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A Regions in post-colonial Africa

To collect a full panel on the borders and capitals of first-level administrative regions in
Africa since countries’ independence, I draw on the qualitative accounts of unit changes
from the statoids.com database and encode each administrative unit change geo-
graphically. I therefore rely primarily on maps from the GAUL database, (FAO 2014).
Although this data is contemporary (reaching back until 1990), it allows me to trace back
all unit-splits – this type of unit-change constitutes the vast majority of cases – by sim-
ply merging the units observed after the split which results in the original unit. Where
units have been merged or the administrative map of a country has been redrawn com-
pletely, I make use of more than 100 digitized maps, mostly from the CIA Base Map
series as well as other GIS data, such as the GADM database. Each region-period is as-
sociated with its capital, as listed in most cases by statoids.com. Missing capitals are
searched on the maps and in secondary sources. The capitals are then geocoded using
the geonames.org gazetteer. Changes in the location of capitals within the same bound-
aries of a region naturally result in new region-periods. Each region-period is associated
with a start and end-year. To ensure consistent and temporally non-overlapping coding,
region-periods that start after January 1st are coded as starting in the next year. The final
data set covers 1763 unique region-periods, covering each African country from indepen-
dence to 2016. The evolution of the number of regions in the data set is traced in Figure
A1. Figure A2 plots the data for the year 2016.

(a) (b)

Figure A1: Description of newly collected data on first-level administrative units in
Africa.
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(a) First-level administrative units in Africa 2016 (b) Number of admin-1 units by country and year

Figure A2: Overview over first-level administrative unit data.
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B Road data from the Michelin map corpus

This section provides the details on how I digize the Michelin map corpus, building on
the procedure that was developed by Müller-Crepon, Hunziker and Cederman (2021).
Compared to Müller-Crepon, Hunziker and Cederman (2021), data collection has been
extended for the purpose of this article from the initial 6 to 23 road map cross-sections.
Subsection B.1 describes the map corpus, Subsection B.2 summarizes the digitization pro-
cedure, Subsection B.3 describes the construction of travel speeds, and Subsection B.4
discusses the construction of the final road network data.

B.1 The Michelin map corpus

The source for road network data for post-colonial Africa is the African Michelin map
corpus, a collection of large topographical maps at a resolution of 1:4,000,000. Each map
shows detailed information on road infrastructure with a consistent cartographic sym-
bology for about a third of the continent (see Figure A3). While coverage before the 1960s
is sporadic, Michelin has covered the entire African continent at intervals of approxi-
mately 5 years beginning in 1964 (see Figure A4). This makes the Michelin corpus an
unparalleled source for time-variant road-network information. I digitize 34 map sheets
published between 1964 and 2017, which combine into 23 maps of the entire continent.

Figure A3: Spatial coverage of Michelin Map types.

Note that Madagascar is not covered in 1966. Green: North-West. Blue: North-East. Red: Center-South.
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Figure A4: Temporal coverage of Michelin Maps

B.2 Map digitization

I use the Fully Convolutional Neural Network (FCNN) and post-processing algorithms
developed by Müller-Crepon, Hunziker and Cederman (2021) to transform the scanned
and georeferenced Michelin Maps into spatial road network data. In short, the FCNN is
based on the methodology developed by Shelhamer, Long and Darrell (2017) and yields
pixel-level predictions of road-types for the map scans. These predictions are fed into a
four-step algorithm to transform pixels into vector data by (1) thinning lines made up of
pixels, (2) tracing lines to transform them into vectors, (3) filling small, unlikely gaps in
the resulting network of lines, and (4) smoothing road-type information to reduce noise
from small missclassifications. Müller-Crepon, Hunziker and Cederman (2021) demon-
strate that the procedure yields an excellent digitization of road networks: over 98.8% of
all extracted roads are present in the Michelin maps, and 98.6% of all Michelin roads are
extracted. Taking road categories into account, the respective percentages are somewhat
lower, but still 88.8 and 96.4, respectively. Ordinal missclassification errors are however
small, on average (among errors) amounting to 1.38 on the ordinal 6-point road-type
scale. These errors will thus only marginally affect travel time estimates and will do so
in a presumably random manner.

B.3 Retrieving travel speeds

I follow Müller-Crepon, Hunziker and Cederman (2021) and use their travel speeds for
each of the six main road categories in the Michelin data18 from the Michelin website
(www.viamichelin.com. For each road category, they collect data on a random se-
lection of trips on roads of that category, and record the travel speed returned by the
Michelin querying tool. Traveling speed on foot-paths is defined as 6 km (about 4 miles)
per hour. This corresponds to walking-time estimates on www.maps.google.com (see

18The 16 types of roads in the Michelin data are collapsed into the 6 main categories.
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also Jedwab and Storeygard 2018).

B.4 Network construction

I transform the road data from the Michelin map corpus into planar graphs that uni-
formly cover geographic space. I do so in a step-wise manner, following again the proce-
dure developed by Müller-Crepon, Hunziker and Cederman (2021):

1. Foot-path network: The basis of the planar graphs consist of network of 8-connected
‘foot-paths.’ The graph’s nodes are the centroids of a raster of population estimates
from the HYDE 3.1 data (Goldewijk, Beusen and Janssen 2010) for 1960 at a reso-
lution of .04167 × .04167 decimal degrees (or ca. 5 km at the equator). Each node
is connected with a foot-path to its 8 nearest neighbors using queen moves. This
setup allows for much more flexible applications than travel-query APIs such as
Google Maps which do not process queries from/to points that are too distant from
the next road.

2. Adding roads: I then overlay the basic foot-path network with the spatial lines
extracted from each map corpus after aligning them all to the last and most exten-
sive network observed in 2017.19 I create additional nodes wherever two roads or
foot-paths cross, thus retaining the planar graph property. These additional nodes’
purpose is to serve as intersections. They are not associated with any population
data. Hence, travel between two populated nodes will typically start by taking a
foot-path to a road, and end by traveling from a road to the target node on another
foot-path. Note that the occasional imperfect spatial alignment of road networks
observed in consecutive Michelin maps causes variation in the length of these first
or last foot-paths of some trips. The resulting variation in travel travel times is
however deemed negligible and, importantly, random.

3. Calculating edge weights: Following Müller-Crepon, Hunziker and Cederman
(2021), each edge on the network is associated with an edge weight which is equiv-
alent to the estimated time it takes to traverse the edge.

Müller-Crepon, Hunziker and Cederman (2021) demonstrate that the road networks
thus constructed yield very similar travel time estimates as the Google Maps API.

19This alignment is necessary to preclude small ‘jumps’ in the location of roads, caused by the digitization
procedure, to introduce random noise into the measure and downwards bias the estimation results. The
alignment of roads is computed via ArcGIS’s align feature function.
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C Travel times to capitals as proxy for state reach: Data descrip-
tion and validation

C.1 Validation

I use data from the Afrobarometer (2018) surveys to validate travel times to national and
regional capitals as proxies for subnational state capacity. In particular, the surveys con-
tain information provided by the enumerators about the presence of state organs and
services in each enumeration area (EA). The respective items range from the local provi-
sion of electricity, water and sewage, over the presence of a school, clinic, or post office, to
the presence of police and military forces. All variables are coded as dummies. I combine
them into a joint index of local state capacity by taking their first principal component,
which explains 36.2 percent of the variation in its constitutive parts. Furthermore, I com-
pute for each EA the time to its regional and national capital at the time of the survey.20

Figure A5 plots the association between EA’s travel times to their regional and na-
tional capital and each indicator, demeaned by country. All indicators correlate with
travel times to capitals, which I take as a first indication of their quality as proxies for
local state capacity.

