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Appendix A. Regulating sub-model

Priority to Growth

The differential equation for 
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 is the non-labile body mass at birth (see equation C.31) and 
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 is the mature non-labile body mass parameter.
The flow 
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Formally, this flow represents the synchronization of the regulating sub-model with the operating sub-model according to the achieved level of maturity 
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. By this way, priority to growth is updated according to its level of completion and follows a curvilinear pattern (
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Priority to Ageing

The differential equation for 
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The flow 
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 (senescence) from 
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 to 
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 is arbitrarily formalized with a logistic function:
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where 
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 (d-1) is the fractional rate of senescence. 
To initiate the flow 
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where 
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 (d) is the age at first conception.

The underlying assumption is that the senescence process starts when animal first involves in reproduction. The asymptotic value 
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 represents the state of being old but not necessary dead, i.e., a state of fully expression of processes of senescence leading to death. A sigmoid pattern rather than an exponential one was chosen to capture this idea and to avoid the a priori definition of a time at which 
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Priority to Reserves

The differential equation for 
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Priority to Unborn
The differential equation for 
[image: image39.wmf]U

 is

	
[image: image40.wmf]p

dt

dU

=

,
	( A. 7 )


with 
[image: image41.wmf]0

0

=

=

t

U

.

The flow 
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 (pregnancy) from 
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 to 
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 is derived from a model of fetal growth (Laird, 1966
) with the assumption that priority 
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 is proportional to fetal growth (see Appendix B) an is given by
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 is the theoretical maximum non-labile birth weight assumed to equal 
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 and 
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 are parameters defined in Laird (1966)1, and 
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 is the theoretical maximum pregnancy length. This classic and generic Gompertz-based model of embryonic growth was chosen because of its generic form in which only the time and weight scales of process differ among avian and mammalian species. The parameter 
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 is the initial fetus weight at conception and the parameter 
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 is thus the relative proportion of the neonate weight at conception, and corresponds to the initial investment in pregnancy at the start of the reproductive cycle. The flow 
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 only occurs when the animal is pregnant, i.e., 
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Conception is defined as a periodic discrete event starting at age at first conception and repeated cyclically during each reproductive cycle numbered by 
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 (a reproductive cycle 
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 is defined from conception to the next conception with 
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 is required for conception. At conception times, the transfer of the small quantity 
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 is triggered, which acts as a seed to initiate the flow 
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 while the reproductive cycle number is incremented:
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where 
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 (d) is the age at conception of reproductive cycle 
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where 
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 is the age at parturition during reproductive cycle 
[image: image74.wmf]c

 and 
[image: image75.wmf](

)

c

PCI

 (d) is an input parameter of the model defining the parturition to conception interval of reproductive cycle 
[image: image76.wmf]c

. 

The initial value 
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 and is thus always lower than one so that the theoretical maximal pregnancy length is never reached. The discrete event parturition triggers the transfer of 
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 to zero, updates the age at parturition for the current reproductive cycle and sets the boolean indicator of mammary stimulation milking to one (
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This discrete transfer represents parturition and birth, i.e., the fetus expulsion from the mother uterus. At this moment, priority to the survival of the unborn calf becomes priority to the survival of the newborn calf.

Priority to Newborn

The differential equation for 
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 is

	
[image: image89.wmf]l

dt

dN

-

=

,
	( A. 12 )


with 
[image: image90.wmf]0

0

=

=

t

N

.

The flow 
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 (lactation) from 
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 to 
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 describes with a simple mass action the transfer of maternal investment from 
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 (priority, inherited from 
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 at parturition, to initiate lactation) to 
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 (priority to maintain lactation) with advancing time and is given by

	
[image: image97.wmf]N

l

×

=

m

,
	( A. 13 )


where 
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 (d-1) is the fractional rate of lactation initiation. The mass action formalizes the ineluctability of the sequence gestation-lactation.

