
A Comparison with Majority Rule for Case Hearings

Before proving our main results, we compare Rule of Four to case selection via majority rule, where

the median justice is the sole hearing pivot.

Proposition 3. The court hears a smaller set of cases under majority rule than under Rule of Four

Proof. First, dispositional votes do not depend on the case selection rule. Second, judges use weakly

undominated voting strategies for case selection. Thus, case selection strategies does not depend on

the rule in the equilibria we study. Increasing the quota requirement for case selection therefore

cannot expand the set of heard cases. �

Changing the Rule of Four to majority rule would not change the final rulings of heard cases,

which are determined collectively by the dispositional majority regardless. But the court would be

less willing to hear moderate cases. Whether this is improves social welfare depends on how closely

the median justice aligns with citizen preferences.

B Proofs

Recall that x∗i denotes the final ruling’s location if d j = 0 for all j ≤ i and d j = 1 for all j > i.

Lemma B.1. If dispositional motivation is sufficiently strong, then the dispositional voting subgame

has a PSNE with monotonic dispositional majorities in which di = 1 if and only if xsq ≤ x̌i, where:

x̂i ≤ x̌i for all i < n+1
2 , and x̂i ≥ x̌i for all i > n+1

2 .

Proof. First, we define x̌i for i ≤ n+1
2 . Let x′i be the unique xsq ≥ x̂i solving ui(x∗i ) = ui(x∗i−1) +

l(xsq− x̂i), and similarly let x′′i be the unique xsq ≥ x̂i solving ui(x∗i ) = ui(xsq)+ l(xsq− x̂i). Note that

x′i = x′′i if x′i = x∗i−1, and x′′i ≤ x∗i−1 if x′i ≤ x∗i−1. Define

x̌i =


x′i if x′i ≤ x∗i−1

x′′i else.
(2)
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For i > n+1
2 , define x̌i in a symmetric way. If dispositional motivation is sufficiently strong, i.e., l

decreases fast enough as xsq shifts away from x̂i, then: x̌i ∈ [x̂i, x̂i+1) for i < n+1
2 , x̌i ∈ (x̂i−1, x̂i] for

i > n+1
2 , and x̌ n+1

2
< x̌PR . Thus, x̌i ≤ x̌i+1 for all i.

Construct a profile of dispositional voting strategies such that di = 1 if and only if xsq < x̌i.

In this profile, dispositional majorities are always monotonic because x̌i ≤ x̌i+1 for all i.

It remains to check that no justice has a profitable deviation. Consider justice j ≤ n+1
2 , as

symmetric arguments apply to j > n+1
2 . First, suppose xsq ≤ x̂ j. Voting 0 is not a profitable deviation

because d j = 1 matches j’s dispositional motivation and also includes her in the dispositional major-

ity, which shifts the ruling towards x̂ j by Property 2. Second, suppose xsq ∈ (x̂ j,min{x∗j−1, x̂ j+1}).

Then j strictly prefers voting 0 iff u j(x∗j) > u j(x∗j−1)+ l(xsq− x̂ j), which is equivalent to xsq > x′j.

Next, suppose xsq ∈ (max{x̂ j,x∗j−1}, x̂ j+1). Then j strictly prefers voting 0 iff u j(x∗j) > u j(xsq)+

l(xsq− x̂ j), equivalently xsq > x′′j . By properties of x′′j and x′j, the previous two cases imply that j

strictly prefers voting 0 for xsq ∈ (x̂ j, x̂ j+1) iff xsq > x̌ j. Finally, suppose xsq > x̂ j+1. If l(x̂ j+1− x̂ j)

is sufficiently negative, then voting 1 is not a profitable deviation. �

Henceforth, we assume dispositional motivation is strong enough to apply Lemma B.1.

Proof of Lemma 1. In the PSNE of the dispositional voting subgame characterized in Lemma B.1,

the final ruling is worse than xsq for each minority justice. Thus, it is never strictly optimal for any

justice to support hearing a case if she will be in the dispositional minority, as she would incur cost

c≥ 0 to get an inferior final ruling. �

Proof of Lemma 2. Set x̌0 = −∞ and fix i ∈ {0,1, . . . , n−1
2 }. Consider xsq ∈ (x̌i, x̌i+1]. If xsq ∈

[x∗i , x̌i+1), then the case is heard iff UPR(xsq)−c≤ uPR(xsq). Otherwise, the case is heard iff UPR(x
∗
i )−

c≥ uPR(xsq), which is equivalent to xsq ≤ x̃i ≡ x̂PR−
√

c+(x∗i − x̂PR)
2 because x̂PR ≥ x̌i+1 by Lemma

B.1. Note that x̃i < x∗i if x∗i ≤ x̌i+1. Define xi = max{x̌i,min{x̌i+1, x̃i}}.

Next, set x̂n+1 = ∞. For i ∈ {n+1
2 , . . . ,n + 1}, we can symmetrically define x̃i = x̂PL +√

c+(x∗i − x̂PL)
2 and xi = min{x̌i,max{x̌i−1, x̃i}}. Also symmetric to the preceding case, x̃i > x∗i

if x∗i ≥ x̌i.
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Setting x = max{xi|xi > x̌i} and x = min{xi|xi < x̌i}, the case is not heard if xsq ∈ [x,x]. �

Proposition 1. If x̂PR increases to x̂′PR
, then x≤ x′. Similarly, if x̂PL decreases to x̂′PL

, then x′ ≤ x.

