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Extensive Form of the Crisis Bargaining Model

Below, we provide the extensive form of our crisis bargaining model.
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Derivation of Equilibria in the Bargaining Model

Since we assume the Challenger is uninformed about the Target’s type, we solve the model

for perfect Bayesian equilibria, where players’ strategies must be sequentially rational and

their beliefs weakly consistent with Bayes’ Rule.

First, consider the acceptance rule used by the Target (T ). Generically, T accepts the

demand the Challenger (C) issues after observing T choose not to arm, which we denote xN

to distinguish from demands issued after T arms, which we denote xA, if and only if (iff)

uT (acc) ≥ EUT (war), which is equivalent to

1− xN ≥ 1− p− c2, (1)

which can be rewritten as

xN ≤ p+ c2. (2)

Since p depends on m2, though, this actually gives us two acceptance rules. The relatively

strong type accepts iff xN ≤ p̃+ c2 and the relatively weak type accepts iff xN ≤ p+ c2. Let

xN ≡ p̃ + c2 and xN ≡ p + c2. Thus, T accepts iff xN ≤ xN when relatively strong and iff

xN ≤ xN when relatively weak. Note we assume all critical values of x are less than 1 to

ensure interior solutions.

C can readily infer that, if T did not arm, then

Pr(war) =


0 if x ≤ xN

1− w′′ if xN < x ≤ xN

1 if x > xN .

We can immediately establish that C never sets x < xN , x > xN , or x = x1 where

xN < x1 < xN . When C sets x ≤ xN , T is certain to accept regardless of type, and so
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uC(x ≤ xN) = x. Thus, it follows that uC(x < xN) is strictly dominated by uC(x = xN).

Since EUC(x = x1) ≥ EUC(x = xN) is equivalent to

w′′x1 + (1− w′′)(p̃− c1) ≥ w′′xN + (1− w′′)(p̃− c1), (3)

or x1 ≥ xN , which cannot be true since setting x = x1 is strictly dominated by x = xN .

Finally, because EUC(x > xN) ≥ EUC(x = xN) is equivalent to

w′′(p− c1) + (1− w′′)(p̃− c1) ≥ w′′xN + (1− w′′)(p̃− c1), (4)

or c1 + c2 ≤ 0, which also cannot be true since setting x > xN is strictly dominated by

x = xN . Thus, the only values of x that C may select in equilibrium after T chooses not

to arm are x = xN , which T accepts regardless of type, and x = xN , which T accepts iff

m2 = m2.

We now turn to evaluating uC(x = xN) ≥ EUC(x = xN), which is equivalent to

xN ≥ w′′xN + (1− w′′)(p̃− c1), (5)

or

w′′ ≤ c1 + c2
p− p̃+ c1 + c2

. (6)

Thus, we can say that C sets xN = xN if w′′ ≤ w and sets xN = xN if w′′ > w, where

w ≡ c1 + c2
p− p̃+ c1 + c2

. Note that since c1 + c2 < p− p̃+ c1 + c2 ⇔ p > p̃, it must be true that

w ∈ (0, 1).

Following the same logic as above, it is straightforward to demonstrate that if T arms

at the outset of the crisis, C sets xA = xA if w′ ≤ w and sets xA = xA if w′ > w, where

xA ≡ p+ c2, xA ≡ p̂+ c2, and w ≡ c1 + c2
p̂− p+ c1 + c2

.
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With these preliminaries established, we now turn to the evaluation of candidate perfect

Bayesian equilibria (PBE). We begin by ruling out separating equilibria.

First consider the following potential PBE: C sets x = xA and believes w′ = 0 if T arms

and sets x = xN and believes w′′ = 1 if T does not arm; the weaker type of T accepts iff

xN ≤ xN when he does not arm, accepts xA ≤ xA iff he does arm, but, in equilibrium, does

not in fact arm; and the stronger type accepts xN ≤ xN iff he does not arm, accepts xA ≤ xA

iff he does arm, and does in fact arm in equilibrium. In such an equilibrium, the decision

to arm would signal that T is relatively strong. Holding T ’s strategies constant, C’s beliefs

follow immediately from Bayes’ Rule and C’s proposals must be sequentially rational given

those beliefs since 0 < w < w < 1.

