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Appendix A Equivalence

Proposition 1. If M = R = 2 the likelihood function in equation (1.3) is identical to

equation 3 in Przeworski and Vreeland (2002).

Proof. If M = R = 2 then V (1) only contains a single element (the unanimous vote

profile). The first product term in equation (1.3) thus reduces to ΦP(yj={1,1})(Xjβ),

which can also be written as Φ(xjAβ)×Φ(xjBβ), where A and B are the two members.

Using the complement probability for the case of rejection of a proposal and using

bj to select the right terms, the likelihood function can be written as L(β|X,b) =∏
j(Φ(xjAβ)Φ(xjBβ))bj × (1 − Φ(xjAβ)Φ(xjBβ))1−bj which is identical to equation 3

in Przeworski and Vreeland (2002).

Definition 1. (Wang, 1993) For a random variable Y with y = 0, ...,M that follows

a Poisson’s Binomial density with parameter p, where p = (p1, ..., pM) and 0 < pi <

1 ∀i = 1, ...,M , we write Y ∼ PB(p). The probability of observing exactly y ‘hits’ is

given by the probability mass function (pmf):

fM(Y = y; p) ≡
∑
A∈Sy

[∏
i∈A

pi
∏
i∈Ac

(1− pi)
]

s.t. Sy = {A : A ⊆ {1, ...,M}, |A| = y} ∧ Ac = Sy \ A.

Definition 2. (Wang, 1993) The probability of observing at most K ‘hits’ is given by

the cumulative distribution function (cdf):

FM(Y ≤ K; p) ≡
K∑
y=0

∑
A∈Sy

[∏
i∈A

pi
∏
i∈Ac

(1− pi)
]
.

Note, that |A| is the cardinality of the ordered set A and is at most M . Sy is a

set of ordered sets with cardinality
(
M
x

)
. Some example of Sy might help to clarify the

notation. Suppose M = 3 then:
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S0 = ∅

S1 = {{1}, {2}, {3}}

S2 = {{1, 2}, {1, 3}, {2, 3}}

S3 = {{1, 2, 3}}.

Proposition 2. A factor in the likelihood function in (1.3) is equivalent to the (com-

plementary) cdf of a Poisson’s Binomial density.

Proof. Using the definition of the cdf we can establish the equivalence. Let pi = Φ(xiβ).

First, notice the equality ΦP(ỹ)(Xβ) =
∏

i∈A pi
∏

i∈Ac(1 − pi) since A = {i : ỹi =

1 ∀i = 1, ...,M} as well as Ac = {i : ỹi = 0 ∀i = 1, ...,M}. Second, notice the equality

V (0) =
⋃R
y=0 Sy as long as we allow only for q-rules with threshold R. By substitution

we have:

K∑
y=0

∑
A∈Sy

[∏
i∈A

pi
∏
i∈Ac

(1− pi)
]

=
K∑
y=0

∑
A∈Sy

[∏
i∈A

Φ(xiβ)
∏
i∈Ac

(1− Φ(xiβ))

]

=
K∑
y=0

∑
A∈Sy

[
ΦP(ỹ)(Xjβ)

]
=
∑

ỹ∈V (0)

[
ΦP(ỹ)(Xjβ)

]
.

The case for V (1) is analog.
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Appendix B Identification

Define the following likelihood function:

.L(p|b) =
∏
j

(1− FM(yj ≤ (R− 1); pj))
bj · FM(yj ≤ (R− 1); pj)

1−bj , (B.1)

where FM(·) is the cdf of Poisson’s Binomial defined as in appendix A. If pj =

(Φ(x1jβ), ...,Φ(xMjβ)) the likelihood is identical to equation (1.3) as shown in appendix

A.

Note also, that the expected value for Poisson’s Binomial pdf is given by E(Y ) =

θ =
∑M

i=1 pi (Wang, 1993).

Lemma 1. The maximum-likelihood estimator (MLE) for θ is unique.

