were obtained. One exact first integral of the system of _
differential equations of secular perturbations was found. ]71_ =1 - fgl : ]72 =i, - ng : vV = T fgl , ]72 =1i,, — R, (2.1.7)

1+
relative velocities of separating and attaching (sticking) particles.

- the masses of the particles joining the body B, and B, during 7,

by the autonomization method for the Gulden-Meshchersky problem are given in the paper by L.M.
Berkovich [6].

The method of autonomization for the Binet equation describing the Gulden-Meshchersky problem
was applied by Bekov to determine the exact special solutions. In his work [7] new exact special solutions
of the Gulden-Meshchersky problem in parametric form were found.

Many aspects of the Gulden-Meshchersky problem with an extensive bibliography are given in A. the central body), B, - the less massive body (hereinafter the satellite). Accordingly, we denote the masses,
Deprit [8]. A classification of the two-body problem with variable masses is given in E.P. Razbitnaya [9]. which are functions of time
Some aspects of the two-body problem with variable masses are described in E.P. Polyakhova [10]. Note _ _
also the I1?eview work by J. H);CII)] idimetriou [11] where, in particular, a new interpretaﬂon of the Gulden- my=my (1), my=m(1). h =1, 2.1.1)

Meshchersky problem was obtained simultaneously and independently by T.B. Omarov [12] and J. Let's assume that the body mass decreases due to separating particles and increases due to joining
Hadjidimetriou [13]. (sticking) particles. In this case, in general, the relative velocity of separating particles from the body differs

from the relative velocity of joining (sticking) particles to the body. Let us consider the general case when
the masses of bodies do not change isotropically at different rates
m= m

2. Model description. Differential equations of motion. _
2.1. Physical statement of the problem. “A
Consider a gravitating system consisting of two celestial bodies with variable masses. We assume

that the bodies are spherical with spherical mass distributions. Let, B, - the more massive body (hereinafter

T.B. Omarov's work [12] is interesting because here for the first time the aperiodic motion along a
conic section is proposed as an initial unperturbed motion for studying the dynamics of gravitating systems

with variable masses and the corresponding perturbation theory in the Newton equation form is constructed L2 (2.1.2)
[14, 15]. Relatively recently this perturbation theory has been used in D. Veras, J.D. Hadjidemetriou, S.A. m,m,
Tout [16]. A mathematical description of the dynamic evolution of two mutually gravitating spherical bodies

with non-isotropically varying variable masses, in the presence of reactive forces under the above
assumptions, is needed
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2.2 Mqti(m equations .Of bodies in a relative coordipate syst.en.l | 3. Equations of perturbed motion in osculating elements. Accordingly, the equations of perturbed motior; in.the Newton equations gom [19] have the form
Let us introduce a relative coordinate system O,xyz with the origin in the center of the central body Using ecarlier obtained equations of aperiodic motion along a quasi-conical section [18], in the a=0 2a’esin @ ( 2 (t) B mAr) N 2a” r (t) (3.4)
B,, the axes of which are parallel to the corresponding axes of the absolute coordinate system. Let us presence of a perturbing force [19], let us consider the two-body problem with variable masses in the p " p ’ '
denote (Fig. 1) presence of reactive forces (2.2.2) as equations of perturbed motion along a quasi-conical section in p
- - ~ i i 1 . . €+ COoSs
F-R R =R, 2.2.1) osculating elements [1”9]. Let;s rewrite efluatlon (2.2.2} as - o= Q{SIHQ(E, (l‘) —mAr) +(Cos9+ . ecoseij (l‘)} , (3.5)
Then, in relative coordinates, the equations of motion of the two-body problem have the form F+ fm——mAr =w, W =—mAr+F = W(I/K, w., Wn) : (3.1) y
. ;o F I cos
Pt fms=F, p=yxieyiez?, (2.2.2) Then we have == F (1), (3.6)
r @ i \/; . \/; . dt 14+ecos@
where the total mass of the bodies and the equilibrium of the reactive forces (per unit mass) are denoted as Wj =W m—_ W: =W, m——, W; =W, =, p= a(l - 62) (3.2) =04 cos & (F (t) —mAr) n sin & 141 g (t) M inu-t iF (;) (3.7)
follows M, M U, M U, m = ; . e mp ) np g Sk , .
mzm(t)zml (I)er2 (r), (2.2.3) A= > (l/m)/dt2 ’ W :F;_(t)—mAr, VVr:}?;([), Wn:Fn(t)a (3.3) . sinu
ﬁ':ﬁ(z):ﬁ(Fx,Fy,F:) :}71 +}7_, (2.2.4) In the case when the perturbing* force is zero * Q:Q(l—kecosﬁ)siniﬂ(t)’ (3.8)
_ . _ _ w =0, W =0, W =0 (3.4) ,
=y My F :‘ml‘|17 _‘m2_| % (2.2.5) h : m mr > mr . i
£ e T e - T s then A=n| —| —042 VJli-e (Fr(t)—mAr)——smu-tg—Fn(t) +
| | 2 . 1 2 a, e, i, T,Q, (3.5) ny My p myp 2 (3.9)
In the orbital coordinate system the reactive force (2.2.4) can be written in the form are constants. Here a is analog of the semi-major axis, p is analog of the orbital parameter, e is analog of . T '
L= ﬁ(;) — ﬁ; +ﬁ’r +ﬁn :ﬁ(}?;,p;,]?”) , (2.2.6)| | eccentricity, i is analog of orbital inclination to the plane, A =M +7 is analog of the mean longitude in + 2 Kl + —] sin@F, (1) - COSQ(Fr (1) —mAr)}Q,
. L . , the orbit, M is analog of the mean anomaly, 7 analog of pericenter longitude, and Q analog of the l++l-e m,p
where the F radial, F_ transversal, and F, normal components of the reactive forces are denoted by longitude of the ascending node. \/; .
radial, transversal, and normal components. Usually the observation determines the relative velocities of The average longitude in the orbit is an increasing function of time and is defined by the following where 0 = ——".
separating and attaching (sticking) particles (2.1.7) with respect to each particular body. Therefore, it is| | formula My M
c;gv;mezntztg expll::nss the rzact'lve ff(l)lrces. n an% qrbltal coordinate system. Let us assume that quantities : m(t) 2 N 4. System of differential equations of secular perturbations in oscillating elements.
(2.2.3)-(2.2. ) are known and given functions ol fime. . . . . A=n (t >0, n=——5-=Consl, (3.6) To obtain the equations of motion of the secular perturbation, the equation system (3.4)-(3.9) is averaged
Relatlons (2.2.2), (2-2-_3)'(2-2-6) 'descrlbe ﬂ_le two-bc.)dy problem with non-lsc')tr opically varying m 0) a over the mean longitude along the orbit. Let us consider equation (3.4), analogous to the semi-major axis,
masses 1n the presence of reactive forces in the relative coordinate system. These equations (2.2.2)-(2.2.6) | | where 7 is the analog of the mean orbital motion. one of the elements which determines the size of the orbit, and calculate the secular perturbations
are the basic initial equations in this paper whose solutions will be sought by perturbation theory methods. | 2z e <in 0 ) \/* -
a = — f [sin ] F, (t)—[ }ZeazmoA +| —|2a°F, (1) NP M g
27 p l+ecos@ yo, L, m
4
5 6