Incentive compatibility for the weak type of T requires that uT (¬ arm|xN = xN) ≥

uT (arm|xA = xA), or

1− xN ≥ 1− xA − κ, (7)

which simplifies to κ ≥ p−p. For the strong type, uT (arm|xA = xA) ≥ uT (¬ arm|xN = xN),

or

1− xA − κ ≥ 1− p̃− c2, (8)

which simplifies to κ ≤ p̃ − p. Note the strong type’s incentive compatibility constraint is

not the mirror image of the weak type’s because the weak type accepts xN = xN , whereas

the strong type rejects.

Since p − p > p̃ − p ⇔ p > p̃, for the equilibrium to hold, κ cannot simultaneously be

large enough to dissuade the weak type from arming yet small enough to entice the strong

type to arm. That is, κ cannot simultaneously be larger than one quantity while being

smaller than the other, given the first quantity is itself larger than the second quantity.

Thus, no separating equilibrium exists. If arming is to prevent war, it cannot, in this model,
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be because it serves as a signal that T is strong.

Now consider the other potential separating PBE: C sets x = xA and believes w′ = 1 if

T arms and sets x = xN and believes w′′ = 0 if T does not arm; the weak type T accepts

xN ≤ xN iff he does not arm, accepts xA ≤ xA iff he does arm, and, in equilibrium, arms; and

the strong type accepts xN ≤ xN iff he does not arm, accepts xA ≤ xA iff he does arm, and

does not arm in equilibrium. In such an equilibrium, the decision to arm would signal that

T is relatively weak. Again, holding T ’s strategies constant, C’s beliefs follow immediately

from Bayes’ Rule and C’s proposals must be sequentially rational given those beliefs.

Incentive compatibility for the weak type requires uT (arm|xA = xA) ≥ uT (¬ arm|xN =

xN), or

1− xA − κ ≥ 1− xN , (9)

which simplifies to κ ≤ p̃− p̂. For the strong type, uT (¬ arm|xN = xN) ≥ uT (arm|xA = xA),

or

1− xN ≥ 1− p− c2 − κ, (10)

which simplifies to κ ≥ p̃− p. Note that the strong type’s incentive compatibility constraint

is not the mirror image of the weak type’s because the weak type accepts xA = xA, whereas

the strong type rejects such a demand. Note that p̃ − p > p̃ − p̂ ⇔ p̂ > p. Thus, κ cannot

simultaneously be large enough to dissuade the strong type from arming yet small enough to

entice the weak type to arm. As above, κ cannot simultaneously be larger than one quantity

while being smaller than the other quantity, given the first quantity is itself larger than the

second quantity. Thus, no such separating equilibrium exists.

Now we consider pooling equilibria. Suppose w′ ≤ w and w′′ ≤ w. In such an equilibria,

C would set x = xA if T arms and x = xN if T does not arm. In a pooling PBE in which

both types arm, incentive compatibility for the weak type would require uT (arm|xA = xA) ≥
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uT (¬ arm|xN = xN), or

1− xA − κ ≥ 1− xN , (11)

which simplifies to κ ≤ p̃−p. For the strong type, uT (arm|xA = xA) ≥ uT (¬ arm|xN = xN),

or

1− xA − κ ≥ 1− xN , (12)

which, again, simplifies to κ ≤ p̃− p. Thus, as long as κ ≤ p̃− p, incentive compatibility is

satisfied for both the weak and strong types and the equilibrium holds. It is straightforward

to show, provided κ > p̃− p, a pooling PBE in which both types choose not to arm holds.

Now suppose w′ > w and w′′ ≤ w. In this case, C would set x = xA if T arms and x = xN

if T does not arm. In a pooling PBE in which both types arm, incentive compatibility for

the weak type requires uT (arm|xA = xA) ≥ uT (¬ arm|xN = xN), or

1− xA − κ ≥ 1− xN , (13)

which simplifies to κ ≤ p̃− p̂. For the strong type, uT (arm|xA = xA) ≥ uT (¬ arm|xN = xN),

or

1− p− c2 − κ ≥ 1− xN , (14)

which simplifies to κ ≤ p̃− p. Thus, as long as κ ≤ p̃− p, incentive compatibility is satisfied

for both the weak and strong types and the equilibrium holds, and provided κ > p̃ − p̂, a

pooling PBE in which both types choose not to arm holds.