Proof. By Lemma 2, we have x∈ {x̂PR−
√

c+(x∗i − x̂PR)
2, x̌i+1} for some i < n+1

2 . We show ∂x
∂ x̂PR
≥

0. Analogous arguments imply x decreases as x̂PL shifts leftward.

Case 1. Suppose x = x̂PR−
√

c+(x∗i − x̂PR)
2. There are two possible subcases: x∗i ≤ x̂PR and

x∗i > x̂PR .

First, if x∗i ≤ x̂PR , then

∂x
∂ x̂PR

= 1+
x∗i − x̂PR√

c+(x∗i − x̂PR)
2

(
1− ∂x∗i

∂ x̂PR

)
= 1+

x̂PR− x∗i√
c+(x∗i − x̂PR)

2

(
∂x∗i
∂ x̂PR

−1
)

≥ 1− x̂PR− x∗i√
c+(x∗i − x̂PR)

2
(3)

≥ 0, (4)

where (3) follows from Property 1 and x∗i ≤ x̂PR , and (4) because c≥ 0 implies
√

c+(x∗i − x̂PR)
2 ≥

x̂PR− x∗i .

For x∗i > x̂PR ,

∂x
∂ x̂R

= 1+
x∗i − x̂PR√

c+(x∗i − x̂PR)
2

(
1− ∂x∗i

∂ x̂PR

)
≥ x∗i − x̂PR√

c+(x∗i − x̂PR)
2

(
1− ∂x∗i

∂ x̂PR

)
(5)

≥ 0, (6)

where (6) follows from (5) by Property 1.

Case 2. Suppose x = x̌i+1. Then x ≥ x̂i+1 and satisfies ui+1(x∗i+1) = ui+1(x∗i )+ l(x− x̂i+1).
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Applying the implicit function theorem,

∂x
∂ x̂PR

=

(
∂ui+1(x∗i+1)

∂x∗i+1

∂x∗i+1

∂ x̂PR

− ∂ui+1(x∗i )
∂x∗i

∂x∗i
∂ x̂PR

)(
∂ l(x− x̂i+1)

∂x

)−1

(7)

∝
∂ui+1(x∗i )

∂x∗i

∂x∗i
∂ x̂PR

−
∂ui(x∗i+1)

∂x∗i+1

∂x∗i+1

∂ x̂PR

. (8)

Thus, ∂x
∂ x̂PR
≥ 0 iff

∂ui+1(x∗i )
∂x∗i

∂x∗i
∂ x̂PR

≥
∂ui(x∗i+1)

∂x∗i+1

∂x∗i+1

∂ x̂PR

. (9)

If ∂x∗i
∂ x̂PR

= 0, then (9) holds because x̂i+1 < x∗i+1 by Property 3, so ∂ui+1(x∗i+1)

∂x∗i+1
< 0. If ∂x∗i

∂ x̂PR
> 0, then (9)

is equivalent to

∂ui+1(x∗i )
∂x∗i

∂ui+1(x∗i+1)

∂x∗i+1

≤
∂x∗i+1
∂ x̂PR
∂x∗i

∂ x̂PR

. (10)

The LHS of (10) is in [0,1] because x̂i+1 ≤ x∗i ≤ x∗i+1 with at least one strict inequality, and the RHS

is greater than or equal to 1 by Properties 1 and 4. Thus, (10) holds. �

The interval [x,x] studied in Proposition 1 does not always fully characterize the set of heard

cases. We now fully characterize this set, extend Proposition 1, and prove Proposition 3.

The proof of Lemma 2 implies that the non-heard set is

G = {∪i< n+1
2
[xi, x̌i+1]}∪{∪i> n+1

2
[x̌i−1,xi]}. (11)

and [x,x] ⊆ G . In general, G may also contain intervals of unheard cases disjoint from [x,x]. With

sufficiently strong dispositional motivation, we prove a more general version of Proposition 1.

Proof of Proposition 2. Without loss of generality, suppose x̂PR increases. If G = [x,x], then Propo-

sition 1 yields the result. Suppose G contains at least one interval [x′,x′] disjoint from [x,x], with

x′ < x.
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The characterization for G in (11) implies x′ = x̌i for some i < n+1
2 . Analogous to (7),

applying the implicit function theorem yields ∂x′
∂ x̂PR

=

(
∂ui(x∗i+1)

∂x∗i+1

∂x∗i+1
∂ x̂PR
− ∂ui(x∗i )

∂x∗i

∂x∗i
∂ x̂PR

)(
∂ l(x−x̂i)

∂x

)−1

. It

follows that ∂x′
∂ x̂PR

goes to zero as |∂ l(x−x̂i)
∂x | gets large.

Next, we claim x′ = x̃ j for some j ≤ i−1. By Case 1 in the proof of Proposition 1, proving

this claim implies that x′ shifts inward. To show the claim, we proceed by contradiction. Suppose

x′ = x̌ j for some j < i− 1. This requires x̃ j ≤ x̌ j ≤ x̃ j−1. Properties 2 and 3 imply x∗i′ increases

monotonically over i′ ≤ n+1
2 . Thus, x̃ j ≤ x̃ j−1 implies x̃k+1 ≤ x̃k for all k ∈ { j, . . . , n−1

2 }. But then

we must have a contradiction: x̃i ≤ x̃ j ≤ x̌ j ≤ x̌i < x̃i, where the strict inequality follows because

x̌i = x′ < x implies x̌i < xi, and thus x̌i < x̃i.

We have shown that x and x′ shift inward, and the effect on x′ vanishes as |∂ l(x−x̂i)
∂x | gets large.

Because analogous arguments apply to any interval of policies disjoint from [x,x], sufficiently strong

dispositional motivations yield the desired result. �
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