Proof. Since we are interested in the MLE of θ and not p we assume without loss of

generality that p = (p, ..., p). Then Poisson’s Binomial cdf reduces to

FM(y ≤ (R− 1); p) =
R−1∑
y=0

∑
A∈Sy

[∏
i∈A

pi
∏
i∈Ac

(1− pi)
]
. (B.2)

=
R−1∑
y=0

∑
A∈Sy

[∏
i∈A

p
∏
i∈Ac

(1− p)
]

(B.3)

=
R−1∑
y=0

(
M

y

)
py(1− p)M−y (B.4)

= B(M,R− 1; p), (B.5)

and the likelihood in B.1 reduces to

L(p|b) =
∏
j

(1−B(M,R− 1; p))bj ·B(M,R− 1; p)1−bj , (B.6)

and the expected value to

E(Y ) = θ = Mp. (B.7)

The likelihood in equation (B.6) is a reparameterized Bernoulli likelihood with pa-
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rameter p̃ = B(M,R−1; p). The MLE for p̃ exist and is unique since p̃ is a finite moment

of the density. By the invariance-property of the MLE (e.g., Casella and Berger, 2002,

Theorem 7.2.10), the MLE is invariant under reparameterization. B(M,R−1; p) is the

cdf of a Binomial density which is injective and consequently the MLE for p is unique.

For the same reason, the MLE for E(Y ) must exist and is unique.

The expected value is a reduced-form parameter and, as lemma 1 shows, identified.

Thus, identifiability of the structural parameters β reduces to the question of a unique

solution to system of J nonlinear equation with K unknowns:

θ1 =
∑M

i=1 Φ(xi1β)

θ2 =
∑M

i=1 Φ(xi2β)
...

θj =
∑M

i=1 Φ(xijβ)
...

θJ =
∑M

i=1 Φ(xiJβ).


(B.8)

Using a Taylor series expansions around 0 of the first order for the system, leads to

a system where each row can can be written as:

θj =
M∑
i=1

(
1

2
+

1√
2π

(β0 + β1xij1 + . . .+ βKxijK)

)
(B.9)

=
M∑
i=1

(
1

2
+ β0

1√
2π

+ β1
1√
2π
xij1 + . . .+ βK

1√
2π
xijK

)
(B.10)

= M

(
1

2
+ β0

1√
2π

)
︸ ︷︷ ︸

β′0

+ β1
M√
2π︸ ︷︷ ︸

β′1

( M∑
i=1

xij1

)
+ . . .+ βK

M√
2π︸ ︷︷ ︸

β′K

( M∑
i=1

xijk

)
(B.11)

= β′0 + β′1

( M∑
i=1

xij1

)
+ . . .+ β′K

( M∑
i=1

xijK

)
. (B.12)

Proposition 3. There exist a unique MLE for β′ to the system approximated by the

Taylor series expansion around 0 of the first order in equation (B.8).

Proof. The system is a system of linear equations which is known to have a unique

solution (and consequently a unique MLE) iff the matrix (the Jacobian):
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
1
∑M

i=1 xi11
∑M

i=1 xi12 . . .
∑M

i=1 xi1K

1
∑M

i=1 xi21
∑M

i=1 xi22 . . .
∑M

i=1 xi2K
...

...

1
∑M

i=1 xiJ1
∑M

i=1 xiJ2 . . .
∑M

i=1 xiJK


has full rank.

One might refer to the matrix as the ‘aggregate design matrix’ since it results from

summing (or averaging) over all members for each decision. Note, I eased the exercise

by assuming existence. An existence proof might impose a bounded parameter space

and then show continuity. The lemma would allow to invoke the extreme-value theorem

(Weierstress theorem) that guarantees existence (e.g., Sundaram, 1996, Chapter 3).
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Appendix C Neglected Heterogeneity

Suppose that the correct model for each member’s vote is y∗j = β0 + β1zj + εj, where

β1 6= 0. Notice that, in this model, all members are very likely to cast the same

vote since zj exhibits no member-specific variation. The degree of correlation among

members’ vote choices is a function of β1 and the variance in εj. Suppose further that

the analyst seeks to test whether xij has an effect on y∗j but happens not to observe

zj. The analyst estimates the following m-probit model y∗j = β′0 + β′2xij + ε′j, where

ε′j = β1zj + εj. In this model, the vote choices among the members are correlated and

the assumption of conditional independence violated.

