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Proof of the indeterminacy of the Purcell A×M
parametrization

Purcell’s univariate model for genotype-environment interaction resembles the
general ANOVA model with a two-way interaction deceptively close:

Pij = β0 + β1Mij + β2Aij + β3AijMij + eEij (1)

Eij ∼ N(0, 1) (2)

Aij ∼ N(0, 1) (3)

We have an intercept β0, a main effect of the measured covariate Mij , β1,
a main effect of the unmeasured genotypic value Aij , β2, an interaction effect
of the measured covariate and the genotypic value, β3, and a residual term
with variance e2. This model can be extended with a main effect of the shared
environment, β4Cij , plus an additional interaction effect, β5CijMij , but for our
purpose here it suffices to discuss the model with additive genetic effects alone.

The two things that are different from the general ANOVA model is that
variable A is unobserved, and that we have data on twin pairs, where phenotypes
are correlated. In case of additive genetic effects, the genetic correlation equals
1 for monozygotic twin pairs and 1

2 for dizygotic twin pairs, that is, for MZ twin
pairs we have Cov(Ai1, Ai2) = 1 and for DZ twin pairs we have Cov(Ai1, Ai2) =
1
2 .

If we assume that M is a dichotomously scored covariate, the sufficient statis-
tics for our model are the variance of phenotype P, the observed covariance in
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MZ twin pairs and the observed phenotypic covariance in DZ twin pairs, under
the two conditions M = 0 and M = 1, where we assume that M has equal values
for the two twins in each pair. This consists of 6 different statistics. Thus, the
following set of equations needs to be solved for the regression coefficients:

M=0

CovMZ(Pi1, Pi2) = β2
2 (4)

CovDZ(Pi1, Pi2) =
1

2
β2
2 (5)

V ar(Pi1) = V ar(Pi2) = β2
2 + e2 (6)

M=1

CovMZ(Pi1, Pi2) = (β2 + β3)2 (7)

CovDZ(Pi1, Pi2) =
1

2
(β2 + β3)2 (8)

V ar(Pi1) = V ar(Pi2) = (β2 + β3)2 + e2 (9)

Since β2 is only linked to observed statistics through a quadratic function, it
is easily seen that the probability of the data under M = 0 given a value β2 = a
is equal to the probability of the data given β2 = −a.

Under M = 1, we immediately see that combinations of values for (β2+β3) =
b+ c are equally likely as (β2 + β3) = −b− c. Thus, any combination of values
for β2 and β3 is equally likely as the combination of their negatives. Taking the
negative of the value for β2 does, as we saw, not affect the probability of the
data under M = 0, so that for any data set, there are always two combinations
that have the exact same likelihood.

This problem cannot be easily solved by constraining β2 to be positive,
β2 > 0. This is because for any positive value of β2, there are two values for
β3 that result in the same expected variances and covariances for M = 1, since
using the square root formula for quadratic functions we get:

V ar(P ) = (β2 + β3)2 = β2
2 + 2β2β3 + β2

3 + e2 (10)

β2
3 + 2β2β3 + (β2

2 + e2 − V ar(P )) = 0 (11)

β3 = −β2 ±
√
β2
2 − (β2

2 + e2 − V ar(P )) = −β2 ±
√
V ar(P )− e2 (12)

CovMZ(P1, P2) = (β2 + β3)2 = β2
2 + 2β2β3 + β2

3 (13)

β2
3 + 2β2β3 + (β2

2 − CovMZ(P, P )) = 0 (14)

β3 = −β2 ±
√
β2
2 − (β2

2 − CovMZ(P1, P2)) = −β2 ±
√
CovMZ(P1, P2) (15)

Thus, there is no unique Maximum Likelihood solution for a given data
set. The problem lies in the fact that the genotypic value is unobserved (so
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that there is not observed covariance between A and P), and that therefore all
observed statistics are related only quadratically with the parameters that need
to be estimated. The proof can be extended to ACE models and continuous
measured covariates M in a similar manner.

Estimation procedure

We applied Gibbs sampling (Geman & Geman, 1984; Gelfand & Smith, 1990;
Gelman, Carlin, Stern, & Rubin, 2004), a Markov chain Monte Carlo (MCMC)
algorithm that works by iteratively drawing samples from the full conditional
distributions of all unobserved parameters of a model. The full conditional
distribution refers to the distribution of a parameter given the current or known
values of all other relevant parameters in the model (see e.g., Gilks, Richardson,
& Spiegelhalter, 1996). A sample from the full conditional distribution is taken
in every iteration of the Gibbs sampling. After a number of burn-in” iterations,
subsequent draws can be regarded as draws from the joint posterior distribution.
For the MCMC estimation, we used the freely available software package JAGS
(Plummer, 2003). The JAGS script that was used for the model described in
the manuscript can be found in the online supplementary material.