Table A1 goes a step further and compares the association between travel times and
the local state capacity index with the correlation between mere geodesic distances to
capitals. The results show that both distance measures correlate with the index. However,
once both are included in Models 3 and 6, the coefficient of geodesic distances becomes
much smaller and looses significance in Model 3. I take this as evidence that travel times
are superior to simply taking geodesic distances. After all, state agents typically rely on
earth bound vehicles and do not fly as crows.

C.2 Description

Three main factors influence the difficulties of a state to reach out to its population: the lo-
cation of administrative borders and capitals, and the structure of the transportation net-
work that links the state to its subjects, and the geographic distribution of its population.
By changing their geography along each of these three dimensions, states can increase
their reach and improve their capacity to govern. First, states can optimize the location
of its headquarters, open new branches of state agencies, and shift the boundaries of
administrative units (Fesler 1949). Since independence, the Côte d’Ivoire, Nigeria, and
Tanzania have relocated their national capitals21 and most have increased the number
of administrative units (Figure A6a, see also Grossman and Lewis 2014; Grossman, Pier-
skalla and Dean 2017).22 Similarly, the independence of Eritrea and South Sudan has

20To do so, I use the geocodes provided by Ben Yishay, Ariel Rotberg et al. (2017).
21Côte d’Ivoire (Abidjan to Yamoussoukro in 1983), Nigeria (Lagos to Abuja in 1991), and Tanzania (Dar

es Salaam to Dodoma in 1974). The change in Tanzania was less de facto than de jure. Until today, all
ministries are located in Dar es Salaam.

22Note the case of Uganda being the outlier with the steepest increase in Figure A6a.
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Figure A5: Correlation between travel times to national and regional capitals and state
capacity index

The state capacity index is constructed from enumeration area level data in the Afrobarometer survey. The
plot shows values of the index that are demeaned by country × survey round and averaged within 40
quantiles of the travel time to regional and national capitals.
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Table A1: Logged distances to national and regional capitals correlate with state capacity index

State capacity index
(1) (2) (3) (4) (5) (6)

Nat. capital: geodesic −0.295∗∗∗ −0.026
(0.037) (0.056)

Nat. capital: time −0.635∗∗∗ −0.588∗∗∗

(0.080) (0.117)

Reg. capital: geodesic −0.414∗∗∗ −0.199∗∗∗

(0.029) (0.043)

Reg. capital: time −1.006∗∗∗ −0.608∗∗∗

(0.059) (0.080)

Unit: EA EA EA EA EA EA
Survey FE: yes yes yes yes yes yes
Mean DV: -0.0042 -0.0042 -0.0042 -0.0042 -0.0042 -0.0042
Std.-dev. DV: 2 2 2 2 2 2
Observations 11,302 11,302 11,302 11,302 11,302 11,302
Adjusted R2 0.311 0.317 0.317 0.348 0.351 0.356

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

reduced the distance between their population and the capital.23

Second, states can improve transport networks to access certain areas. Although the
main backbones of African road networks are of colonial origin, the networks’ extent has
increased by about 50 percent since independence (Figure A6b). While this figure is not
necessarily impressive (Herbst 2000), it has shortened the distance between states and
their citizens.

Lastly, states can incentivize their population to concentrate and urbanize, thereby in-
creasing governments’ economies of scale of reaching out to a particular populated place
(e.g. Scott 2017). While in 1960 only about 20% of Africans have lived in cities, the pro-
portion of urban residents in 2016 has risen above 40% (Figure A6c). Among other social
changes brought about by this development, rural-urban migrants experience a steep in-
crease in state reach since administrations and state institutions are typically based in
cities. Equivalent state-led population concentration also occurred in the countryside. In
particular villagization programs, such as the resettlement of millions of Tanzanians into
so-called ‘Ujamaa-Villages’ in the 1970s (e.g. Miguel 2004), have made rural populations
more accessible to the state.

Together, administrative unit changes, road building, and population concentration
since the 1960s have decreased the distance between the state’s headquarters and citizens,
thereby extending states’ reach over the continent. As seen in Figure A7, the average
travel time between African national capitals and citizens has decreased from 11.7 hours
in 1966 to 9.3 hours in 2016, a change of about 20.3 percent. Moving to the level of regional
administrations where changes in the design of units are more common, we observe a

23Their independence of course also affected other dimensions of the distance between the state and
citizens, in particular the ethnic distance.
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(a) Number of administrative re-
gions

(b) Quality-weighted road mileage
in Africa

(c) Urban population

Figure A6: Drivers of expanding state reach in Africa 1960–2015.

Sources: (a) own data; (b) Michelin road map corpus; (c) World Development Indicators (World Bank 2018).

steeper trend. While citizens in 1966 had an average travel time of 5.1 hours to their
regional capital, they had to travel ‘only’ 3.5 hours in 2016 – a decrease of 32.2 percent.

As expected from the large diversity of countries and their geographies, these continent-
wide aggregates mask substantial heterogeneity across and within states. Figure A9 vi-
sualizes this variation and plots population-weighted densities of travel times to national
capitals for five countries in 2016 and their change since 1966. From a cross-sectional per-
spective, Subfigure A9a shows how states differ in their reach towards their population.
Capitals of countries with “difficult geographies” (Herbst 2000) and poor infrastructure
such as the DR Congo are farthest away from their median inhabitant (34.3 hours). In
the mid-range, we find Mali where one travels 7.2 hours from Bamako to the median
citizen. Lastly, capitals of small countries such as Rwanda naturally are closest to their
median citizen (2.6 hours). Similar variation marks changes in the accessibility of the
population since 1966 (Subfigure A9b). Here, the populations of states that seceded (Er-
itrea, Namibia, and South Sudan) and of those that relocated their capital (Nigeria, Côte
d’Ivoire, Tanzania) profited the most. Other states, such as the DR Congo, significantly
improved their reach in absolute term. However, in relative terms, these improvements
look less impressive.

Even more striking than the variation across countries is the variation observed within
countries. The density plots in Subfigure A9a visualize high levels of inequality in state
reach in some countries. In particular states that Herbst (2000) associates with ‘difficult
geographies’24 exhibit large variation in travel times – to the point where the distribution
of travel times in the DR Congo is heavier in its right than left tail. Similarly, new roads,
borders, and capitals do not have a geographically uniform effect. For example, relocat-
ing the Nigerian capital from Lagos to Abuja in 1991 increased state reach towards the
northern areas of the country, while decreasing it around Lagos in the southwest (Figure

24Angola, DR Congo, Ethiopia, Mozambique, Namibia, Nigeria, Senegal, Somalia, Sudan (borders of
2000), Tanzania. Cf. Herbst (2000, p. 161).
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A8).

(a) Average time to national capital (b) Average time to regional capital

Figure A7: Decreasing travel times to regional and national capitals in Africa 1960–2015.

