SUPPLEMENTARY MATERIALS

Genetic position of Hungarian Grey among European cattle and identification of breed-specific markers.

A. Zsolnai ¹, Á. Maróti-Agóts ², A. Kovács ¹, A. V. Bâlteanu ³, E. Kaltenecker ⁴, I. Anton ¹

Animal Journal

- ¹ NAIK-Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1., 2053 Herceghalom, Hungary
- ² University of Veterinary Medicine, István u. 2, 1078, Budapest, Hungary
- ³ Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
- ⁴ Association of Hungarian Grey Cattle Breeders, Lőportár u. 16.,1134 Budapest, Hungary

Supplementary Figure S1 Multidimensional scaling plot of Hungarian Grey and European cattle populations. Nelore was selected as an outgroup. Encircled breeds are from Upadhyay *et al.* (2017) including Fleckvieh and Holstein-Friesian sampled in Hungary. The following codes are used: C1=1st component (eigenvalue=7.681); C2=2nd component (eigenvalue=2.797)

Hungarian Grey	0	0.086	0.118	0.187	0.148	0.146	0.067	0.105	0.134	0.299
Maremmana	0.086	0	0.111	0.182	0.131	0.157	0.062	0.086	0.137	0.308
Maronesa	0.118	0.111	0	0.245	0.195	0.201	0.084	0.144	0.191	0.426
Maltese	0.187	0.182	0.245	0	0.291	0.295	0.172	0.235	0.288	0.492
Boskarin	0.148	0.131	0.195	0.291	O	0.250	0.125	0.185	0.238	0.455
Heck	0.146	0.157	0.201	0.295	0.250	0	0.139	0.204	0.241	0.446
Busha	0.067	0.062	0.084	0.172	0.125	0.139	0	0.071	0.116	0.321
Chianina	0.105	0.086	0.144	0.235	0.185	0.204	0.071	0	0.192	0.415
Romianian Grey	0.134	0.137	0.191	0.288	0.238	0.241	0.116	0.192	0	0.447
Nelore	0.299	0.308	0.426	0.492	0.455	0.446	0.321	0.415	0.447	0
	Hungarian Grey	Maremmana	Maronesa	Maltese	Boskarin	Heck	Busha	Chianina	Romianian Grey	Nelore

Supplementary Figure S2 Graphical representation of pairwise coefficients of genetic differentiation (Fst) values of Hungarian Grey cattle and the presented cattle breeds.

Supplementary Figure S3 Admixture analysis of Hungarian Grey and selected cattle populations for a range of K-values (K = 2-10). Each individual is represented by a single column divided into K colored segments, where K is the number of assumed clusters. Populations are separated by dashed lines. The following codes are used: Ne = Nelore; RO = Romanian Grey; MT = Maltese; ME = Maronese; MA = Maremmana; Hu = Hungarian Grey; He = Heck; Ch = Chianina; Bu = Busha; Bo = Boskarin