Priority to Suckling
The differential equation for 
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 is
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The flow 
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 is formalized with a mass action in which the fractional rate 
[image: image103.wmf]l

 is designed to account for body reserves level, pregnancy effect and mammary stimulation:
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with
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where
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where 
[image: image107.wmf]X

 is the current labile body mass (see equation C.32), 
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 is the boolean indicator of mammary stimulation, and 
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 (kg/kg) are parameters governing the dynamic patterns of 
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The term 
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 represents the effect of the start of a new reproductive cycle, which increases 
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 and induces a decrease in the priority to the suckling calf in aid of the next generation to be born.
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Appendix B. Fetal growth

Given the theoretical non-labile birth weight 
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 (see equation C.31), priority 
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 to the unborn is defined as the specific growth curve of the fetal weight 
[image: image147.wmf]F

W

 relative to 
[image: image148.wmf]B

W

 such as 

	
[image: image149.wmf]dt

dW

W

dt

dU

F

B

×

=

1

,
	( B. 1 )


equivalent to
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The complementary Gompertz function proposed by Laird (1966)1 to describe fetal growth is used and is given by
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where 
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 are specific parameters governing the shape of the fetal growth curve leading to the following formalism for 
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By setting 
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which is equivalent to
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and leads by substitution in equation B.5 to
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which is the formalism given in text for 
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(see equation A.8).

The equation of Laird (1966)1 is finally constrained to give 
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and giving rise to 
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which leads by substitution to the following formalism given in text (see equation A.8) for 
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Appendix C. Operating sub-model
Reference performance and energy flows.

The central energy compartment of the operating sub-model is the metabolizable energy zero pool (
[image: image174.wmf]ME

, MJ) which links inflowing and outflowing energy flows, metabolizable energy being a common unit.

The differential equation for 
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with the following reference energy flows (MJ/d)
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	Energy from labile body mass catabolism
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	Energy for pregnancy (gravid uterus accretion)

	
[image: image182.wmf]*

Y


	Energy for milk yield (
[image: image183.wmf]å

*

*

=

H

L

P

F

j

j

Y

Y

,

,

,

:

)

	
[image: image184.wmf]*

j

Y


	Energy for secretion of milk constituent 
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Maintenance. The maintenance energy expenditure 
[image: image191.wmf]*
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 (MJ/d) is given by
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where 
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 (MJ/kg) is the maintenance energy requirement parameter and 
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 is the body weight given in equation C.28.
Growth of non-labile body mass 
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. The daily flow channelled to growth 
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where 
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 is the dietary 
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.
Anabolism and catabolism of labile body mass 
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with 
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 (labile body mass weight at birth in kg; see equation C.32).

The reference balance of labile body mass 
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 is given by

	
[image: image210.wmf](

)

÷

÷

ø

ö

ç

ç

è

æ

×

-

×

×

×

-

=

M

M

x

W

X

R

b

G

bal

c

1

1

0

*

,
	( C. 5)


where 
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The reference mobilization of labile body mass 
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 is given by
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where 
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 (d-1) is the fractional rate of mobilization modulated by priority 
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  (dimensionless) is a genetic parameter scaling individual body reserve mobilization. The daily energy flow 
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where 
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 (MJ/kg) is the energy requirement for the storage of 1 kg 
[image: image229.wmf]X

.

The daily energy flow 
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where 
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 (MJ/kg) is the energy supplied by the mobilization of 1 kg 
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The formalism used to calculate energy coefficients 
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 is given in Appendix D.
Pregnancy. The reference daily investment of energy in pregnancy 
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where 
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Lactation. We assumed the existence of a reference pattern of milk yield 
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where constituents 
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 are lactose (
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The reference daily energy flow channelled to milk secretion 
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where 
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 (MJ/kg) is the energy requirement for the yield of milk constituent 
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(dimensionless) are parameters scaling individual milk yield and composition. These latter parameters, defined as genetic parameters and set to 1 in model development steps, are used to account for individual variability in the amount of milk yield by the way of parameter 
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Intake. The reference dietary metabolizable energy input 
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Using equation C.3, this formula can be written
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which corresponds to the metabolizable energy requirement at time 
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.
Given the dietary metabolizable energy content 
[image: image285.wmf]D

e

 (MJ/kg
[image: image286.wmf]DM

), the dry matter intake requirement 
[image: image287.wmf]*

DMI

 is 

	
[image: image288.wmf]D

e

I

DMI

*

*

=

.
	( C. 17)


In an unchallenging feeding context, intake is assumed to cover requirements such that
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In a challenging feeding context, the actual intake may generate an energy surplus or deficit from requirements such that
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leading to deviations from reference performance (Martin and Sauvant, 2010b
).
Actual performance

Body mass composition. Body weight (
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, kg) is given by
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where 
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 (kg) is the empty body weight given by
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where 
[image: image303.wmf]W

 (kg) is the non-labile body mass weight (bone, head, skin, etc.), 
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 (kg) is the labile body mass weight, 
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 (kg) is the digestive tract contents weight and 
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 (kg) is the gravid uterus weight including fetus and products of conception (placentome, membranes and fluids).
At birth, empty body weight is assumed to equal
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using the formula of Taylor and Murray (1987)
, where 
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 (kg/kg) is the mature ratio of labile to non-labile body mass.

