Supplementary Material for “Further analysis of a Late Jurassic dinosaur bone-bed from the Morrison Formation of Montana, USA, with a computed three-dimensional reconstruction” by Glenn W. Storrs, Sara E. Oser and Mark Aull in Earth and Environmental Science Transactions of the Royal Society of Edinburgh, volume 103.

MATLAB scripts and their use
In order to use the script, a data file must first be prepared using a spreadsheet program that collects the necessary data, removing the column and row labels. Angles should be provided in degrees, and a consistent unit should be used for all distances (e.g., if all distances are provided in metres, plot units will also be in metres; differing units cannot be compared without translation). The user must insure that no line is missing a column; some information must be entered or the line removed. This file should be named “data.txt” and placed in the same directory with “drawmap.m” and “renderbox2.m”. The script “drawmap.m” should be opened in MATLAB and run with function key F5, or “debug (run” on the menu bar. If MATLAB is unavailable, the largely compatible programming language GNU Octave (Eaton 2011) may also be used, although computing times will be longer. Depending upon the speed of the computer utilised and the size of the input data file, a MATLAB plot window will soon open with built-in manipulation functions (e.g. “pan,” “zoom” and “rotate”), allowing the user to set the desired view. The “type” feature allows for some flexibility in the display, allowing each element to be colour-coded to any feature and at several gradations.

The program script reads a data file (here text files were generated using Microsoft Excel) where each line describes one bone, and the columns represent element type (equivalent here to colour), distance (m), bearing (azimuth in degrees relative to N), corrected depth (m), trend (degrees), corrected plunge (in degrees from horizontal) and length (m). The depth must be presented in negative values for elements beneath the excavation datum and positive values for those above the datum. Output colour was designated by assigning a number to groups of elements, scaled such that the highest number is red and the lowest blue. Depending upon what data are used with the program, the plot may be drawn to highlight any desired characteristic (e.g., date collected, species present, etc.). In this case, the type of bone represented was characterised, being identified using numbers 1–0 in increments of 0.5 proceeding roughly from head to tail and from dorsal to ventral. The datum was also entered as an element.

MATLAB’s built-in processing functions “fopen,” “fscan” and “fclose” are used to access the file and obtain the contained values. The command “size” is used to determine the number of lines in the file and, therefore, the number of bones to be rendered. The program uses a “for” loop to add each bone to a plot, using standard MATLAB plotting functions.

It is paramount to note that in geological convention, due N is designated at 0o, whereas for mathematics, 0o is always perpendicular to this (at due E). Because of the discrepancy between these mathematical and geological conventions, a correction has been included in the code to present a MATLAB output having the proper (true) orientation. Without this correction, untranslated geological values would result in a final output requiring rotation 180o along the (N–S) z axis (i.e. roll axis), in order to create a properly oriented three-dimensional map of the quarry.

For simplicity, one rectangular box was used to represent each bone in the resulting plot. More complex shapes could be used in principle, but this would require generating those shapes mathematically, potentially selecting different shapes for each bone, leading to much higher processing times. In the current program, for the display of each bone, coordinates were generated for a box centered at its origin, with a length (“length”) in the x direction, and 20 % of that length in the y and z directions. Next, a rotation matrix was constructed (method in Bay 1999) and applied to the coordinates of this box, resulting in a box oriented along the recorded yaw and pitch of the equivalent bone. Finally, the box coordinates were translated by the coordinates of the bone, resulting in a box with the length and orientation of the represented bone, centered at coordinates corresponding to the bone’s position relative to the excavation datum. MATLAB’s “surf” command was used to render each of the six surfaces of the box using a colour determined by the “type” field of the data file as described above.

References
Bay, J. S. 1999. Fundamentals of Linear State Space Systems. Boston: WBC/McGraw-Hill. 571 pp.

Eaton, J. W. 2011. GNU Octave v.3.4.2. www.gnu.org/software/octave/
MATLAB, 2011. MathWorks. http://www.mathworks.com/products/matlab/

Storrs, G. W., Oser, S. E. & Aull, M. 2013. Further analysis of a Late Jurassic dinosaur bone-bed from the Morrison Formation of Montana, USA, with a computed three-dimensional reconstruction. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 103(for 2012).
MATLAB Code

File 'drawmap.m'

function drawmap%% colortest

%reads a file named data.txt, and draws a box for each row. The columns

% represent a color value, distance from datum, bearing from datum

% (degrees), depth, yaw angle (degrees), pitch angle (degrees), and

% length.