All averages are population weighted. Sources: Own calculations based on HYDE population estimates
(Goldewijk, Beusen and Janssen 2010), Michelin-based road networks, Cshapes (Weidmann and Gleditsch
2010), and own data on administrative regions and their capitals.

(a) Change in travel time to the national capital (b) ... to regional capitals

Figure A8: Change of travel times to capitals in Nigeria 1966–2016.

Note: Brighter colors indicate a decrease of travel times, thus an improvement in state reach. Sources: See
Figure A7.
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(a) Travel time to national capital 2016 (b) Change in travel time to national capital
1966–2016

Figure A9: Population-weighted distribution of state reach in Africa in 2016 and devel-
opment since 1966.

Note: Brighter colors identify better outcomes. To calculate population-weighted distributions for single
countries, I fix the spatial distribution of the population and the borders of countries to their status in 2016.
For areas that became independent after 1966 no change can be calculated. Sources: Own calculations based
on 2016 WorldPop population estimates, Michelin-based road networks, and country-borders from 2016
from Cshapes (Weidmann and Gleditsch 2010).
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D Data and summary statistics

D.1 Units of the nightlight analysis: Voronoi cells

In order to divide an arbitrary geographical space into units of roughly equal size and
high levels of compactness (i.e. similarity to a circle),25 this section introduces a spatial
clustering algorithm that is combines the advantages of the k-means clustering algorithm
(Lloyd 1982) that requires a finite sample of points to cluster, and the Voronoi tesselation
that is used to transform the centers of the k-means clusters into continuous areas. The
algorithm proceeds as follows:

1. Draw a large number of points P from the area of polygon t in set T . T is defined
in the present application as the constitutive parts of all administrative regions ob-
served between 1992 and 2013. These polygons are computed as cutting the ter-
ritory of each country with all regional borders existing between 1992 and 2013.
The resulting polygons are strictly nested within all regional boundaries. Points
are sampled from these polygons on the basis of a raster with a resolution of ≈1km
(.01 decimal degrees).

2. Conduct a k-means clustering (Lloyd 1982) of points P into N clusters, with N =

round(AT /Atarget), thus N being the number of units to create so that the average
area of each unit comes closest to the target size of units. For the main analysis, the
target size is 400 km2, further variations are conducted in the robustness check pre-
sented below in Subsection E.7. For best results, I initialize the k-means algorithm
with a random spatial sample of N points from P .

3. Take the centroids of the clusters thus computed and conduct a Voronoi tesselation
around them.

4. Crop the resulting Voronoi polygons with the target polygon T .

We can now compare the Voronoi cells with the more commonly used quadratic grid
cells. Across various target sizes, the Voronoi cells resulting from the relatively simple
(and fast) algorithm significantly improve over the quadratic grid cells, both in terms
of their distribution around the target size and in terms of their level of compactness.
First, Figure A11 shows that many regular quadratic grid cells are smaller than the target
size – this occurs wherever a cell is cut by a regional border or the coast line. Thus, the
heterogeneity in units’ sizes is correlated with their closeness to the coast and border, a
feature which might introduce slight bias into an analysis. Second, Figure A12 proves
that Voronoi cells are much more compact than grid cells, which – as quadratic shapes
and in particular where cut by borders – are shaped in a more irregular and less “circle-
like” manner.

25The shape that can continuously cover an area with the highest level of compactness is the hexagon.
However, where the honeycomb reaches a border, hexagonal cells must be cut or reshaped, thus deviating
from the requirements of uniform size and compactness.
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(a) Regular grid cells (b) Voronoi cells

Figure A10: Regular grid and Voronoi cells for Nigeria with regional borders observed in
1992–2013.

Figure A11: Size of Voronoi and regular grid cells for varying target sizes.

Vertical dashed line indicates the target size of units. Cells are constructed for all countries in mainland
Africa, using borders from the year 2000.
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Figure A12: Compactness of Voronoi and regular grid cells for varying target sizes.

The compactness of each unit is calculated according to Polsby and Popper (1991, p. 349) as: (4πAi)/P
2
i ,

where Ai is the size of unit i and Pi its perimeter. Cells are constructed for Nigeria, using regional borders
observed between 1992 and 2013. Note that densities above 25 are censored to improve the readability of the
graphs.

A15



D.2 Summary statistics

Table A2: Summary statistics: DHS education data (Personal Recode)

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Primary educ. (0/100) 2091736 70.43 45.64 0 0 100 100
Female dummy 2091736 0.53 0.50 0 0 1 1
Age 2091736 28.12 9.84 15 20 35 57
Time to nat. capital (log) 2091736 1.93 0.80 0.00 1.40 2.45 4.50
Time to reg. capital (log) 2091736 1.19 0.66 0.00 0.71 1.61 4.35

Table A3: Summary statistics: DHS infant mortality data (Children Recode)

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Infant mort. (0/100) 2905949 9.66 29.54 0 0 0 100
Female dummy 2905949 0.45 0.50 0 0 1 1
Birth order 2905949 3.31 2.25 1 1 5 18
Twin dummy 2905949 0.03 0.18 0 0 0 1
Mother’s age at birth 2895564 24.61 6.41 10.00 20.00 29.00 49.00
Time to nat. capital (log) 2905949 1.95 0.72 0.00 1.49 2.42 4.41
Time to reg. capital (log) 2905949 1.22 0.62 0.00 0.78 1.61 4.35

Table A4: Summary statistics: Nightlight data (Voronoi cells, 400 km2)

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Light/capita (log) 1507013 −6.51 1.28 −6.91 −6.91 −6.91 10.12
Time to nat. capital (log) 1507013 2.92 0.77 0.26 2.37 3.52 4.97
Time to reg. capital (log) 1507013 2.30 0.83 0.26 1.68 2.82 4.94
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Table A5: Samples across data sources, DHS rounds and nightlight observations

Country Adults Children Nightlight-cells

Algeria 1992–2013
Angola 7.1 6.1, 7.1 1992–2013
Benin 4.1, 6.1 4.1, 6.1 1992–2013

Botswana 1992–2013
Burkina Faso 2.1, 3.1, 4.1, 6.1 2.1, 3.1, 4.1, 6.1 1992–2013

Burundi 6.1, 6.2, 7.1 6.1, 6.2, 7.1 1992–2013
Cameroon 2.1, 4.1, 6.1 2.1, 4.1, 6.1 1992–2013

Central African Republic 3.1 3.1 1992–2013
Chad 7.1 7.1 1992–2013

Congo - Brazzaville 1992–2013
Congo - Kinshasa 5.1, 6.1 5.1, 6.1 1992–2013

Côte d’Ivoire 3.1, 3.2, 6.1 3.1, 3.2, 6.1 1992–2013
Djibouti 1992–2013

Egypt
2.1, 3.1, 4.1, 4.2,
5.1, 5.2

2.1, 3.1, 4.1, 4.2,
5.1, 5.2 1992–2013

Equatorial Guinea 1992–2013
Eritrea 1993–2013

Eswatini 5.1 5.1 1992–2013
Ethiopia 4.1, 5.1, 6.1, 7.1 4.1, 5.1, 6.1, 7.1 1992–2013
Gabon 6.1 6.1 1992–2013