The differential equation for 
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with 
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 (non-labile body mass weight at birth, kg) and where 
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 (MJ/kg) is the growth energy requirement (for the accretion of 1 kg 
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, see Appendix D) .
The differential equation for 
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 is given by
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 (labile body mass weight at birth, kg).
The differential equation for 
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 is given by
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with 
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 at discrete event parturition. Maternal uterus weight and uterine involution are neglected for simplicity to avoid distinguishing the maternal part of gravid uterus increase during gestation.
The differential equation for 
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 is given by
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 (kg/kg) is the diet 
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 content set to 0.60 for model development, 
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 (kg/ kg) is a parameter scaling a permanent digestive tract contents weight to body size.

Developed on a daily timescale, the model is not designed to represent the diurnal variations of body weight associated to changes in the digestive tract contents weight. The mean retention time of solid feed material in the digestive tract is generally lower than three days (Hartnell and Satter, 1979
; Mambrini and Peyraud, 1997
). Therefore, the daily changes in digestive tract contents are simply described with a differential equation incorporating the daily intake of fresh material and a slightly delayed removal applied to contents exceeding a permanent digestive tract contents weight scaled to body size. 

Body condition score is calculated according to the current amount of empty body fat (
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, kg) with an empirical model proposed in a previous paper (Martin and Sauvant, 2005
):
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with
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where 
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 and 
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 (kg/kg) are the fat content of 
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 at maturity and 
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Milk yield. The daily raw milk yield (
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where 
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 (MJ/kg) is the metabolizable energy requirement for the yield of milk constituent 
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 and 
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 is the boolean indicator of mammary stimulation.
Milk constituent 
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 contents 
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Appendix D. Energetics of body tissue

Given the net energy contents of 1 kg fat and 1 kg protein (respectively 39.762 and 23.857 MJ/kg, Brouwer, 1965
 ) and the fat and protein contents of body compartments 
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and
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Assuming that partial net efficiencies of metabolizable energy utilization for protein and lipid gain are respectively 0.20 and 0.75 (Geay, 1984)
, and using the formula described by Williams and Jenkins (2003)
, the metabolizable energy requirement for the storage of 1 kg 
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 is given by
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the metabolizable energy requirement for the storage of 1 kg 
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 is given by
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and the metabolizable energy supply by the mobilization of 1kg 
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  is given by
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Appendix E. Literature based parameterization

Parameter settings
The diet 
[image: image369.wmf]ME

 content was set to the average value of 
[image: image370.wmf]3

.

11

=

D

e

 MJ/kg 
[image: image371.wmf]DM

 (Martin and Sauvant, 2002) for model development, regardless of the animal physiological stage. Input parameters concerning the timing of the reproductive cycles are the age at first conception set to 
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, the number of the reproductive cycle. These average values yield a first calving around 24 months of age, which is classically proposed as an economic and physiological optimum in Holstein cows (Gill and Allaire, 1976; Ettema and Santos, 2004) and a calving interval around 400 d which is a contemporary average. To simplify the time scaling of the model to data, the value of 
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Parameters of the regulating sub-model are either involved in the specific scaling of the fetal growth (
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 were found in Laird (1966) and the maximal pregnancy length parameter was derived from the review of Andersen and Plum (1965) and set to 
[image: image389.wmf]285

=

p

 d. The fractional rate of senescence was set to 
[image: image390.wmf]0018

.

0

=

s

 to yield a maximum milk production in the fifth parity. The parameter 
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 of 1.8 (value of 2.4 on a 1-5 scale). This value is close to the lower bound of the calving body score range recommended to safeguard from health problems (Gearhart and Curtis, 1990) and under which the risk of becoming too thin increases (Wattiaux, 1996). The fractional rate 
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 is involved in the decrease of priority 
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 completed within 2 weeks after drying-off, triggered at 320 days in milk.