Prior distributions

As the above described model was estimated using Bayesian statistics, prior
distributions had to be specified. We used independent normal distribution
for all intercepts (β0a, β0c and β0e ∼ N(−1, σ2 = 2) and interaction effects
(β1a,β1c and β1e ∼ N(0, σ2 = 10)). Also for the phenotypic population mean
and the regression coefficient that expresses the main effect of the moderator
variable, independent normal distributions were chosen as prior distributions
(µ ∼ N(0, σ2 = 10 and β1m ∼ N(0, σ2 = 10)). As non-informative priors
were used in the biometric part of the model, the Bayesian approach will yield
comparable results as the maximum likelihood framework.

Simulation study: Differing number of items

In order to assess the impact of the psychometric information, we varied the
number of items (20, 100 and 250 items) while fixing the number of twin pairs
to 1000. Cronbach’s alpha was 0.90 when responses to 60 items were simulated
and 0.75 in case of 20 items.

150 datasets were simulated in each condition, µ was fixed to 0, exp(β0a was
set to 0.25, exp(β0c) was 0.25, exp(β0e) was fixed to 0.5 and β1m was set to 0.7.
The data was simulated without any ACE×M interaction effects. Furthermore,
item difficulty parameters were assumed to be known and simulated equally
spaced within the interval [-3.2;3.2] and the Rasch model was used to simulate
responses to phenotypic dichotomous items. The minimum and maximum value
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of this interval were based on (minus) three times the standard deviation of all
phenotypic values.

All simulations were carried out using the software package R (R Develop-
mentCore Team, 2008), an open-source language and environmental for statis-
tical com-puting. As an interface from R to JAGS, the R package rjags was
used (Plummer,2013). After an adaption phase of 5,000 iterations and a burn-
in phase of 50,000iterations, the characterisation of the posterior distribution
for the model parame-ters was based on an additional 25,000 iterations from 1
Markov chain.The average posterior means of all model parameters as well as
the standard deviation of posterior means and the means of all posterior stan-
dard deviations were calculated.The mean of posterior standard deviations can
be seen as the Bayesian version of the standard error.

Table 1: Results of the simulation study, part II (differing number of items). Posterior

means (SD) averaged over 250 replications. Second line: Mean of posterior standard

deviations. Ni refers to the number of items.

β1m exp(β0a) exp(β0c) exp(β0e) β1a β1c β1e

True value 0.70 0.25 0.25 0.50 0.00 0.00 0.00

Ni = 20 0.70 (0.06)0.24 (0.12)0.20 (0.09)0.49 (0.06)0.02 (1.47)-0.01 (1.24)-0.02 (0.25)
0.06 0.09 0.07 0.06 0.99 0.90 0.22

Ni = 100 0.70 (0.05)0.23 (0.10)0.21 (0.08)0.50 (0.04)-0.03 (1.29)-0.02 (1.07)0.01 (0.17)
0.05 0.09 0.07 0.04 0.95 0.83 0.17

Ni = 250 0.70 (0.05)0.21 (0.10)0.22 (0.08)0.50 (0.04)-0.02 (1.32)0.02 (0.97) 0.01 (0.16)
0.05 0.08 0.06 0.04 0.92 0.80 0.14

The results can be found in Table 1. It can be seen that, with only 20 items,
average posterior means of most parameters were close to their true values with
a slight bias in exp(β0c). This precision is comparable to the results of the first
simulation study (1000 twin pairs) where the number of items was fixed to 60.
There was only a small decrease in standard deviations and standard errors
with increasing number of items. Also the increase in precision with increasing
sample size was small, suggesting that as much as 20 items are sufficient to fit
the ACE×M model.

JAGS script for an ACE×M + 1PL model

Following JAGS script fits a (univariate) ACE×M model (same moderator value
for every family) with an incorporated 1 PL IRT model at the phenotypic level.
Item parameters are assumed known.

1 #y dz = Item responses o f DZ twins ( matrix )
2 #y mz = Item responses o f MZ twins ( matrix )
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3 #x MZ = Values on moderator v a r i a b l e f o r a l l MZ twin pa i r s
4 #x DZ = Values on moderator v a r i a b l e f o r a l l DZ twin pa i r s
5 #n mz = Number o f MZ twin pa i r s
6 #n dz = Number o f DZ twin pa i r s
7 #n items = Number o f phenotyp ic i tems adminis tered
8 #b = Vector wi th item d i f f i c u l t y parameters , assumed known here
9