Now suppose w′ ≤ w and w′′ > w. C would set x = xA if T arms and x = xN if T does

not arm. In a pooling PBE in which both types arm, incentive compatibility for the weak
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type requires uT (arm|xA = xA) ≥ uT (¬ arm|xN = xN), or

1− xA − κ ≥ 1− xN , (15)

which simplifies to κ ≤ p−p. For the strong type, uT (arm|xA = xA) ≥ uT (¬ arm|xN = xN),

or

1− xA − κ ≥ 1− p̃− c2, (16)

which simplifies to κ ≤ p̃− p. Thus, as long as κ ≤ p̃− p, incentive compatibility is satisfied

for both the weak and strong types and the equilibrium holds, and provided κ > p − p, a

pooling PBE in which both types choose not to arm holds.

Finally, suppose w′ > w and w′′ > w. C would thus set x = xA if T arms and x = xN if

T does not arm. In a pooling PBE in which both types arm, incentive compatibility for the

weak type requires uT (arm|xA = xA) ≥ uT (¬ arm|xN = xN), or

1− xA − κ ≥ 1− xN , (17)

which simplifies to κ ≤ p− p̂. For the strong type, uT (arm|xA = xA) ≥ uT (¬ arm|xN = xN),

or

1− p− c2 − κ ≥ 1− p̃− c2, (18)

which simplifies to κ ≤ p̃ − p. Thus, as long as κ ≤ p̃ − p and κ ≤ p − p̂, incentive

compatibility is satisfied for both the weak and strong types and the equilibrium holds, and

provided κ > p̃ − p and κ > p − p̂, a pooling PBE in which both types choose not to arm

holds.
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Generating Variables to Represent the Challenger’s

Beliefs in our Simulated Data

Below we detail how we generated the WAR variable. As discussed in the article, the

equilibria are uniquely identified by two beliefs held by the Challenger: w′ and w′′. To repre-

sent these beliefs, we independently generate WPRIME ∼ U [0, 1] and WPRIMEPRIME ∼

U [0, 1]. In order to create WOVER, which represents w, and WUNDER, which represents

w, we construct PROBOVER, PROBHAT , PROBTILDE , and PROBUNDER, representing

p, p̂, p̃, and p, respectively. For each observation where BARG equals 1:

ARMEQB



= 1 if PROBOVER − PROBHAT > KAPPA,

PROBTILDE − PROBUNDER > KAPPA,

WPRIME > WOVER, and WPRIMEPRIME > WUNDER

= 1 if PROBOVER − PROBUNDER > KAPPA,

PROBTILDE − PROBUNDER > KAPPA,

WPRIME < WOVER, and WPRIMEPRIME > WUNDER

= 1 if PROBTILDE − PROBHAT > KAPPA,

PROBTILDE − PROBUNDER > KAPPA,

WPRIME > WOVER, and WPRIMEPRIME < WUNDER

= 1 if PROBTILDE − PROBUNDER > KAPPA,

WPRIME < WOVER, and WPRIMEPRIME < WUNDER

= 0 Otherwise.

We then generate a binary variable, BOLD , equal to 1 if the Challenger sets x to a value

the Target accepts if and only if the Target is weak. This is true when WPRIME > WOVER

if ARMEQB = 1 and when WPRIMEPRIME > WUNDER if ARMEQB = 0. Next, we

generate a binary variable, WEAK , equal to 1 with probability 0.5. Finally, WAR is a binary
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variable equal to 1 if BOLD = 1 and WEAK = 0.
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Baseline Analysis

In the article we only reported the estimated effect for ARM . Below we present the results

for PROX 1 and PROX 2. Also, in the article when we restricted the analysis to dyads where

BARG = 1 we did not include the proxy variables since we already conditioned on the

observable variable (BARG) whose influence they are meant to represent. Below we report

the results for PROX 1 and PROX 2 when they are included in the models where BARG = 1.

Tables 1 and 2 present the results for the proxy variables referred to in footnote 15.

Table 1 contains the results for PROX 1 for both Experiments 1 and 2 and Table 2 contains the

results for PROX 2 for both Experiments 1 and 2. Unsurprisingly, PROX 1 and PROX 2 are

positive and significant in the models where we analyze all dyads, that is, when BARG = 0.

More often than not, these variables are not significant, and we would not expect them to

be, when they are included in the models where BARG = 1.