Let's use the well-known formulas of transition from @ to A , also @ to E [18], [25] Y m Ja 6. Conclusi
1 sec 0 2 2 . onciusion
3/2 =n| — | ———==<F (1)(2+e |—-|2+3¢ mAa}— , . - . . L :
pe / 5 4 { : ( ) ( ) ( ) 0 We have considered a gravitational system consisting of two spherical celestial bodies with variable
e l1—e m m \ju
dA = dl = dE 0 0 masses in a relative coordinate system. We have studied the general case where the masses of the bodies
2 bJ 4 6 y g
(1 +ecos @)2 l—ecos E , 2 (4.6) change non-isotropically at different rates in the presence of reactive forces.
3m e\/gsm(fz—Q) i m a(l—e ) P 3 L . L .
2y tg— F ( t) + ™o F ( I) _ 2 Ag The problem was investigated by perturbation theory methods based on aperiodic motion along a
. Jl—e’sin E cosk —e 1 l—ecos E 2 m 1 (1 _ o2 ) 7" m 14+ \/1 _ &2 \/ 1, r 0 ' quasi-conic sec.tion. We used perturbed motion equations in the.Newton equations fgrm with Variables. a,
sin 6 = , cosf = , _ = — - 0 e, i, m, £, A, which are analogs of Keplerian elements. The equations of perturbed motion of the osculating
1 —€cos E [-ecosk I+ecosd I—-e The obtained secular equations (4.1)-(4.6) can be used in the study of the dynamic evolution of the variables are obtained.
The result is . two-body problem with variable masses in the presence of reactive forces. They are convenient for Averaging over the mean longitude, we obtained the evolution equations of the two-body problem
e _ 2a°7? m, \/JF (t) @.1) describing the dynamics of wide double systems with variable masses. with Vairiable masses in the presence of reactive forces. The evolution equations have the exact analytic
r ' integral a’e?=const.
m
o . . Ho . . . 5. The first integral of the differential equation system of secular perturbations The derived evolution equations can be successfully used in the study of the dynamic evolution of
| tSmElarly, P effomlnlig all :ﬁlcuflaltllong, e olitam tl;e ds-egular tpelrturbail-ons fgr the.bc.)thel:[ﬁ scula‘uil S Consider together the equation of the analog of the semi-major axis (4.2) and the analog of the the two-body problem with variable masses in the presence of reactive forces. They are convenient for
eei?uigast-ionss a Tesull, we have the following system ol dillerential cquations descrbing the scculat eccentricity (4.3), we obtain the following expression describing the dynamics of wide binary systems with variable masses.
P ; sec In the case of close binary systems, it is also necessary to consider tidal forces. These and other
a 4a
; e = 3% (5.1) aspects of the two-body problem with variable masses in the presence of reactive forces will be studied in
3 e\/ da (l —e ) m, p ( ) the following papers.
e =—— l), (4.2)
2 J 4, m a‘e' =const=aze,, e =e(t,), a,=al(t,), (5.2) 7 Reference
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