To the extent that ε′j is normally distributed (which is ensured when zj is normally

distributed) and independent of xij, β
′
2 is only rescaled relative to β2 since β′2 = β2/τ ,

where τ = var(ε′j). This neglected heterogeneity problem is well known in the context

of probit models (e.g., Wooldridge, 2001, p. 470) but presents no problem in practice

since the coefficient’s scale does not affect i) the direction of the estimated effects, ii)

the test statistics, or iii) the marginal effect estimates. The same results apply to the

m-probit: the correlation-inducing variable (the neglected heterogeneity) rescales the

coefficient estimates but will not affect their directions, the test statistics, or marginal

effect estimates. However, if zj were correlated with xij, the coefficient estimates would

be biased. However, this is the case for any model estimated based on a decision record.

This confounding bias can be removed only if a voting record is available to the analyst.

Slope

M R J Sim. Conv. RMSE Cover.

5 3 250 250 249 (1.00) 0.09 0.95 (0.014)
5 4 250 250 247 (0.99) 0.10 0.94 (0.015)
10 6 250 250 236 (0.94) 0.09 0.97 (0.010)
10 7 250 250 240 (0.96) 0.09 0.96 (0.013)

Table SI-1: Results from 4 Monte Carlo experiments. The first four columns report the
number of members (column labeled M), the voting rule (R), the number of proposals (J)
and the number of simulations per experiment (Sim.). The latter three columns report the
number and percentage shares of simulations for which the convergence diagnostic supports
my choice of run length (Conv.), the RMSE for all converged simulations and coverage
probabilities (Cover.) of the 95% posterior intervals (with Monte Carlo standard errors in
brackets) for all converged simulations.

The theoretical argument above is based on a distributional assumption about the
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neglected heterogeneity. It is difficult to evaluate how critical this assumption is, but

when I replicate parts of the Monte Carlo experiments (section F) including neglected

heterogeneity that is non-normally distributed, the coverage probabilities are still very

accurate (see table SI-1).

I used the following data-generating process: xij, zj ∼ U(−2, 2), β0, β2 ∼ U(−1, 1),

and β1 = 0. The estimated models included only the covariate xij, leaving zj as the

neglected heterogeneity that is uniformly distributed.
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Appendix D Full Conditionals and Gibbs Scheme

D.1 Proposition from Lauritzen et al. (1990)

Let parents(q) be a function that collects all nodes that are connected to a node q via

an inward edge and children(p) the function that collects all nodes that are connected

via an outward edge to p.

Proposition 4. (Lauritzen et al. (1990)) If a joint density can be written as a directed

acyclic graph (DAG), the conditional pdf of any of the DAG’s nodes (θ1, ....θj, ...θJ) is

given by:

(θ1, ....θj, ...θJ) is given by:

f(θj|θ¬j) ∝ f(θj|parents(θj))×
∏

w∈chidren(θj)

f(w|parents(w)), (D.1)

where θ¬j denotes all nodes in the DAG other than θj.

Proof. See Lauritzen et al. (1990).

D.2 Full Conditionals

A) The full conditional for β is a product of a normal prior density and the likelihood

of J multivariate normal densities. Sampling is standard.

f(β|b0,B0,y
∗,y,b,X) ∝ f(β|b0,B0)×

∏
j

f(y∗j |Xj,β)

= φ

(
(B−10 + X′X)−1(B−10 b0 + X′y∗), (B−10 + X′X)−1

)
.

(D.2)

B) The full conditional for y∗j is a truncated multivariate normal. Since the com-

ponents are uncorrelated (the covariance matrix is the identity matrix by assumption),

sampling can be conducted component-wise using the standard algorithm from Geweke

(1991).
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f(y∗j |b0,B0,β,y,b,X) ∝ f(y∗j |Xj,β)× f(yj|y∗j )

∝ f(y∗j |Xj,β,yj)

∝ φ(Xjβ)
∏
i

(
I(y∗ij ≥ 0)I(yij = 1) + I(y∗ij < 0)I(yij = 0)

)
.