Gambia 1992–2013

Ghana
3.1, 4.1, 4.2, 5.2,
7.1

3.1, 4.1, 4.2, 5.2,
7.1 1992–2013

Guinea 4.1, 5.1, 6.1 4.1, 5.1, 6.1 1992–2013
Guinea-Bissau 1992–2013

Kenya 4.1, 5.1, 7.1 4.1, 5.1, 7.1 1992–2013
Lesotho 4.1, 6.1, 7.1 4.1, 6.1, 7.1 1992–2013

Liberia 5.1, 6.2
0.1, 5.1, 5.2, 6.1,
6.2 1992–2013

Libya 1992–2013

Malawi 4.1, 4.2, 6.1, 7.2
4.1, 4.2, 6.1, 6.2,
7.2 1992–2013

Mali 3.1, 4.1, 5.1, 6.2 3.1, 4.1, 5.1, 6.2 1992–2013
Mauritania 1992–2013

Morocco 4.1 4.1 1992–2013
Mozambique 5.1, 6.1, 7.1 6.1, 7.1 1992–2013

Namibia 4.1, 5.1, 6.1 4.1, 5.1, 6.1 1992–2013
Niger 2.1, 3.1 2.1, 3.1 1992–2013

Nigeria
2.1, 4.2, 5.1, 6.1,
6.2, 7.1

2.1, 4.2, 5.1, 6.1,
6.2 1992–2013

Rwanda 5.1, 6.1, 7.1 5.1, 5.2, 6.1, 7.1 1992–2013

Senegal
2.1, 4.2, 6.1, 6.2,
7.2, 7.3

2.1, 3.1, 4.2, 5.2,
6.1, 6.2, 7.2, 7.3 1992–2013

Sierra Leone 5.1, 6.1 5.1, 6.1 1992–2013
Somalia 1992–2013

South Africa 1992–2013
South Sudan 2011–2013

Sudan 1992–2013

Tanzania
4.1, 4.2, 5.1, 6.1,
6.2, 7.2

4.1, 5.1, 6.1, 6.2,
7.2 1992–2013

Togo 3.1, 6.1 0.1, 3.1, 6.1 1992–2013
Tunisia 1992–2013

Uganda
4.1, 5.1, 6.1, 6.2,
7.2

4.1, 5.1, 5.2, 6.1,
7.2 1992–2013

Zambia 5.1, 6.1 5.1, 6.1 1992–2013
Zimbabwe 4.1, 5.1, 6.1, 7.1 4.1, 5.1, 6.1, 7.1 1992–2013

Note that the divergence between the samples used from the DHS stems from the fact that not all surveys
enlist the level of education of household members or come with the Child Recode file needed to derive
infant mortality rates.
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(a) Primary education rate in sample (b) Infant mortality in sample

Figure A13: Primary education and infant mortality in the DHS Data, aggregated to .25 raster cells.
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E Robustness checks

This section describes additional analyses that probe the robustness of the analysis of the
effects of changes in the distance to national and regional capitals on local development.
Figure A14 provides an overview over the various robustness checks. All additional
models are described in detail below. Where Figure A14 captures the main insights from
an additional analysis, I do not report detailed results as a table. However, the reader
may note that all results will be made available as tables with the replication data.

Figure A14: Panel analysis: Summary of robustness checks.

E.1 Re-locations of national capitals vs. road-network development:

One main concern of the analysis of changes in travel times to national capitals is that
we observe only very few relocations of capitals that drive the results. In the sample of
DHS respondents, capital re-locations have occurred in Côte d’Ivoire (Abidjan to Yamas-
soukro), Nigeria (Lagos to Abuja), and Tanzania (the de jure move from Dar es Salaam
to Dodoma). The data on nightlights include the secessionist cases of Eritrea and South
Sudan. In order to gauge whether the baseline estiamtes are due to these relocations and
secessions or whether they are driven by changes in the road networks that link national
capitals to their citizens, Table A6 presents the results of estimating the baseline panel
specification on the split samples. For primary education rates we observe a larger ef-
fect in the sample of DHS respondents from countries with capital relocations, than from
those without. However, also in the latter case the estimate is substantive and statisti-
cally significant, meaning that improved road connections to national capitals come with
increases in local primary education rates. In the case of infant mortality rates, the results
show them to be driven by capital relocations rather than road network improvements.
Lastly and consistent with the baseline results, the results show only insignificant effects
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of either better road connections or new capitals on nightlight emissions. Note however,
that the secessionist cases of Eritrea and South Sudan are each only observed one year
pre-/post-treatment. We would hardly expect the new capitals to have such an immedi-
ate and sudden effect on nightlight emissions, in particular since both cases where riven
by civil war before (and after, in the case of South Sudan) their secession.

Table A6: Changes in time to national/regional capital and local development: Cases where national capitals
changed

Primary educ. (0/100) Infant mort. (0/100) Light/capita (log)

(1) (2) (3) (4) (5) (6)

Time to nat. capital (log) −1.807∗∗∗ −3.159∗∗∗ 0.061 1.419∗∗∗ −0.044 −0.054
(0.647) (0.491) (0.299) (0.309) (0.033) (0.036)

Time to reg. capital (log) −1.483∗∗∗ −0.743 0.164 0.906∗∗ −0.039∗ −0.039∗

(0.356) (0.595) (0.153) (0.453) (0.020) (0.023)

β1 + β2: −3.29∗∗∗ −3.902∗∗∗ 0.225 2.325∗∗∗ −0.083∗∗ −0.094∗∗

(0.669) (0.754) (0.302) (0.563) (0.033) (0.038)

Cap.-re-loc. cases: drop only drop only drop only
Point FE: yes yes yes yes yes yes
Country-year FE: yes yes yes yes yes yes
Survey FE: yes yes yes yes – –
Controls: yes yes yes yes – –
Mean DV: 70 72 9.5 10 -6.5 -6.8
Observations 1,757,320 334,416 2,478,438 417,126 1,467,105 39,908
Adjusted R2 0.454 0.438 0.051 0.049 0.838 0.395

Notes: OLS linear models. Individuals are the units of the education and infant mortality analyses, Voronoi cells
those of the nightlight analyses. Control variables for models with primary education as the dependent variable
consist of responents’ age and age squared, as well as a female dummy. Where infant mortality is the dependent
variable, models include an infant’s mother’s age at birth and its square, the birthorder and its square, as well as
a female and twin dummy. Standard errors clustered on the point and country-year levels. Significance codes:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

E.2 Migration

Over their lifetime, DHS respondents might have moved towards or away from changing
regional (and national) capitals in a manner correlated with their level of education and
wealth. Such migration patterns might bias the results. If that was the case, we should
see differential effects of travel times among migrants and non-migrants. In particular, if
migrants were driving the results, no effect of changes in the travel time towards capitals
should be visible among non-migrants. Table A7 demonstrates that this is not the case.
The effect of travel times on education rates is significantly larger for migrants than for
non-migrants. In the case of infant mortality rates, the difference between the two sample
is mostly insignificant, except for Model (4), which suggest that longer travel times to
regional capitals have a more negative effect on infant mortality rates among migrant-
than non-migrant mothers. Their absolute effect is however insignificantly different from
zero in both cases (see also the lead-analysis below, Table A9).
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Table A7: Changes in time to national/regional capital and local development: Migrants and non-migrants