Empty body weight at birth (
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, kg) is estimated with the formula proposed by Taylor and Murray (1987): 
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 is set consistently with the results of Tamminga et al. (1997) on the average composition of empty body tissue mobilization in early lactation. The value of 3% was set arbitrarily, assuming that 
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[image: image417.wmf]BCS

 range recommended to safeguard from health problems (Caldwell, 2003; Wattiaux, 1996; Gearhart and Curtis, 1990). Moreover, this value is close to the calving body condition scores recognized for optimum milk production (Waltner et al., 1993) and optimum number of days to first oestrus (Friggens, 2003). This value leads to an empty body fat content of 21% for a non-pregnant non-lactating elderly cow, which is close to the average value reported by Ellenberger et al. (1950). The parameter giving the weight ratio fetus:gravid uterus was set to 
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Maintenance metabolizable energy requirement is set to 
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 daily gain, yielding average daily pregnancy metabolizable energy requirements of 9.2, 15.1, 19.7 and 22.6 MJ/d during respectively the 6th, 7th, 8th and 9th months of pregnancy, which is close to US energy recommendations (NRC, 2001; Fox et al., 2004) and falls in the range of recommended values of European energy systems. Assuming that 1 kg lipid and 1 kg protein contain respectively 39.762 and 23.857 MJ net energy (Brouwer, 1965), that partial net efficiencies of metabolizable energy utilization for protein and lipid gain are respectively 0.20 and 0.75 (Geay, 1984), and that the efficiency of use of  metabolizable energy coming from body reserve mobilization is 82% (Agnew et al., 2003), the following estimates for metabolizable energy values of body weight changes were obtained with the formula used by Williams and Jenkins, 2003 (see Appendix D) : 
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 are respectively 6.278 and 31.140 MJ/kg and efficiencies of use of 
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 are respectively 23% and 67%).
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Appendix F. Literature models of intake

Table of references of models of dry matter intake used for model evaluation.
	Reference
	Equationa

	Journet et al., 1965
	6.7 + 0.0074·BW + 0.27·MY

	Johnson et al., 1966
	6.71 + 1.46·wim + 0.08·MY + 0.09·dBW/dt + 1.08·BCS if wim ≤ 15

14.57 + 0.05·MY + 0.09·dBW/dt – 5·BCS - 0.12·wip if wim > 15

	McCullough, 1973
	5.38 + 0.008·BW+0.359·MY4 – 0.028·DMCO

	MAFF, 1975
	0.025·BW + 0.1·MY for lactating cow

(31.4 – 0.03·BW)·BW/1000 for growing cattle

	Brown et al., 1977
	exp(0.5198 + 0.000675·BW – 0.000827·dim + 0.14807·ln(dim) + 0.33922·ln(MY) + 0.09927·MYF + 0.018·CF – 0.000557·CF2)

	Bines, 1979
	(1 + 0.2·factor)·(4.25 + 0.0113·BW + 0.16·MY + 2.45·dBW/dt)

with factor = 0 if parity = 1 and factor = 1 if parity > 1

	ARC, 1980
	(0.135·BW0.75 + 0.2·(MY – 21.4·wim0.2·exp(-0.04·wim)))·factormo
with factormo:1 to 10·= {0.81, 0.98, 1.07, 1.08, 1.09, 1.08, 1.01, 0.99, 0.97, 0.93} for lactating cow

	McCullough, 1981
	-5.54 + 0.022·BW + 0.511·MY4 - 0.0024·MY42

	Yungblut et al., 1981
	3.37 + 0.01·BW+0.34·MY + 5.3·MCF + 0.34·parity - 0.11·ADF

	Neal et al., 1984
	0.022·BW + 0.2·MY

	NRC, 1987
	(1.896·BW0.593·MY40.33·exp(0.16·dBW_dt)/(DE·4.18) for lactating cows

(1.896·BW0.593·exp(0.16·dBW_dt)/(DE·4.18) for nonlactating pregnant cows

	NRC, 1989
	-0.293 + 0.372·MY4 + 0.0968·BW0.75

	Kertz et al., 1991
	0.010936(BW + 0.2627(MY4 + 0.1938(dim – 0.001805(dim2 + 0.00000570(dim3 if dim ( 140 and parity = 1