(D.3)

C) The conditional density for yj is a set of Bernoulli densities with the constraint

that their sum is consistent with the observed bj.

f(yj|b0,B0,β,y,b,X) ∝ f(yj|y∗j )× f(bj|yj)

∝ f(yi|y∗j , bj)

∝
∏
i

(
Φ(y∗ij)

yij + (1− Φ(y∗ij))
1−yij

)
×(

I(
∑
i

yij < R)I(bj = 0) + I(
∑
i

yij ≥ R)I(bj = 1)

)
.

(D.4)

D.3 Sampling Bernoulli Densities with Constraint

In order to sample from the conditional density for yj, it is useful to use accept-reject

sampling (e.g., Robert and Casella, 2004, p. 51). A simple version of an algorithm

takes f(yj|y∗j ) as the proposal density:

Algorithm 1. 1. Draw from

yj ∼


f(y1j|y∗1j)
...

f(yMj|y∗Mj)

2. Draw u ∼ U(0, 1)

3. Accept yj if u ≤ f(yj |y∗j )×f(bj |yj)

C×f(yj |y∗j )
otherwise repeat.

where C is a choosen constant s.t. C ≥ 1 absorbing the normalizing constant of the

target density and U(0, 1) is the uniform density on the interval [0, 1]. Note that:
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f(yj|y∗j )× f(bj|yj)
C × f(yj|y∗j )

= f(bj|yj),

if C is set to 1. Since f(bj|yj) is either 0 or 1, the acceptance ratio in the second

step is either 0 or 1. Hence, in practice sampling does not require to draw from a

uniform but only requires to check if a proposed yj obeys the constrain implied by bj.

However, the algorithm 1 can be inefficient because there might be thousands of

draws which are rejected, because the acceptance ratio is 0. In fact, the ratio f(bj|yj)
is zero for many yj. A more efficient version rescales the proposal density every ith

iteration. Define Q and Qmax s.t. 1 < Q < Qmax and let there be some constant ε.

The algorithm for (bj = 1) takes the following form:

Algorithm 2. 1. Set Q = 1 and Qmax = 1/Φ(max(y∗j ))

2. Draw from

yj ∼


Qf(y1j|y∗1j)

...

Qf(yMj|y∗Mj)

3. Draw u ∼ U(0, 1)

4. Accept yj and stop if u ≤ f(yj |y∗j )×f(bj |yj)

C×(1/MQ)×f(yj |y∗j )

5. If Q < Qmax set Q = Q+ g(ε, i)

6. Repeat.

Notice, that C can be chosen such that it offsets 1/MQ and C/MQ ≥ 1. Conse-

quently, the acceptance ratio is again either 0 or 1 and sampling in practice does not re-

quire drawing from a uniform. The version for bj = 0 uses Qmax = 1/(1−Φ(max(y∗j ))).

An example helps to clarify the intuition for algorithm 2. Suppose that all elements

in y∗j are quite small, bj = 1 and R is high. In this case algorithm 1 takes a long

time. Algorithm 2 scales the vector Φ(y∗j ) by some constant Q which increases the

probability to sample yj that obeys the constrain bj = 1. Since the scaling is uniform

across the elements of the vector, the target density is not altered. The scaling constant

is increased over the course of iterations given some user-defined ε. The implementation

of this algorithm in the consilium-package adds ε according to fixed schedule (default

is every 200th iteration) with ε small (default is ε = 0.05).
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D.4 Gibbs Sampler

Denote the sth draw with superscript (s) then the Gibbs sampler the following form:

Algorithm 3. 1. For all J draw vote profiles y
(s)
j from Bernoulli densities with

constraint with algorithm 2.

2. Draw for all j = 1, ..., J and i = 1, ...,M from truncated normal densities:

y
∗(s)
ij ∼

{
φ(xijβ

(s−1))I(y
∗(s)
ij ≥ 0) if y

(s)
ij = 1

φ(xijβ
(s−1))I(y

∗(s)
ij < 0) if y

(s)
ij = 0.

3. Draw from a multivariate normal density:

β(s) ∼ φ(b0,B1)

b0 = B1(B
−1
0 b0 + X′y∗(s))

B1 = (B−10 + X′X)−1

with X and y∗(s) ordered correspondingly.