Primary educ. (0/100) Infant mort. (0/100)

(1) (2) (3) (4)

Time to nat. capital (log) −2.618∗∗∗ −2.540∗∗∗ 0.776∗∗∗ 0.607∗∗

(0.607) (0.600) (0.291) (0.284)

Time to reg. capital (log) −1.569∗∗∗ −1.511∗∗∗ 0.050 0.043
(0.416) (0.413) (0.196) (0.203)

Migrant −4.031∗∗∗ −13.190∗∗∗ 0.638∗∗∗ 1.861∗∗∗

(0.865) (2.514) (0.240) (0.359)

Migrant×Time to nat. capital (log) 0.699∗∗ 0.634∗ 0.220∗ 0.200
(0.347) (0.341) (0.130) (0.134)

Migrant×Time to reg. capital (log) 1.495∗∗∗ 1.304∗∗∗ −0.151 −0.166
(0.285) (0.287) (0.151) (0.152)

Non-migrants: β1 + β2: −4.187∗∗∗ −4.051∗∗∗ 0.826∗∗ 0.65∗∗

(0.711) (0.703) (0.321) (0.317)

Migrant × controls no yes no yes
Point FE: yes yes yes yes
Country-year FE: yes yes yes yes
Survey FE: yes yes yes yes
Controls: yes yes yes yes
Mean DV: 66 66 11 11
Observations 650,045 650,045 1,532,319 1,542,596
Adjusted R2 0.483 0.483 0.052 0.034

Notes: OLS linear models. Individuals are the units of the education and infant mortality analyses, Voronoi cells
those of the nightlight analyses. Control variables for models with primary education as the dependent variable
consist of responents’ age and age squared, as well as a female dummy. Where infant mortality is the dependent
variable, models include an infant’s mother’s age at birth and its square, the birthorder and its square, as well as
a female and twin dummy. Standard errors clustered on the point and country-year levels. Significance codes:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

E.3 Testing for pre-trends and reverse causality

As highlighted in the main text, one important threat to inference in the panel analysis
is that the baseline estimates may be biased by differential pre-trends in local develop-
ment that reversely cause the extension of state reach. I here present the full details of
the empirical test that accounts for such trends. In particular, I re-estimate the baseline
specification, adding measures of future travel times to capitals in t + x. These leads
of the main treatments capture differential changes in local development that occur be-
fore changes in travel times affect localities. More specifically, for the analysis of local
primary education rates, which are affected by state reach during age 6 to 11 of respon-
dents, I estimate the effect of the average travel time to capitals during age 6-11, and add
five separate controls for the travel times to capitals at age 12 to 16. For infant mortality
rates, which are affected only in the year of an infants’ birth, I add the time to capitals
at age 2 to 6. Similarly, for local nightlight emissions, I add the respective variables for
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Figure A15: All leads, based on Table A8.

t+ 1...5.

Yi,p,c,t,s =αp + λc,t + µs + β1 time to nat. cap.p,t + β2 time to reg. cap.p,t + δXi+

5∑
l=1

γl time to nat. cap.p,t+l +
5∑
l=1

ζl time to reg. cap.p,t+l + εi,p,c,t,
(4)

Consistently significant estimates for gammal and zetal or their sum that point in the
same direction as the main result would reject the null-hypothesis of an absence of pre-
trends. Table A8 and Figure A15 show the results of these demanding26 specifications.
The first thing to note is that the main estimates of the effects of travel times to capitals
are only marginally and insignificantly different from those obtained in the baseline spec-
ification. This is a first sign that these are not affected by differential pre-trends. Second
however, and as Table A8 shows, the sum of leads is negative and marginally significant
in the estimation of the effect of travel times to national capitals on education rates. This
suggests that education rates increase before capitals move closer to a location through
roads or relocation. The leads in the infant mortality analysis are in sum close to zero and
show few signs of divergent pre-trends. The leads in the nightlight analysis have very
heterogeneous estimates, but are, for the most part statistically insignificant and in sum
not different from zero. Both patterns suggest that the main estimate is not systematically
affected by differential pre-trends.

One reason for the negative and marginally significant lead effect of travel times to na-
tional capitals on primary education rates consists in biased migration patterns by which

26The specifications are demanding because of the high correlations between the actual treatments and
its leads.
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Table A8: Changes in time to national/regional capital and local development: Controlling for leads

Primary educ. (0/100) Infant mort. (0/100) Light/capita (log)
(1) (2) (3)

Time to nat. capital (log) −2.690∗∗∗ 0.785∗ −0.035
(0.485) (0.409) (0.035)

Time to reg. capital (log) −1.501∗∗∗ 0.295 −0.060∗

(0.425) (0.241) (0.031)

β1 + β2: −4.191∗∗∗ 1.08∗∗ −0.095∗∗∗

(0.611) (0.42) (0.035)

Sum of leads (nat. cap.): −0.78∗ 0.307 −0.008
(0.44) (0.448) (0.036)

Sum of leads (reg cap.): 0.427 −0.085 0.032
(0.357) (0.26) (0.03)

Time to cap.t+1,...,t+5: yes yes yes
Point FE: yes yes yes
Country-year FE: yes yes yes
Survey FE: yes yes –
Controls: yes yes –
Mean DV: 70 9.8 -6.5
Observations 2,083,138 2,781,293 1,369,922
Adjusted R2 0.452 0.050 0.840

Notes: OLS linear models. Individuals are the units of the education and infant mortality analyses,
Voronoi cells those of the nightlight analyses. Control variables for models with primary education as
the dependent variable consist of responents’ age and age squared, as well as a female dummy. Where
infant mortality is the dependent variable, models include an infant’s mother’s age at birth and its
square, the birthorder and its square, as well as a female and twin dummy. Standard errors clustered
on the point and country-year levels. Significance codes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

individuals select in and out of treatment after having gone to school. These patterns can
be picked up by the lead effects because I attribute travel times on the basis of the current
location of DHS respondents. In order to test for this possibility, I re-estimate the respec-
tive specification, now interacting the treatment variables and their leads with a dummy
for migrants.27 The respective variable is only available for the reduced sample of DHS
respondents that have gone through the entire interview and is based on whether they
have ‘always’ lived in their current place of residence.28

Reassuringly, the results in Table A9 show that the lead effects are only negative for
the migrants in the sample, but positive for the non-migrants. Both sums of leads are
statistically insignificant, presumable due to the smaller sample size. Furthermore, the
main effect associated with travel times to national and regional capitals is much larger
in the non-migrant sample than in the migrant sample, which is consistent with the fact
that non-migrants’ primary education is affected by local state reach to greater extent
than that of migrants. The results for the respective analysis of the mortality of infants
of non-migrant mothers mirror those described above, albeit with the caveat that the

27The baseline results for this migrant × travel times interaction without the leads is reported below in
Subsection E.2.

28Note that the respective question does not allow to distinguish individuals who have moved within
the same neighborhood from those who have migrated from one place to another. The migrant dummy
therefore overestimates migration.
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children of migrant mothers are slightly – but only weakly significantly – more likely to
survive close to capitals than those of non-migrant mothers.

