Investigating the inner circumstellar envelopes of O-rich stars

MANCHESIER with ALMA observations of high-J SiO masers
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Introduction

ATOMIUM

SiO masers found within the extended stellar atmospheres are useful for probing ATOMIUM data were obtained using ALMA:

the inner regions of circumstellar envelopes (CSE) where convection and ** Frequency range 213.83-269.71 GHz, observed between 2018-2020.

pulsation shocks are damped and dust formation occurs around evolved stars. s* Mid (0".2, sensitive to thermal emission) and high (0".02, comparable to
2-4 AU for the closer targets) resolutions; low resolution data not

The ATOMIUM (ALMA Tracing the Origins of Molecules In dUst-forming oxygen- necessary for the maser study.

rich M-type stars) Large ProgrammellLl2l (Pl: L. Decin) observed 17 O-rich ¢ Contain high-frequency (/=5-4 and J=6-5) SiO transitions.

AGB and RSG stars covering a range of (circum)stellar parameters in these late
stages of stellar evolution.
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maser components in the ATOMIUM data set

Supplementary APEX observations Single-dish observations of the J/=5-4 and J=6-5 SiO lines were taken with APEX:

< Clear evidence of maser variability in some ATOMIUM AGB stars “* Equipped with the nFLASH320 receiver, full resolution ~0.086 km/s
% Target rms = 925 mly (25 mKin T,).

** Two epochs of observations obtained in 2022 (either Jul-Oct or Oct-Dec)

Results
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the J=6-5 and J=5-4 transition,

respectively. Only the AGB
v=0 masers:

*:: 1:0 = * RAdl sources with considerable
. _ _ N Z £ \ : icibsas maser action are included in
% Detected in 7 sources in ATOMIUM: 2, g, {,{ | the analysis.
AH Sco, KW Sgr, VX Sgr, V PsA, W Aql, IRC+10011 3 i
§

and IRC-10529 (the last two relatively strong)

o 28C; — 29¢; )
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SIO maser variability in AGB stars

s* Some of the recent results of the analysis of ATOMIUM SiO masers, observed
Example: between Autumn 2018 and Spring 2020 by ALMA, are presented and properties of
the CSE of ! Gru, R Hya and IRC-10529 are briefly discussed.

28Si0 v=1 J=5-4 detected
in most sources during “* The relationship between mass-loss rates and flux-weighted mean radii is unclear
ATOMIUM observations due to the exclusion of the line-of-sight direction in the analysis.

s* APEX observations of J=5-4 SiO lines show clear evidence of maser variability at
different phases of stellar pulsations.

Two extreme cases of
variability in 2022:
o 1! Gru:
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Figure 5. Preliminary spectra of 28SiO v=1 J=5-4 emissions towards ! Gru (top) and RW Sco epochs (phase =0.0
(bottom) in the two epochs of APEX observations; these show zero maser action in ! Gru and O 3)

and strong masers in RW Sco. The vertical lines mark V| ;. Note that the y-axis is still in K ]

(courtesy of S. Etoka).
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