4. Repeat S times until convergence.

D.5 Extension with Varying Intercept

Let there be G groups for which the are unobserved effects, α1, ..., αg, ...αG. A varying

intercept version of the likelihood from equation (1.3) then takes the form:

L(β|X,b) =
∏
j

∑
ỹ∈V (bj)

[
ΦP(ỹ)(Xjβ + αg[j])

]
. (D.5)

In addition to the prior densities over β assume:
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αg ∼ N(0, ω2)

ω2 ∼ invGamma(e0/2, h0/2).
(D.6)

[J ]

b0

B0

β y∗
j Xj

yj

bj

α1 ... αG

ω2e0 f0

Figure SI-1: Directed acyclic graph of the partial m-probit with varying intercept.

An extended version of the graph from figure 1b appears in figure SI-1 suggesting

the followig full conditional densities:

f(β|b0,B0,y
∗,y,

b,X,α, e0, f0, ω
2) ∝ f(β|b0,B0)×

∏
j

f(y∗j |Xj,β,α)

= φ

(
(B−10 + X′X)−1(B−10 b0 + X′(y∗ −α)), (B−10 + X′X)−1

)
,

(D.7)
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f(y∗j |b0,B0,β,y,

b,X,α, e0, f0, ω
2) ∝ f(y∗j |Xj,β,α)× f(yj|y∗j )

∝ f(y∗j |Xj,β,yj,α)

∝ φ(Xjβ + α)
∏
i

(
I(y∗ij ≥ 0)I(yij = 1) + I(y∗ij < 0)I(yij = 0)

)
,

(D.8)

f(yj|b0,B0,β,y
∗,

b,X,α, e0, f0, ω
2) ∝ f(yj|y∗j )× f(bj|yj)

∝ f(yi|y∗j , bj)

∝
∏
i

(
Φ(y∗ij)

yij + (1− Φ(y∗ij))
1−yij

)
×(

I(
∑
i

yij < R)I(bj = 0) + I(
∑
i

yij ≥ R)I(bj = 1)

)
.

(D.9)

f(ω2|b0,B0,β,y,y
∗,b,X, e0, f0,α) ∝ f(ω2|e0, h0)×

G∏
g=1

f(αg)

= invGamma(e1/2, h1/2),

(D.10)

where e1 = e0 +G and h1 = h0 +
∑G

g=1 α
2
g.

f(αg|b0,B0,β,y,b,X, e0, f0, ω
2) ∝ f(αg|ω2)

Ng∏
i=1

f(y∗gi|xgi,β)

= φ
(
(ε∗gNg)/(ω

−2 +Ng), 1/(ω
−2 +Ng)

)
,

(D.11)

where Ng are the number of observations for the gth group, y∗g,Xg are the observa-

tions that belong to the gth group and ε∗g = 1/Ng

∑Ng

i=1(y
∗
gi − xgiβ).
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Appendix E Aggregation Bias

Proposition 5. In the bivariate case with vague priors, the posterior mean for β (the

coefficient) is only a function of E(Y∗) if (X,Y∗) ⊥⊥ H where H is a categorical

proposal-assignment vector.

Proof. In the bivariate case with vague priors (zero-centered, large variances), the mul-

tivariate normal mean of the full conditional reduces to the simple OLS estimator for

β. Consequently, the proof amounts to showing that the OLS β is at most a function

of E(Y∗) (but not Y∗). This has been shown elsewhere and I follow a similar approach

(Erbring, 1989; Palmquist, 1993; King, 1997). I use the law of total variance and the

law of total covariance.

β =
Cov(X,Y∗)

V ar(X)
(E.1)

=
Cov(E(X|H), E(Y∗|H)) + E(Cov(X,Y∗|H))

E(V ar(X|H)) + V ar(E(X|H))
(E.2)

=
Cov(E(X|H), E(Y∗|H))

V ar(E(X|H)) + E(V ar(X|H))
+

E(Cov(X,Y∗|H))

E(V ar(X|H)) + V ar(E(X|H))
(E.3)

=
Cov(E(X|H), E(Y∗|H))

V ar(E(X|H)) + E(V ar(X|H))

V ar(E(X|H))

V ar(E(X|H))
+ (E.4)

E(Cov(X,Y∗|H))

E(V ar(X|H)) + V ar(E(X|H))

E(V ar(X|H))

E(V ar(X|H))
(E.5)