Table A9: Changes in time to national/regional capital and local development: Controlling for leads, mi-
grants and non-migrants

Primary educ. (0/100) Infant mort. (0/100)
(1) (2)

Migrant −3.798∗∗∗ 0.669
(0.837) (0.520)

Non-migrants: Time to nat. capital (log) −1.544∗∗ 0.189
(0.612) (0.356)

Non-migrants: Time to reg. capital (log) −4.092∗∗∗ 0.627∗∗

(0.880) (0.244)

Migrants: Time to nat. capital (log) −1.662∗ −0.041
(0.900) (0.865)

Migrants: Time to reg. capital (log) −0.152 −0.023
(0.871) (0.548)

Non-migrants: β1 + β2: −5.341∗∗∗ 0.858
(1.012) (0.564)

Non-migrant leads:
Sum of leads (nat. cap.): 0.493 0.345

(0.707) (0.568)
Sum of leads (reg. cap.): −0.294 −0.146

(0.525) (0.381)
Migrant leads:
Sum of leads (nat. cap.): −0.965 1.315

(0.763) (0.888)
Sum of leads (reg. cap.): −0.087 −0.131

(0.818) (0.552)

Time to cap.t+1,...,t+5: yes yes
Point FE: yes yes
Country-year FE: yes yes
Survey FE: yes yes
Controls: yes yes
Mean DV: 66 11
Observations 648,126 1,505,657
Adjusted R2 0.483 0.052

Notes: OLS linear models. Individuals are the units of the education and infant mortality analyses,
Voronoi cells those of the nightlight analyses. Control variables for models with primary education as
the dependent variable consist of responents’ age and age squared, as well as a female dummy. Where
infant mortality is the dependent variable, models include an infant’s mother’s age at birth and its
square, the birthorder and its square, as well as a female and twin dummy. Standard errors clustered
on the point and country-year levels. Significance codes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

E.4 Potentially endogenous road building

The main results might also be driven by roads that are built at the local level around
specific towns and villages. Because such road building inherently lowers the distance to
all capitals, it might lead to spurious results if it was caused by increasing levels of de-
velopment in these areas. To exclude such omitted variable bias, I employ two strategies.
First, I control for the mileage of roads in the geographic neighborhood of respondents
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Figure A16: Estimating the baseline models with constant road networks from varying
years

(20km) / in a Voronoi cell (see Figure A14). This is similar to the strategy of Donaldson
and Hornbeck (2016) in that the variation left stems from changes in the road network
outside a particular point’s neighborhood. The second and more stringent test is to re-
estimate all models with non-time variant road networks. In such a setting, all variation
within points stems solely from changes in the administrative design of a country – that
is the location of boundaries and capitals. I do so with each Michelin network that I
observe. The results, plotted in Figure A16, are insensitive towards these changes – it
appears that the magnitude of baseline results are unaffected by purging the model of
temporal variance induced through changes in road networks. If at all, the absolute size
of the estimates slightly increases.

E.5 Omitted variables and spurious correlations

Controlling for spuriously correlated economic market access Travel times to regional
and national capitals might not only proxy for transaction costs between governments
and citizens, but more broadly transaction costs between the participants of economic
markets. Variation in economic market access might lead to spurious results, since it re-
sults in higher levels of economic activity and development (e.g. Donaldson 2018; Don-
aldson and Hornbeck 2016; Eaton and Kortum 2002; Jedwab and Moradi 2016; Jedwab
and Storeygard 2018). I thus follow the economic literature on the effect of market ac-
cess on economic growth and calculate, for each year, the road-network based access to
national and international markets. Following Donaldson (2018) and Eaton and Kortum
(2002), I define the measure as:
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MAp,t =
M∑
m=1

c−θp,m,t ∗ Pm,t,

where the market access of point p in year t is the sum of the market potential P of a
market m in year t multiplied by the travel time between p and m calculated on the road
network and discounted by a trade elasticity θ. Because Donaldson (2018) and Eaton and
Kortum (2002) estimate different trade elasticity measures (θ = 8.28 and 3.2 respectively),
I construct the market access measure for both parameters. Because the effects of access
to national and international markets might differ, I calculate MA separately for markets
inside and outside of p’s country. I define markets as the 1530 biggest cities and towns
in Africa. These are all cities that ever reached more then 50’000 inhabitants since 195029.
Each city’s market potential P is approximated by its population as measured in each
decade. Controlling for the four resulting variables in Table A10 indicates does not affect
the magnitude of the effects associated with the measures of state reach. This indicates
that a low distance towards capital cities increases local development above and beyond
the effect of the economic markets they harbor. The effect of market access on education
rates is slightly positive, once we take the sum of the respective coefficients. They have a
mixed effect of infant mortality and nightlight emissions.

Controlling for ethnic politics and war: Ethnic politics are an important driver of
both, development and state reach. Research on administrative unit reforms has found
that they can reward government allies (Green 2010; Hassan 2016; Gottlieb et al. 2019) or
harm opponents (Resnick 2017), strategies which may well be used in processes of ethnic
accommodation or exclusion. At the same time, ethnic and regional favoritism of govern-
ments has been found to affect investments into road infrastructure (Burgess et al. 2015)
and local development in general (Franck and Rainer 2012; Hodler and Raschky 2014). To
capture such dynamics, I draw on the most comprehensive and geocoded data on ethnic
power dynamics in Africa since independence, the Ethnic Power Relations data set (Vogt
et al. 2015).30 I use the geodata of ethnic groups to map respondents and Voronoi cells
to the database’s coding of ethnic inclusion and exclusion as well as the occurrence and
history of ethnic civil wars. Table A11 shows the results from the baseline analysis with
the resulting variables as additional controls. The additional controls do not affect the
results. While in particular the time since the last ethnic civil war positively affects edu-
cation rates, ethnic inclusion has a positive effect on infant survival rates and nightlight
emissions.

29Data comes from Africapolis.org.
30All data can be freely downloaded from growup.ethz.ch.
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Table A10: Changes in time to national/regional capital and local development: Controlling for market
access

Primary educ. (0/100)
(1) (2) (3)

Time to nat. capital (log) −1.919∗∗∗ 1.076∗∗∗ −0.084∗∗∗

(0.434) (0.254) (0.030)

Time to reg. capital (log) −0.966∗∗∗ 0.272∗ −0.049∗∗

(0.318) (0.151) (0.019)

MA, internat. (log; θ = 3.8) 2.178∗∗∗ 0.378 −0.146∗∗∗

(0.482) (0.248) (0.018)

MA, nat. (log; θ = 3.8) −0.804∗∗∗ −0.025 0.082∗∗∗

(0.167) (0.081) (0.007)

MA, internat. (log; θ = 8.28) 0.478 0.250 −0.009
(0.323) (0.182) (0.011)

MA, nat. (log; θ = 8.28) −0.149 −0.098 0.034∗∗∗

(0.115) (0.074) (0.006)

β1 + β2: −2.886∗∗∗ 1.347∗∗∗ −0.133∗∗∗

(0.527) (0.297) (0.034)

Point FE: yes yes yes
Country-year FE: yes yes yes
Survey FE: yes yes –
Controls: yes yes –
Mean DV: 70 9.6 -6.5
Observations 2,088,301 2,895,505 1,507,013
Adjusted R2 0.452 0.051 0.836