In the article we presented the predicted probabilities of ARM when PROX 1 = PROX 2 =

1, which corresponds to the case where states are most likely to arm. Table 3 presents the

results when PROX 1 = PROX 2 = 0 referred to in footnote 18. Table 3 contains the

predicted probabilities and 95% confidence intervals of ARM when PROX 1 = PROX 2 = 0,

as well as those when PROX 1 = PROX 2 = 1. The results when PROX 1 = PROX 2 = 1

correspond to the results presented in Table 3 in the article. The estimated effect for ARM

is the same for both Experiments 1 and 2 because the proxy variables are not included when

we only analyze those dyads that engaged in crisis bargaining.

The results when PROX 1 = PROX 2 = 0 are similar to the results presented in the

article when PROX 1 = PROX 2 = 1. When we include all dyads, the change in the size of

the effect in each case is larger when the dependent variable is MID compared to when it is

WAR. However, the change in the size of the effect when we condition on BARG is larger

when the dependent variable is WAR compared to MID .
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Table 1: Logit Models (PROX 1)

Standard Standard Rejection

β̂ deviation error rate β̂
Experiment 1
All Observations: MID 1.45 0.02 0.002 1.0
All Observations: WAR 1.78 0.05 0.005 1.0
Only BARG : MID 0.002 0.05 0.005 0.05
Only BARG : WAR −0.006 0.05 0.005 0.04
Experiment 2
All Observations: MID 0.87 0.02 0.002 1.0
All Observations: WAR 1.15 0.05 0.005 1.0
Only BARG : MID −0.004 0.05 0.005 0.07
Only BARG : WAR 0.000 0.05 0.005 0.03

Note: Results based on 100 independent data sets.

Table 2: Logit Models (PROX 2)

Standard Standard Rejection

β̂ deviation error rate β̂
Experiment 1
All Observations: MID 0.84 0.03 0.003 1.0
All Observations: WAR 1.01 0.05 0.005 1.0
Only BARG : MID 0.003 0.06 0.006 0.05
Only BARG : WAR −0.002 0.06 0.006 0.05
Experiment 2
All Observations: MID 0.52 0.03 0.003 1.0
All Observations: WAR 0.68 0.05 0.005 1.0
Only BARG : MID −0.001 0.06 0.006 0.03
Only BARG : WAR −0.010 0.05 0.005 0.01

Note: Results based on 100 independent data sets.
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Matching

In the article we focused our discussion on τ̂t after matching on PROX 1 = PROX 2 = 1,

which corresponds to the case where states are most likely to arm. Below we present the

results for τ̂c after matching on PROX 1 = PROX 2 = 0 referred to in footnote 19. When we

match on PROX 1 = PROX 2 = 0, this corresponds to the case where states are least likely

to arm.

In contrast to when we matched on PROX 1 = PROX 2 = 1, when we match on PROX 1 =

PROX 2 = 0, we actually exacerbate the imbalance between observations in the treatment

and control regimes, if only modestly. In our simulated data, BARG is 2.8 times as likely to

equal 1 in observations where ARM = 1 prior to matching, versus 3.03 after matching using

the first proxy variable settings and 2.93 using the second proxy variable settings. Prior to

matching, BARG = 1 in 21% of the observations when ARM = 1 and 7% when ARM = 0.

After matching, the corresponding percentages are 10% and 3%, respectively, in Experiment

1 and 14% and 5%, respectively, in Experiment 2. Thus, matching on PROX 1 = PROX 2 = 0

provides a matched subsample with a relatively small percentage of observations where

BARG = 1.

Table 4 summarizes the results and Table 5 shows the predicted probabilities and 95%

confidence intervals when ARM = 0 and ARM = 1. These results show that τ̂c is always

positive and significant, which should come as no surprise given that we have only exac-

erbated the problem caused by the presence of an unobservable confounder that correlates

with treatment status. Thus, while we were able to identify some conditions under which

we could recover the true negative τ̂t (see article), the τ̂c is always positive.

Additional Ways to do Exact Matching

In the article we focused on τ̂t and presented results after matching on PROX 1 = PROX 2 =

1. We presented the results after matching on PROX 1 = PROX 2 = 0 above. However, there
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are four possible ways to do the exact matching: 1) PROX 1 = PROX 2 = 0; 2) PROX 1 = 1,

PROX 2 = 0; 3) PROX 1 = 0, PROX 2 = 1; 4) PROX 1 = PROX 2 = 0. We chose to focus

on PROX 1 = PROX 2 = 1 because these are the cases where ARM is most likely to equal

1. However, by doing so, we are not keeping all of the treated cases because some cases are

treated (armed), when PROX 1 = PROX 2 = 0 and under the other two ways of matching

as well and BARG might equal 1 in these cases as well as the cases we matched on. In

order to investigate whether our results change if we match on all possible combinations

of PROX 1 and PROX 2, we used the Matching package in R (Sekhon 2011) to do exact

matching (1-to-1) on PROX 1 and PROX 2.