=
Cov(E(X|H), E(Y∗|H))

V ar(E(X|H))

V ar(E(X|H))

V ar(E(X|H)) + E(V ar(X|H))
+ (E.6)

E(Cov(X,Y∗|H))

E(V ar(X|H))

E(V ar(X|H))

E(V ar(X|H)) + V ar(E(X|H))
(E.7)

=W (X,H)
Cov(E(X|H), E(Y∗|H))

V ar(E(X|H))
+ (1−W (X,H))

E(Cov(X,Y∗|H))

E(V ar(X|H))
(E.8)

=W (X,H)
Cov(X,Y∗)

V ar(X)
+ (1−W (X,H))

E(Cov(X,Y∗|H))

E(V ar(X|H))
(E.9)

=W (X,H)βagg + (1−W (X,H))
E(Cov(X,Y∗|H))

E(V ar(X|H))
. (E.10)

Assuming (X,Y∗) ⊥⊥ H (’random’ grouping) and rearranging we have:
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=W (X,H)βagg + (1−W (X,H))
E(Cov(X,Y∗|H))

E(V ar(X|H))
(E.11)

=W (X,H)βagg + (1−W (X,H))
E(Cov(X,Y∗))

E(V ar(X))
(E.12)

=W (X,H)βagg + (1−W (X,H))β (E.13)

β − (1−W (X,H))β =W (X,H)βagg (E.14)

β =βagg =
Cov(X,Y∗)

V ar(X)
. (E.15)

Let S be a binary vector indicating if the voting profile for a proposal j is observed

(sj = 1) or unobserved (sj = 0). Let β be the parameter from the likelihood as defined

in (1.3) with (X,Y∗) ⊥⊥ H and let β̇ be the parameter from the likelihood as defined

in (4.3) with (X,Y∗) 6⊥⊥ H.

Proposition 6. If (X,Y∗) ⊥⊥ S then β̇ = β.

Proof. The full conditional for β̇ is the same as the full conditional for β. We have

already shown in the proof for proposition 5:

β̇ = W (X,H)β̇agg + (1−W (X,H))
E(Cov(X,Y∗|H))

E(V ar(X|H))
(E.16)

which does not reduce to β̇ = β̇agg since (X,Y∗) 6⊥⊥ H. But,

E(Cov(X,Y∗|H))

E(V ar(X|H))
=
E(Cov(X,Y∗|H,S = 1)) + E(Cov(X,Y∗|H,S = 0))

E(V ar(X|H,S = 1)) + E(V ar(X|H,S = 0))
(E.17)

E(Cov(X,Y∗|H))

E(V ar(X|H))
=
E(Cov(X,Y∗|H,S = 1))

E(V ar(X|H,S = 1))
(E.18)

which implies β̇ = β.
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Appendix F Monte Carlo Experiments

For each of the 16 experimental conditions, I run 250 simulations. Across the 16

conditions, I vary the sample size (250, 500), the number of members (5, 10, 50, 100)

and the voting rule (simple majority, 2
3

supermajority). Each member’s vote choice is

governed by two variables: a constant x0ij = 1 and the uniform distributed variable

x1ij ∼ U(−2, 2). The coefficients for these variables are also drawn from a uniform

density with a range of [−1, 1]. I refer to these values informally as “true coefficient

values”. If the decision record exhibits less than 5% of either zeros or ones, that is, if

there is not a minimum amount of variation in the dependent variable, I discard the

simulated data and repeat the simulation.

I use vague priors (b0 = 0, B0 = 100) and rely on pretests to calibrate the Gibbs

sampler’s run length1. For all conditions, I record the Gelman-Rubin convergence

diagnostic (Gelman and Rubin, 1992), the root-mean-square error (RMSE) between

the true coefficient values, and the posterior means as well as the coverage rate with

the Monte Carlo standard error. If the Gibbs sampler works as expected, the RMSE

should be close to zero and approximately 95% of the true coefficient values should be

covered by the 95% posterior interval.