Notes: OLS linear models. Individuals are the units of the education and infant mortality analyses,
Voronoi cells those of the nightlight analyses. Control variables for models with primary education as
the dependent variable consist of responents’ age and age squared, as well as a female dummy. Where
infant mortality is the dependent variable, models include an infant’s mother’s age at birth and its
square, the birthorder and its square, as well as a female and twin dummy. Standard errors clustered
on the point and country-year levels. Significance codes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A11: Changes in time to national/regional capital and local development: Controlling for ethnic rep-
resentation and civil war

Primary educ. (0/100)
(1) (2) (3)

Time to nat. capital (log) −2.723∗∗∗ 0.894∗∗∗ −0.056∗∗

(0.387) (0.233) (0.026)

Time to reg. capital (log) −1.244∗∗∗ 0.208 −0.037∗∗

(0.301) (0.145) (0.018)

Ethnic inclusion (0/1) 0.978 −0.573∗∗ 0.084∗∗∗

(0.638) (0.227) (0.024)

Ethnic exclusion (0/1) 1.138∗ −0.384∗ 0.036∗

(0.639) (0.216) (0.020)

Ethnic civil war (0/1) 0.514 −0.123 0.037∗∗∗

(0.688) (0.212) (0.010)

Eth. war since indep. (0/1) 0.777 −0.117 −0.048∗∗∗

(0.819) (0.298) (0.017)

Time since eth. war 0.405∗∗∗ −0.019 −0.001
(0.124) (0.035) (0.001)

Time since eth. war2 −0.015∗∗∗ 0.001 0.00000
(0.003) (0.001) (0.00002)

β1 + β2: −3.967∗∗∗ 1.102∗∗∗ −0.092∗∗∗

(0.456) (0.262) (0.028)

Point FE: yes yes yes
Country-year FE: yes yes yes
Survey FE: yes yes –
Controls: yes yes –
Mean DV: 70 9.6 -6.5
Observations 2,091,736 2,882,233 1,507,013
Adjusted R2 0.452 0.050 0.836

Notes: OLS linear models. Individuals are the units of the education and infant mortality analyses, Voronoi cells
those of the nightlight analyses. Control variables for models with primary education as the dependent variable
consist of responents’ age and age squared, as well as a female dummy. Where infant mortality is the dependent
variable, models include an infant’s mother’s age at birth and its square, the birthorder and its square, as well as
a female and twin dummy. Standard errors clustered on the point and country-year levels. Significance codes:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Controlling for capitals: Another potential danger is that as some cities may become,
for a variety of reasons, richer with time, and then benefit from a political upgrade and get
their own administrative unit. In such cases, changes in state reach in that city would be
endogenous to local development. In an additional robustness check I therefore include
dummies for whether an interview-location was (1) in and (2) closer than 1 hour to a
regional and national capital in time t. For the Voronoi units, I create analagous measures
when they either contain a capital or have an average distance to a capital of below 1 hour.
The results in Table A12 highlight that changes in distances towards capitals in locations
which are not capitals themselves drive the baseline patterns. Above and beyond the
effect associated with a reduction in travel times, becoming a regional capital is associated
with lower education rates, and more mixed patterns in the other outcomes. Relocations
of national capitals are associated with reductions of infant mortality rates in the new
capitals.

Table A12: Changes in time to national/regional capital and local development: Controlling for capitals

Primary educ. (0/100) Infant mort. (0/100) Light/capita (log)

(1) (2) (3) (4) (5) (6)

Time to nat. capital (log) −2.565∗∗∗ −2.707∗∗∗ 0.739∗∗∗ 0.830∗∗∗ −0.051∗ −0.052∗

(0.406) (0.411) (0.230) (0.243) (0.026) (0.026)

Time to reg. capital (log) −1.708∗∗∗ −1.810∗∗∗ 0.218 0.254 −0.039∗∗ −0.038∗∗

(0.342) (0.353) (0.154) (0.165) (0.019) (0.019)

National capital (0/1) −0.417 −5.869∗∗∗ 0.200
(3.252) (2.244) (0.265)

Regional capital (0/1) −3.092∗∗∗ 0.036 −0.049
(1.082) (0.426) (0.051)

Time to nat. cap. < 1hr −0.574 −0.241 0.099∗∗

(0.598) (0.388) (0.043)

Time to reg. cap < 1hr −1.285∗∗∗ 0.117 −0.027
(0.370) (0.170) (0.033)

β1 + β2: −4.274∗∗∗ −4.517∗∗∗ 0.956∗∗∗ 1.084∗∗∗ −0.09∗∗∗ −0.089∗∗∗

(0.479) (0.492) (0.263) (0.278) (0.028) (0.028)

Point FE: yes yes yes yes yes yes
Country-year FE: yes yes yes yes yes yes
Survey FE: yes yes yes yes – –
Controls: yes yes yes yes – –
Mean DV: 70 70 9.6 9.6 -6.5 -6.5
Observations 2,091,724 2,091,736 2,895,545 2,895,564 1,507,013 1,507,013
Adjusted R2 0.452 0.452 0.051 0.051 0.836 0.836

Notes: OLS linear models. Individuals are the units of the education and infant mortality analyses, Voronoi cells
those of the nightlight analyses. Control variables for models with primary education as the dependent variable
consist of responents’ age and age squared, as well as a female dummy. Where infant mortality is the dependent
variable, models include an infant’s mother’s age at birth and its square, the birthorder and its square, as well as
a female and twin dummy. Standard errors clustered on the point and country-year levels. Significance codes:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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E.6 Varying education- and health-related outcomes:

Lastly, two sets of additional analyses gauge whether the results are applicable to alter-
native education and health care outcomes. First, Table A13 shows very similar effects
of the travel time to regional and national capitals on (1) whether a respondent has spent
any time in school, (2) on her years of schooling – logged and linear, and (3) on a sim-
ple secondary education dummy. The main deviation from the baseline model is that
the distance to the national capital does not seem to impact secondary education lev-
els. With regard to infant mortality, Table A14 indicates that increased infant mortality
in regions of low state reach can indeed be related to a lower availability of professional
prenatal assistants. Similarly, changes in travel times to national capitals come with an
increased chance that a child is born in a public clinic and positively relate to the receipt
of professional assistance during delivery. Conversely, if children are born under low
levels of state reach from the national capital, assistance is given more often in tradi-
tional manner. Consistent with the earlier results, the distance to regional capitals does
not have any significant effect on the receipt of professional prenatal or birth assistance.
Regarding local development measured through nightlight emissions, Table A15 shows
that the choice of outcomes – whether nightlights per capita (log), absolute nightlights
(log), or a dummy for whether a Voronoi cell exhibits any nightlight emissions does not
produce different conclusions. In all three cases, changes in travel times to capitals are
in sum associated with more nightlights. The estimated effect of changes in travel times
towards national capitals are statistically significant, with the exception of their effect on
the logged amount of absolute nightlight emissions.