0.006136(BW + 0.3139(MY4 + 0.3036(dim – 0.003165(dim2 + 0.00001100(dim3 if dim ( 140 and parity > 1

	Fox et al., 1992
	0.0185(BW + 0.305(MY4, for lactating cattle

0.02(BW, for non-lactating cattle

	Rayburn and Fox, 1993
	0.0117·BW + 0.0749·dim + 0.281·MY4 if dim ( 84

0.023·BW + 0.0201·dim + 0.286·MY4 – 0.0979·NDF if dim>70

	Roseler et al., 1997b
	(3.7 + 0.012(BW + 0.84(dBW/dt + 12.2(MYP – 0.011(dip)((1 - exp(-(0.564 - 0.124(T)((wim + K))) for parity = 1

with T: mo of peak MY and K = 2.36 for T = {1, 2}, K = 3.67 for T=3

0.6 + 0.005(BW + 0.77(dBW/dt + 10.4(MYP – 0.013(dip – 0.17(wim + 4.59(ln(wim) 

	NRC, 2001
	(0.372(MY4 + 0.0968(BW0.75)((1 - exp(-0.192((dim + 3.67)))

	Martin and Sauvant, 2002
	15.69 + 0.94((wim - 6.7) - 0.141(ln((exp(K) + exp(44.66)/(1+exp(44.66))) - 0.012(ln((exp(K) + exp(176)/(1+exp(176))) for parity = 1

18.63 + 1.16((wim – 5.8) - 0.174(ln((exp(K) + exp(38.66)/(1+exp(38.66))) – 0.0255(ln((exp(K) + exp(84)/(1+exp(84))) for parity > 1

with K = wim/0.15

	Fox et al., 2004
	(0.0185(BW + 0.305(MY4)((1 - exp(-(0.564 - 0.124(T)((wim + K)))

with T: mo of peak MY and K = 2.36 for T = {1, 2}, K = 3.67 for T=3

	Faverdin et al., 2007
	(13.9 + 0.015((BW-600) + 0.15(MYPOT + 1.5((3-BCS))(IL(IG(IM

with

MYPOT = MYMAX((1.084 – 0.7(exp(-0.46(wim) – 0.009(wim – 0.69(exp(-0.16((45-wip))) for parity = 1

MYPOT = MYMAX((1.047 – 0.69(exp(-0.90(wim) – 0.0127(wim – 0.50(exp(-0.12((45-wip))) for parity > 1

IL = a +(1-a)((1-exp(-0.16(wim)) where a = 0.6 if parity 1 and a = 0.7 if parity >1

IG = 0.8 + 0.2((1 – exp(-0.25((40-wip)))

IM = -0.1 + 1.1((1 – exp(-0.08(tP(c)/30)) 

	Martin and Sauvant, 2007
	0.531((8.48 + 3.36(MYmax/10)(dim0.19(exp(-0.0025(dim)


aPerformance variables involved as predictors: body weight (
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Appendix G. Literature models of performance

Table of references of published models of performance used for model evaluation
	
	Data
	
	
	
	Animals
	
	
	

	Reference
	Source
	Period
	Variables
	
	Breedab
	Parity
	
	Modelc

	Turner;1928
	US, Missouri
	2 to 14 yr
	BW
	
	JER & GUE
	 -
	
	Y = a·(1 - b·exp(-c·t)

	Wood, 1969
	UK, England

(1964-65)
	[1, 44] wk
	MY
	
	Friesian (859 lac)
	{1, 2, 3, 4+}
	
	 

	Wood, 1970
	UK, England

(1952-64)
	? wk
	MY
	
	Friesian (1567 lac)
	[1, 4]
	
	

	Decaen et al., 1970
	France

(1952-64)
	[4, 63] d
	MY
	
	FRI & Normande (665 lac)
	[1, 4]
	
	Y = a.t-2 + b.t-1 + c + d.t + e.t2

	Kellogg et al., 1977
	US, New Mexico 
	[1, 10] mo
	MY
	
	HOL (36)
	[1, 4]
	
	

	Schaeffer et al., 1977
	Canada

(1966-70)
	[6, 305] d
	MY
	
	HOL (76753 lac) & JER (10383 lac)
	{1, 2, 3+}

x 2 age groups

x 2 seasons
	
	Y = a.exp(-b.(t - c)).(1-exp(-d.(t - c)))/d

	Killen & Keane, 1978
	Ireland

(1966-75)
	[1, 44] wk
	MY, MCF,P
	
	Irish dairy cattle (1181 rec)
	{1, 2, 3+}
	
	