Table SI-3 summarizes the results of the 16 experiments. Taking into account the

Monte Carlo standard error, the coverage probabilities are accurate and the RMSE is,

as expected, very low. This suggests that the Gibbs sampler and its implementation

work as expected and recover the true coefficient values. Figure SI-2 illustrates the

results from one of the experiments (10 members, majority rule, 500 proposals). Each

of the two scatter plots shows the true coefficient value plotted against the posterior

mean estimate along with the 95% posterior interval. The left panel shows the intercept

and the right panel the slope coefficient. The circles indicate the posterior means for

which the Gelman-Rubin convergence diagnostic does not support my choice of run

length.

In figure SI-2, the smallest simulated intercept coefficient is much larger than the

bound of the uniform distribution from which the coefficients have been simulated.

This difference is a consequence of my choice to estimate only the partial m-probit if

the decision record exhibits a minimum amount of variation. While my 5% cutoff was

1I use the consilium package to obtain a posterior of 2,000 values. I run the Gibbs sampler for
40,500 iterations, discarding the first 500 iterations as burn-in, and thinned the chain for every 20th

draw. I run two chains sequentially using distinct seeds and starting values.
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Figure SI-2: Results from one of the Monte Carlo experiments (10 members, majority
rule, 500 proposals): Scatter plot of posterior means with 95% posterior intervals from the
partial m-probit and true coefficient values. The circles indicate the parameters for which
the Gelman-Rubin convergence diagnostic does not support my choice of run length and for
which the chain should have been run longer. The dashed line indicates the 45-degree line
coinciding with a fitted linear regression line.

arbitrary, the effect reveals a general subtle point: aggregation reduces information

potentially up to a point where no variation is left in the decision record (see also

section 3 in the main text).

Table SI-3 shows the approximate computation time used for one simulation in each

of the 16 experimental conditions and the number of converged simulations. Generally,

the computation time increases with the number of members and the sample size. While

all models require more time than an ordinary probit model, even for large committees

(100 members), the computational time is still acceptable (1.30h). From the limited

simulations, it appears that the convergence speed of the Gibbs sampler depends on

the number of members and the voting rule.

To provide some intuition about the increase in posterior uncertainty that comes

with aggregation, I estimate a series of probit models on the simulated vote-choice

data from the Monte Carlo experiments discussed in section F. Across the simulations,

the 95% posterior intervals from the partial m-probit are considerably larger than the

probit intervals. Table SI-2 summarizes the median range of the 95% posterior intervals

for the partial m-probit and an ordinary probit model in each of the 16 experiments.
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The relative differences of the slope intervals are primarily a function of the numbers of

members. For the slope interval, the relative difference for the intervals decreases from

34% (for five members) to 7% (for 100 members), which highlights the severe increase

in posterior uncertainty that comes with aggregation.

Posterior Interval Range

Intercept Slope

M R J Sim. PMP Probit % PMP Probit %

5 3 500 250 0.16 0.11 68.2 0.30 0.10 33.8
5 4 500 250 0.17 0.11 64.7 0.30 0.10 33.6
10 6 500 250 0.12 0.08 62.5 0.31 0.07 22.3
10 7 500 250 0.13 0.08 58.9 0.32 0.07 22.2
50 26 500 250 0.06 0.03 58.9 0.32 0.03 09.6
50 33 500 250 0.09 0.03 39.0 0.33 0.03 09.7
100 51 500 250 0.04 0.02 64.0 0.31 0.02 07.1
100 67 500 250 0.08 0.03 31.0 0.32 0.02 07.0
5 3 250 250 0.24 0.16 67.8 0.43 0.15 33.8
5 4 250 250 0.25 0.16 63.6 0.44 0.14 33.0
10 6 250 250 0.18 0.11 61.6 0.47 0.10 22.3
10 7 250 250 0.19 0.11 58.7 0.44 0.10 22.9
50 26 250 250 0.08 0.05 61.6 0.44 0.04 09.9
50 33 250 250 0.12 0.05 41.3 0.47 0.05 09.7
100 51 250 250 0.05 0.03 64.0 0.44 0.03 07.1
100 67 250 250 0.12 0.04 30.8 0.49 0.03 06.8

Table SI-2: Results from 16 Monte Carlo experiments. The number of members (column
labeled M), the voting rule (R), the number of proposals (J), the number of simulations
per experiment (Sim.), for all converged simulations the median range of the 95% posterior
interval from the partial m-probit (PMP), the median range of the 95% posterior interval
from an ordinary probit model (Probit), and the differences of the probit model posterior
interval compared to the partial m-probit interval (in percent).
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Appendix G Data Description

The original unbalanced panel data contain 1,185 observations (Hultman, 2013). The

unit of analysis is a conflict-year between 1989 and 2006. The dataset is based on the

UCDP conflict dataset (Gleditsch et al., 2002) which uses a low threshold of 25 annual

battle deaths as a criterion to identify conflicts.