%by Mark Aull, in Storrs et al. 2013 (this paper)
%% draw map

%Clear whatever was already going on, and start a timer.

clear;close all;clc;tic;

fprintf('Mapping Script for Palaeontology Applications, vs. 1.0');

fprintf(' by Mark Aull, in Storrs et al. 2013 (this paper)\n\n');

%Open a text file called 'data.txt' for reading.

fid=fopen('data.txt','r');

%Read the data from 'data.txt' assuming it has seven columns and store it

%in the array 'kdata'. Those seven columns represent type, distance,

% bearing, depth, yaw, pitch, and length.

kdata=fscanf(fid,'%f',[7,inf]);

%We're done with 'data.txt'

fclose(fid);

%How many lines were in data.txt? Answer stored in 'numpts'.

[dum,numpts]=size(kdata);

%Open a figure window, if it's already open,

%get rid of the stuff that's already displayed.

figure(1);hold off;

%For each line from the file (which details one bone)...

for ii=1:numpts

 %draw a box as long as that bone, with 20% that width and height

 %rotated according to the orientation (trend and plunge?) of the

 %bone, centered at the distance, bearing, and depth from the datum of

 %the bone, and coloured according to the type of the bone, where the

 %highest colour will be red and the lowest blue.

 renderbox2(kdata(7,ii),.2*kdata(7,ii),.2*kdata(7,ii),...

 0,pi/180*kdata(6,ii),pi/180*kdata(5,ii),...

 kdata(2,ii)*cos(pi/180*kdata(3,ii)),...

 kdata(2,ii)*sin(pi/180*kdata(3,ii)),kdata(4,ii),kdata(1,ii));

end

%Label the axes with the appropriate directions.

axis equal;xlabel('N');ylabel('E');zlabel('depth');

%display elapsed time.

dt=toc;fprintf('Rendered %d boxes in %5.2f seconds.\n',numpts,dt);

File 'renderbox2.m'

function pts=renderbox2(length,width,height,roll,pitch,yaw,xloc,yloc,zloc,col)

%function for drawing a box in Matlab. The parameters above are assumed to be self-explanatory.

%by Mark Aull, in Storrs et al. 2013 (this paper)
%% calculate the vertices for a box

% with the speecified dimensions centered at (0,0) and not rotated.

pts=[-length/2,-width/2,-height/2%back left bottom

 -length/2,width/2,-height/2%back right bottom

 length/2,-width/2,-height/2%front left bottom

 length/2,width/2,-height/2%front right bottom

 -length/2,-width/2,height/2%back left top

 -length/2,width/2,height/2%back right top

 length/2,-width/2,height/2%front left top

 length/2,width/2,height/2];%front right top

%% construct a 321 Euler rotation

% using the roll, pitch, and yaw specified and apply it to the vertices

% previously calculated. This results in coordinates for the vertices of a

% box with the specified dimensions and orientation centered at (0,0).

Mtheta=@(theta) [cos(theta), 0, -sin(theta);

 0, 1, 0;sin(theta), 0, cos(theta)];

Mphi=@(phi) [1,0,0;0, cos(phi), sin(phi);0, -sin(phi), cos(phi)];

Mpsi=@(psi) [cos(psi), sin(psi), 0;-sin(psi), cos(psi), 0;0, 0, 1];

M123=@(psi,theta,phi) (M321(psi,theta,phi))';%combined rotation

pts=(M123(yaw,pitch,roll)*pts')';%apply rotation

%% add a displacement

% corresponding to the specified centre for the box to the vertices

% previously calculated. This results in coordinates for the vertices of a

% box with the desired dimensions, orientation, and position.

pts=pts+ones(8,1)*[xloc,yloc,zloc];

%% draw the box

for ii=1:6 % boxes have six sides.

 switch ii

 case {1} % First, do the bottom.

 ind=[1:4]; % These vertices form the bottom.

 case{2} % Second, do the top.

 ind=[5:8]; % These vertices form the top.

 case{3} % Third, do the left.

 ind=[1:2:7]; % These vertices form the left.

 case{4} % Fourth, do the right.

 ind=[2:2:8]; % These vertices form the right.

 case{5} % Fifth, do the back.

 ind=[1,2,5,6]; % These vertices form the back.

 case{6} % Finally, do the front.

 ind=[3,4,7,8]; % These vertices form the front.

 otherwise % This line doesn't actually do anything.

 ind=[1,1,1,1]; % And neither does this one.

 end

 %get the x coordinates for the vertices we're using for this face.

 X=reshape(pts(ind,1),2,2);

 %get the y coordinates for the vertices we're using for this face.

 Y=reshape(pts(ind,2),2,2);

 %get the z coordinates for the vertices we're using for this face.

 Z=reshape(pts(ind,3),2,2);

 surf(Y,X,Z,col*ones(2));hold on;axis equal; %draw that face.

end