	Madalena et al., 1979
	Brazil

(1965-73)
	[1, 300] d
	MY
	
	HFR & HFR x Gir (870 lac)
	{1, 2, 3, 4, 5+}
	
	

	Wood et al., 1980
	UK, England

(1972-73)
	[1, 10] 2-wk
	MY, MCF,P
	
	FRI (159), AYR (40), GUE (15) & JER (22)
	{1, 2+}
	
	

	Wood, 1980
	UK, England

(1978-79)
	[1, 44] wk
	MY
	
	FRI (579303), Shorthorn (6608), AYR (27374), JER (19529) & GUE (19760) 
	{1, 2, 3, 4+}
	
	

	Congleton & Everett, 1980
	US, New York

(1970-77)
	[0, 300] d
	MY
	
	HOL (49633 lac x 11 production level)
	{1, 2, 3+}
	
	

	Schneeberger, 1981
	Switzerland

(1976-77)
	[1, 305] d
	MY
	
	BRS (159541)
	[1, 4]
	
	Y = a.(t - b)c.exp(-d.(t - b))

(Wood, 1967, with time-lag)

	Shanks et al., 1981
	US, California
	[1,43] wk
	MY
	
	HOL (113705 lac)
	{1, 2, 3, 4+}
	
	

	Rowlands et al., 1982
	UK, England

(1976-79)
	[1,43] wk
	MY
	
	British FRI (468 lac)
	{1, 2, 3, 4, 5+}
	
	

	Batra, 1986
	Canada

(1972-77)
	[1, 44] wk
	MY
	
	HOL, AYR, BRS & Norwegian Red

(4228 pure- & crossline cows)
	{1, 2, 3}
	
	

	Wilmink, 1987
	The Netherlands

(1981-82)
	[1, 305] d
	MY 
	
	Dutch FRI (14275)
	{1, 2, 3+}
	
	Y = a1 + a2.t + a3.exp(-0.05.t) + d.t2
where ai = pi + qi.T + ri.ln(T)

and T : age at calving in mo 

	Grossman & Koops, 1988
	The Netherlands

(1983-86)
	[10, 290] d
	MY
	
	Dutch FRI & Meuse-Rhine-Yssel

(33853 daily records)
	{1, 2, 3}

x 2 lactation lengths

x 2 breeds
	
	Diphasic function (Koops, 1986)

Y = (i:1→2ai.bi.(1-tanh2(bi.(t - ci)))

	Morant & Gnanasakthy, 1989
	UK, England

(1980-84)
	[1, 300] d
	MY
	
	FRI (130 lac)
	{1, 2, 3}
	
	Ln(Y) = a + b.t’.(1+k.t’) + c.t’2 + d/t

where t’ = (t – 150)/100

	Brunsschwig et al., 1994
	France


	[1, 305] d
	MCF,P
	
	HOL (107000 lac)
	{1+}
	
	Y = a + fi(t)

where fi(t) =bi.t + ci if t ( [ti1,ti2] and i=1, …, n (CF: n=6, CP: n=5)

	Gallo et al., 1996
	Italy

(1991-93)
	[0, 300] d
	BCS
	
	HFR (1395)
	{1, 2+}

x 5 milk production levels
	
	Y = a + b.t + c.t2 + d.t3

	Garcia-Muniz et al., 1998
	New Zealand
	lifetime
	BW
	
	HFR (97)
	2 genetic lines
	
	Y = a·(1 - b·exp(-c·t))3 (Von  Bertalanffy)

	Friggens et al., 1999
	UK, Scotland

(1990-95)
	[1, 240] d
	MY
	
	HFR (40)
	{1, 2, 3}
	
	Y = a.exp(-exp(a - b.t)).exp(-c.t)

(Emmans & Fisher, 1986)



	Rotz et al., 1999
	US,literature survey

(1936-87)
	[1, 56] wk
	MCF, BW
	
	HOL
	{1, 2+}

x 3 body sizes
	
	Y = a.(t+b)c.exp(-d.(t+b))

(Wood, 1967 with time-lag)