I modified the original dataset by dropping a.) all conflict-years coded as located

in countries that are not members of the system as defined by the Correlates of War

Project (Georgia 1990, Croatia 1991, Bosnia and Herzegovina 1991); b) all conflicts

that are located in the territory of a permanent member (seven conflicts), and c) the

first period of each conflict since I include lagged independent variables.

My dependent variable is the initial onset of a UN operation. This deviates from

the onset variable in the original data, which encodes any onset of a UN operation. All

observations of a conflict after the onset are dropped (n = 133). Table SI-4 provides

an overview on the variance of deployments per period.

Covariates:

• log(Trade) from Barbieri et al. (2009): Logarithm of the total trade between

conflict location and a Council member.

• OSV from Hultman (2013): Total number of victims of one-sided violence.

• log(Battle Deaths) from Hultman (2013): Total number of battle deaths.

• log(Army Size) from the Correlates of War Project (2010): Total government

army size (Dataset Version: 4.0). Categorical versions:

• Polity IV: Categorical Polity IV score from Marshall and Jaggers (2002) (Dataset

Version: polity4v2014). Categorical versions:

• Peace Treaty from Högbladh (2012): Peace treaty signed by the belligerents.

• Non-UN Ops. from Hultman (2013): Deployment of other non-UN operation.

• Border with Member from the Correlates of War Project (2003): At least one

nonpermanent or permanent member of the Council shares a land or river border

with the conflict location (Dataset Version: 3.1).

21



Note that log(Army Size) and Polity IV exhibit some missing values for 8 (4) coun-

tries. I use linear interpolation to fill in missing values.

Auxiliary data used: UN Security Council membership data (Dreher et al., 2009),

system-membership and country population data by (Correlates of War Project, 2011,

2010).

Period N Deploy.

1 -
2 109
3 109 5
4 101 4
5 88 3
6 67
7 56
8 51
9 48 2
10 40
11 37 1
12 31
13 29
14 28
15 25 1
16 24
17 23 1
18 19

Table SI-4: Number of de-
ployments and observations
per period.
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Appendix H Estimates

Model 1 Model 2

(Intercept) −0.68 −0.51
[−1.08; −0.26] [−1.19; 0.10]

Nonpartisan election 0.52 0.22
[0.27; 0.77] [−0.12; 0.57]

Justice’s party aligned pub. opinion 0.23 0.36
[0.01; 0.45] [−0.12; 0.86]

Election in 2 years 0.13 0.19
[−0.10; 0.37] [−1.15; 1.41]

Facts aligned pub. opinion 0.47 0.11
[0.24; 0.71] [−0.20; 0.41]

Trespassing/Protests 0.42 0.34
[0.08; 0.77] [−0.10; 0.81]

Minors 0.46 0.15
[0.09; 0.84] [−0.38; 0.72]

Personhood −0.27 −0.08
[−0.63; 0.11] [−0.55; 0.38]

Pub. opinion intensity 0.12 0.05
[0.01; 0.23] [−0.09; 0.19]

Num. obs 605 85

Table SI-5: Regression results for US supreme courts application.
Bayesian probit model (model 1) and Bayesian partial m-probit model
(model 2), each with posterior means and 95% posterior intervals in paren-
theses. Model 1 estimated using the Gibbs sampler from the MCMCpack

package (Martin et al., 2011) and model 2 using the consilium package.
For both models I run two chains, with 11,000 (model 1) and 86,000 (model
2) iterations. The first 1,000 (model 1) and 6,000 iterations are discarded
as burn-in. The Gelman and Rubin (1992) convergence diagnostic supports
my choice of run length and visual inspection of the chains show no signs
of non-convergence.
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