10 #Required s t r u c t u r e o f the y mz/y dz data matrix :
11 #y dz [ i , k ] = kth da tapo in t from the i t h DZ twin pa i r
12 #y mz [ i , k ] = kth da tapo in t from the i t h MZ twin pa i r
13
14 #This r e s u l t s in a matrix o f n mz ( or , in case o f y dz , n dz )
15 #rows and 2∗n items columns . e . g . y mz [ 1 , 22 ] i s the response
16 #of MZ twin 1 from fami l y 1 to item 22 i f n i tems = 22
17
18 #JAGS uses p r e c i s i on parameters f o r the var iance parameters .
19 #Therefore , a f t e r running the s c r i p t , t h e s e p r e c i s i on parameters
20 #have to be i n v e r t e d . For example :
21 #var a <− 1/ou tpu tAna ly s i s$ tau a [ , , 1 ] wi th the r j a g s package
22
23 #In t h i s s c r i p t , IRT parameters are assumed known .
24
25 model{
26 ##MZ twins
27 for ( fam in 1 : n mz){
28 c mz[ fam ] ˜ dnorm(mu + beta 1m ∗ x MZ[ fam ] , tau c mz[ fam ] )
29 f mz [ fam ] ˜ dnorm(c mz[ fam ] , tau a mz [ fam ] )
30
31 tau c mz[ fam ] <− 1/exp(beta 0c + beta 1c ∗ x MZ[ fam ] )
32 tau a mz [ fam ] <− 1/exp(beta 0a + beta 1a ∗ x MZ[ fam ] )
33 tau e mz [ fam ] <− 1/exp(beta 0e + beta 1e ∗ x MZ[ fam ] )
34
35 pheno mz [ fam , 1 ] ˜ dnorm( f mz [ fam ] , tau e mz [ fam ] )
36 pheno mz [ fam , 2 ] ˜ dnorm( f mz [ fam ] , tau e mz [ fam ] )
37
38 #1 p l model twin1
39 for ( k in 1 : n items ){
40 l o g i t (p [ fam , k ] ) <− pheno mz [ fam , 1 ] − b [ k ]
41 y mz [ fam , k ] ˜ dbern (p [ fam , k ] )
42 }
43
44 #1 p l model twin2
45 for ( k in (n items +1):(2∗n items ) ){
46 l o g i t (p [ fam , k ] ) <− pheno mz [ fam , 2 ] − b [ k−n items ]
47 y mz [ fam , k ] ˜ dbern (p [ fam , k ] )
48 }
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49 } #end MZ twins
50
51 ##DZ twins
52 for ( fam in 1 : n dz ){
53 c dz [ fam ] ˜ dnorm(0 , tau c dz [ fam ] )
54 a1 dz [ fam ] ˜ dnorm( 0 , 2 )
55 a2 dz [ fam , 1 ] ˜ dnorm( a1 dz [ fam ] , 2)
56 a2 dz [ fam , 2 ] ˜ dnorm( a1 dz [ fam ] , 2)
57
58 tau c dz [ fam ] <− 1/ (exp(beta 0c + beta 1c ∗ x DZ[ fam ] ) )
59 var a dz [ fam ] <− exp(beta 0a + beta 1a ∗ x DZ[ fam ] )
60 tau e dz [ fam ] <− 1/ (exp(beta 0e + beta 1e ∗ x DZ[ fam ] ) )
61
62 a dz twin1 [ fam ] <− a2 dz [ fam , 1 ] ∗ sqrt (var a dz [ fam ] )
63 a dz twin2 [ fam ] <− a2 dz [ fam , 2 ] ∗ sqrt (var a dz [ fam ] )
64
65 pheno dz [ fam , 1 ] ˜ dnorm(mu + beta 1m ∗ x DZ[ fam ] +
66 c dz [ fam ] + a dz twin1 [ fam ] , tau e dz [ fam ] )
67 pheno dz [ fam , 2 ] ˜ dnorm(mu + beta 1m ∗ x DZ[ fam ] +
68 c dz [ fam ] + a dz twin2 [ fam ] , tau e dz [ fam ] )
69
70 #1 p l model twin1
71 for ( k in 1 : n items ){
72 l o g i t (p dz [ fam , k ] ) <− pheno dz [ fam , 1 ] − b [ k ]
73 y dz [ fam , k ] ˜ dbern (p dz [ fam , k ] )
74 }
75
76 #1 p l model twin2
77 for ( k in (n items +1):(2∗n items ) ){
78 l o g i t (p dz [ fam , k ] ) <− pheno dz [ fam , 2 ] − b [ k−n items ]
79 y dz [ fam , k ] ˜ dbern (p dz [ fam , k ] )
80 }
81 } #end DZ twins
82
83 #Priors
84 mu ˜ dnorm(0 , . 1 )
85 beta 1a ˜ dnorm(0 , . 1 )
86 beta 1c ˜ dnorm(0 , . 1 )
87 beta 1e ˜ dnorm(0 , . 1 )
88 beta 1m ˜ dnorm(0 , . 1 )
89
90 beta 0a ˜ dnorm(−1 , . 5 )
91 beta 0c ˜ dnorm(−1 , . 5 )
92 beta 0e ˜ dnorm(−1 , . 5 )
93 }
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