Tables 6 and 7 show the balance statistics for τ̂t and τ̂c, respectively, before and after

performing exact matching on PROX 1 and PROX 2. These tables show the difference in

means between the treatment and control groups, the t-test p-value for the difference in

means, and the variance ratio.1 If the variance ratio equals 1 there is perfect balance in the

treatment and control groups when matching on PROX 1 and PROX 2.

When we focus on τ̂t, exact matching isolates all of the systematic difference between the

treatment and control groups. In our simulated data, BARG is 2.8 times as likely to equal 1

in observations where ARM = 1 prior to matching, versus 1 after matching in Experiments

1 and 2, respectively, and regardless of whether MID or WAR is the dependent variable.

Prior to matching, BARG = 1 in 21% of observations when ARM = 1 and 7% when

ARM = 0. After matching, the corresponding percentages are 80% and 80%, respectively,

in Experiment 1 and 58% and 58%, respectively, in Experiment 2. These percentages are the

same regardless of whether MID or WAR is the dependent variable.2 Thus, exact matching

provides a matched subsample of observations where the percentage of observations in the

treatment and control groups are the same when BARG = 1, that is, there is no disparity

between the observations where the Target armed versus those where the Target did not.

1For binary variables the Kolmogorov-Smirnov test is equivalent to the t-test.
2The reason why the balance statistics are the same regardless of whether MID or WAR is the dependent

variable is because when we “code” a WAR as 1 we do not assume that a MID has previously occurred.
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When we focus on the τ̂c, exact matching isolates all of the systematic difference between

the treatment and control groups. In our simulated data, BARG is 2.8 times as likely to

equal 1 in observations where ARM = 1 prior to matching, versus 1 after matching in

Experiments 1 and 2, respectively, and regardless of whether MID or WAR is the dependent

variable. Prior to matching, BARG = 1 in 21% of observations when ARM = 1 and 7% when

ARM = 0. After matching, the corresponding percentages are 3% and 3%, respectively, in

Experiment 1 and 5% and 5%, respectively, in Experiment 2. These percentages are the

same regardless of whether MID or WAR is the dependent variable. Thus, exact matching

provides a matched subsample of observations where the percentage of observations in the

treatment and control groups are the same when BARG = 1, that is, there is no disparity

between the observations where the Target armed versus those where the Target did not.

Table 8 summarizes the results and Table 9 shows the predicted probabilities and 95%

confidence intervals when ARM = 0 and ARM = 1 for τ̂t. These results show that τ̂t

is always estimated to be positive and significant and we almost always reject the null

hypothesis. Table 10 summarizes the results and Table 11 shows the predicted probabilities

and 95% confidence intervals when ARM = 0 and ARM = 1 for τ̂c. These results show that

τ̂c is always estimated to be positive and significant and we always reject the null hypothesis.

Figure 1 presents the estimated τ̂t for our baseline analysis and each of the three empirical

methods discussed in the article, where the matching results are those discussed above. The

primary difference between the results shown in Figure 1 and those presented in the article

is that the τ̂t is always positive when we match on all possible combinations of PROX 1 and

PROX 2, whereas when we focus on matching on PROX 1 = PROX 2 = 1, the τ̂t is positive

except when WAR is the dependent variable and the proxy variables in Experiment 1 are

used, in which case it is negative. The τ̂t is also smaller than the results presented in the

article when MID is the dependent variable.
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Table 4: Logit Models after Matching

Standard Standard Rejection

β̂ deviation error rate β̂
Experiment 1
MID 0.55 0.03 0.003 1.0
WAR 0.55 0.09 0.009 1.0
Experiment 2
MID 0.65 0.03 0.003 1.0
WAR 0.52 0.08 0.008 1.0

Notes: Results based on 100 independent data sets. Re-
sults reported for ARM after matching on PROX 1 =
PROX 2 = 0.