Table A13: Changes in time to national/regional capital and various education outcomes

Any educ. (0/100) Educ. years (linear) Educ. years (log) Sec. educ. (0/100)
(1) (2) (3) (4)

Time to nat. capital (log) −2.667∗∗∗ −0.231∗∗∗ −0.055∗∗∗ −0.023
(0.401) (0.046) (0.009) (0.423)

Time to reg. capital (log) −1.229∗∗∗ −0.082∗∗ −0.026∗∗∗ −0.927∗∗∗

(0.309) (0.032) (0.007) (0.314)

β1 + β2: −3.897∗∗∗ −0.312∗∗∗ −0.081∗∗∗ −0.95∗

(0.467) (0.051) (0.01) (0.485)

Point FE: yes yes yes yes
Country-year FE: yes yes yes yes
Survey FE: yes yes yes yes
Controls: yes yes yes yes
Mean DV: 70 5.5 1.5 35
Observations 2,088,917 2,088,917 2,088,917 1,787,251
Adjusted R2 0.450 0.462 0.489 0.356

Notes: OLS linear models. Control variables include respondents’ age and age squared, as well as a female dummy.
Standard errors clustered on the point and country-year levels. Significance codes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A14: Changes in time to national/regional capital and quality of prenatal care and birth assistance (in
percent)

Prof. prenatal care Birth in public inst. Prof. birth assist. Trad. birth assist.
(1) (2) (3) (4)

Time to nat. capital (log) −9.465∗∗∗ −2.476 −7.353∗∗∗ 3.765∗∗

(2.379) (1.641) (1.938) (1.536)

Time to reg. capital (log) −0.139 −0.316 0.191 1.026
(1.018) (0.997) (0.937) (0.702)

β1 + β2: −9.604∗∗∗ −2.792 −7.162∗∗∗ 4.791∗∗∗

(2.554) (1.737) (2.08) (1.593)

Point FE: yes yes yes yes
Country-year FE: yes yes yes yes
Survey FE: yes yes yes yes
Controls: yes yes yes yes
Mean DV: 81 38 54 19
Observations 458,841 643,916 642,668 637,780
Adjusted R2 0.467 0.409 0.440 0.319

Notes: OLS linear models. Control variables include an infant’s mother’s age and age squared, the birthorder and
its square, as well as a female and twin dummy. Standard errors clustered on the point and country-year levels.
Significance codes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A15: Changes in time to national/regional capital and various nightlight measures

Light/capita (log) Light (log) Any Light (0/100)
(1) (2) (3)

Time to nat. capital (log) −0.052∗∗ −0.114 −1.224∗∗

(0.026) (0.072) (0.588)

Time to reg. capital (log) −0.037∗∗ −0.112∗ −0.861∗

(0.019) (0.062) (0.500)

β1 + β2: −0.089∗∗∗ −0.225∗∗∗ −2.085∗∗∗

(0.028) (0.07) (0.57)

Unit FE: yes yes yes
Country-year FE: yes yes yes
Controls: – – –
Mean DV: -6.5 -5.4 12
Observations 1,507,013 1,507,013 1,507,013
Adjusted R2 0.836 0.838 0.784

Notes: OLS linear models. Standard errors clustered on the point and country-year levels. Significance
codes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

E.7 Additional robustness checks:

Country-weights: Because the DHS has not regularly sampled all African countries,
the weights each country receives in the baseline specifications vary considerably. If the
effects of state capacity on development vary systematically with the number and size
of survey the DHS by countries, the results would be biased towards the most-sampled
set of countries. Table A16 addresses this caveat by weighting each observation by the
inverse of the number of observations from its country (Models 1 and 3) and from the re-
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spective cohort in the same country (Models 2 and 4). The latter serves to prevent that the
biggest cohorts drive the results at the expense of dynamics in smaller cohorts observed
in the data.31 Though coefficients slightly change, the results remain generally consistent
with those reported at the baseline. Lastly, Model 5 addresses the potential problem that
until now I have treated all Voronoi cells in the same manner, thus giving equal weight
to areas with many and few inhabitants. Weighting the Voronoi units by their population
roughly doubles the estimated effect of the travel time to regional capitals on nightlight
emissions. This is reassuring, since it shows that the results above are not driven by areas
with very low population densities that are prone to produce outliers in the per-capita
nightlight measure. As in some previous results, the effect of the travel time to national
capitals, is statistically insignificant.

Table A16: Changes in time to national/regional capital and local development: Alternative weights

Primary educ. (0/100) Infant mort. (0/100) Light/capita (log)

(1) (2) (3) (4) (5)

Time to nat. capital (log) −1.987∗∗∗ −2.581∗∗∗ 0.519∗∗ 0.790∗∗ −0.031
(0.430) (0.473) (0.237) (0.396) (0.040)

Time to reg. capital (log) −1.403∗∗∗ −1.527∗∗∗ 0.174 0.229 −0.089∗∗

(0.317) (0.329) (0.155) (0.342) (0.036)

β1 + β2: −3.39∗∗∗ −4.108∗∗∗ 0.694∗∗∗ 1.019∗∗ −0.12∗∗

(0.487) (0.531) (0.265) (0.505) (0.048)

Weights country country country country population
cohort cohort

Point FE: yes yes yes yes yes
Country-year FE: yes yes yes yes yes
Survey FE: yes yes –
Controls: yes yes –
Mean DV: 70 70 9.6 9.6 -6.5
Observations 2,091,736 2,091,736 2,895,564 2,895,564 1,507,013
Adjusted R2 0.436 0.434 0.053 0.164 0.949

Notes: OLS linear models. Individuals are the units of the education and infant mortality analyses, Voronoi cells
those of the nightlight analyses. Control variables for models with primary education as the dependent variable
consist of responents’ age and age squared, as well as a female dummy. Where infant mortality is the dependent
variable, models include an infant’s mother’s age at birth and its square, the birthorder and its square, as well as
a female and twin dummy. Standard errors clustered on the point and country-year levels. Significance codes:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Varying the size of Voronoi units: This last robustness check assesses the impact of
the choice of the size of Voronoi units used in the baseline analysis (400km2). Figure A17
plots the results of the baseline specification estimated with units with exponential in-
creases in their size from 100 to 6400km2. Reassuringly, the Figure shows that small units
generally give rise to smaller estimated and standardized effects. The increases in the
respective effects that comes with larger units might be due to the unit constant added to
the nightlight measure, which has a larger effect in small units in which more units have
no observed nightlight emissions. Throughout, decreases in travel times to regional cap-

31Because of the sampling scheme of the DHS and attrition-by-death, cohorts close to the date of the
survey are bigger than those in the past.
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itals are associated with more nightlights. Decreases in travel times to national capitals
are only associated with more nightlights in large units. This result adds to the uncer-
tainty discussed in the main text on whether travel times to national capitals are indeed
related to local nightlight emissions or not.

Figure A17: Effect of travel times to national and regional capitals on nightlight emissions
in Voronoi units of increasing size.

Estimated coefficients and their 95% CI are standardized by dividing them by the mean dependent variable
(log(.001 + nightlight p.c.)).
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Hunziker and Luc Girardin. 2015. “Integrating Data on Ethnicity, Geography, and
Conflict: The Ethnic Power Relations Dataset Family.” Journal of Conflict Resolution
59(7):1327–1342.

Weidmann, Nils and Kristian Skrede Gleditsch. 2010. “Mapping and Measuring Country
Shapes: The cshapes Package.” R Journal 2(1):18–24.

A35



World Bank. 2018. “World Development Indicators.” Accessed on 2019/03/20 from
https://databank.worldbank.org/data .

A36