	Lopez et al., 2000
	UK, England
	lifetime
	BW
	
	HOL (16)
	 -
	
	Y = (a·bc + d·tc)/(bc + tc)

	Tekerli et al., 2000
	Turkey

(1989-94)
	[1, 305] d
	MY
	
	Turkish HOL (754 lac)
	{1, 2, 3+}
	
	

	Vargas et al., 2000
	Costa Rica

(1987-94)
	[1, 305] d
	MY
	
	HOL (lactation length = 10mo, calving to conception interval = 4 mo, 71225 rec) 
	{1, 2+} 
	
	Diphasic function (Koops, 1986)

Y = (i:1→2ai.bi.(1-tanh2(bi.(t - ci)))

	Lopez-Villalobos et al., 2001
	New Zealand

(1998-99)


	[1, 200] d
	MY, BCS
	
	HOL heavy (40) & light (44) lines
	{1, 2+}

x 2 line sizes
	
	

	Martin & Sauvant, 2002
	Worldwide, metaanalysis of 37 articles

(1959-99)
	[1, 45] wk
	MY, BW
	
	HFR, Swedish Red & White, AYR, JER & GUE (120 lac)
	{1, 2+}
	
	Y = a + b.(t - c1) - d.f1(t)+e.f2(t)

where

fi(t)=ln((exp(g.t)+exp(g.ci))/(1+exp(g.ci))) (Grossman et al., 1999)

	Val-Arreola et al., 2004
	Mexico

(1989-2001)
	[1, 400] d
	MY
	
	Dairy cattle (1283 rec)
	{1, 2, 3+}

x 2 management systems
	
	Y = a.exp(b.(1-exp(-c.t))/c - d.t)

(Dijkstra et al., 1997)

	Choumei et al., 2006
	Japan

(1979-98)
	[1, 20] wk
	MY
	
	HOL (745)
	{2, 3, 4, 5+}
	
	

	Hansen et al., 2006
	Denmark

(1996-2001)
	[1, 180] d
	MY
	
	Danish Red, Danish HOL & JER (604 lac)
	{1, 2, 3}
	
	Y = a.exp(-exp(a - b.t)).exp(-c.t)

(Emmans & Fisher, 1986)

	Pérez-Cabal et al.,2006
	Spain
	lifetime
	BW
	
	HOL
	 -
	
	Y = a·(1 - (1 - (b/a)1/3)·exp(-c·t))3

	Quinn et al., 2006
	Ireland
	[1, 44] wk
	MCF,P
	
	Irish dairy cattle (14956 lac)
	{1+}
	
	Y = a + b.exp(-c.t) + d.t

(Wilmink, 1987)

	Roche et al., 2006
	New Zealand

(2002-04)
	[1, 270] d
	MCF,P
	
	HFR (113 lac)
	{1+}
	
	Y = a + b.exp(-c.t) + d.t

(Wilmink, 1987)

	Faverdin et al., 2007
	France
	[1, 44] wk
	MY
	
	?
	{1, 2+}
	
	Y = a.(b - c.exp(-d.t) - e.t -f.exp(-g.(45-t’)))

where t’: wk gestant 

	Friggens & Badsberg, 2007
	Denmark

(1996-2001)
	[0, 375] d
	BCS[1-5]
	
	Danish HOL (112), Danish Red (97) & JER (78) 
	{1, 2, 3}
	
	Y = a + b.exp(-c.t)+d.exp(-e.(283 - t’)) where t’ : days from conception,

	Roche et al., 2007
	New Zealand

(1986-2004)
	[0, 350] d
	BCS[1-10]
	
	HFR & JER

(3209 lac)
	{1, 2, 3, 4, 5, 6+} 
	
	Y = (i:1→4(ai + bi.t)/Zi where 

i=1:    Zi=1 + exp(-ci.(di – t))

i=2,3: Zi=(1+exp(ci-1.(di-1 -t))). (1+exp(ci.(di -t)))

I=4:    Zi=1 + exp(-ci-1.(di-1 – t)) 


aAYR : Ayrshire, BRS : Brown Swiss, FRI : Friesian, GUE : Guernsey , HFR : Holstein-Friesian, HOL : Holstein, JER: Jersey.

bin brackets : number of cows, lactations (lac) or daily records (rec).

cif not mentionned, model of Wood (1967): Y = a.tb.exp(-c.t)).
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