Table 5: Logit Models after Matching (Predicted Probabilities)

ARM = 0 ARM = 1
Experiment 1
MID 0.075 0.124

(0.073, 0.077) (0.118, 0.129)
WAR 0.008 0.014

(0.007, 0.009) (0.012 0.016)
Experiment 2
MID 0.086 0.153

(0.084, 0.089) (0.147, 0.159)
WAR 0.011 0.019

(0.010, 0.012) (0.017, 0.021)

Notes: Results based on 100 independent data
sets. Results based on matching on PROX 1 =
PROX 2 = 0.
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Table 8: Logit Models after Matching: ATT (τ̂t)

Standard Standard Rejection

β̂ deviation error rate β̂
Experiment 1
MID 0.62 0.03 0.003 1.0
WAR 0.24 0.07 0.007 0.95
Experiment 2
MID 0.71 0.03 0.003 1.0
WAR 0.39 0.07 0.007 1.0

Note: Results based on 100 independent data sets.

Table 9: Logit Models after Matching (Predicted Probabilities): ATT (τ̂t)

ARM = 0 ARM = 1
Experiment 1
MID 0.119 0.201

(0.115, 0.124) (0.195, 0.207)
WAR 0.022 0.028

(0.020, 0.024) (0.025, 0.030)
Experiment 2
MID 0.110 0.201

(0.106, 0.114) (0.195, 0.207)
WAR 0.019 0.028

(0.017, 0.021) (0.025, 0.030)

Note: Results based on 100 independent data sets.
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Table 10: Logit Models after Matching: ATC (τ̂c)

Standard Standard Rejection

β̂ deviation error rate β̂
Experiment 1
MID 0.62 0.02 0.002 1.0
WAR 0.31 0.06 0.006 1.0
Experiment 2
MID 0.70 0.02 0.002 1.0
WAR 0.41 0.06 0.006 1.0

Note: Results based on 100 independent data sets.

Table 11: Logit Models after Matching (Predicted Probabilities): ATC (τ̂c)

ARM = 0 ARM = 1
Experiment 1
MID 0.106 0.180

(0.104, 0.108) (0.178, 0.183)
WAR 0.018 0.024

(0.017, 0.019) (0.023, 0.025)
Experiment 2
MID 0.106 0.194

(0.104, 0.108) (0.191, 0.196)
WAR 0.018 0.026

(0.017, 0.019) (0.025, 0.027)

Note: Results based on 100 independent data sets.
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(Baseline)
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Bargaining
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Variables
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Figure 1: Comparison of Baseline Models and Three Empirical Methods

21



Instrumental Variables

In the article we presented the results for τ̂t holding IV 1, PROX 1, and PROX 2 all constant at

1, which maximizes the probability of treatment. Table 12 shows the predicted probabilities

and 95% confidence intervals when IV 1 = 1 and PROX 1 = PROX 2 = 0 (referred to in

footnote 29) as well as the results when IV 1 = 1 and PROX 1 = PROX 2 = 1. The last two

columns of Table 12 correspond to the results presented in the article.

In the article we presented the results for IV 1 since the results for IV 2 are very similar.

Table 13 shows the predicted probabilities and 95% confidence intervals when IV 2 = 1 and

PROX 1 = PROX 2 = 0 as well as the results when IV 2 = 1 and PROX 1 = PROX 2 = 1

referred to in footnote 31.
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Statistical Backwards Induction

Below is the extensive form we used to estimate the Statistical Backwards Induction models.

C

¬ MID MID

0 T

¬ recip recip

XcCβcC
0

XcRβcR
XtRβtR

In the article we focused on comparing the difference between the predicted probability the

Challenger initiates a MID (p̂c) when ARM = 0 and ARM = 1 holding PROX 1 = PROX 2 =

1. Table 14 shows the predicted probabilities of MID and 95% confidence intervals for

different settings of ARM , PROX 1, and PROX 2 for Experiments 1 and 2, respectively, when

CAP1 is held at its mean value (0.5), including the results where PROX 1 = PROX 2 = 0

referred to in footnote 43. The results when PROX 1 = PROX 2 = 1 correspond to the results

presented in Table 3 in the article.

Tables 15 and 16 show the predicted probabilities of MID and 95% confidence intervals

for different settings of ARM , PROX 1, and PROX 2 for Experiments 1 and 2, respectively,

when CAP1 is held at its minimum value (0.28) and when CAP1 is held at its maximum

value (0.74) referred to in footnote 44. In Tables 14, 15, and 16 the predicted probabilities

are the same in the models were BARG = 1 because the proxy variables are not included in

these models.
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