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A Parameter Realizations

The experiment was programmed using z-Tree (Fischbacher 2007) and conducted via

computerized network. We used the built-in function from z-Tree to generate a uniform

distribution of the state of the world and partisan bias. Realizations of the state of the

world in each treatment are: A 51% of the time and B 49% of the time. As reported

in Figure A1, on average about 70% of voters are expert voters both in the control and

treatment groups. Each level of the partisan bias occurred about 1
3

of the time. In the

Control Group, the partisan bias is supportive 31.94% of the time, neutral 32.22% of

the time, and against 35.83% of the time. In the Treatment Group, the partisan bias

is supportive 32.78% of the time, neutral 33.33% of the time, and against 33.89% of

the time. The distribution of partisan bias is statistically identical between the Control

Group and Treatment Group.
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Figure A1: Distribution of Realized Expertise by Election-Period
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B Regression Analysis of Quality of Democratic Choice

As a supplement to the nonparametric statistical analysis reported in the main text, we

conduct linear regressions to investigate the extent to which the quality of democratic

choice is different between the Control Group and Treatment Group. The results are

reported in Table A1. We find that the quality of democratic choice is significantly

smaller in the Treatment Group. These results are consistent with results that we report

in the main text.

Table A1: Analyses of Treatment Effects on the Quality of Democratic Choice

Dependent Variable: Quality of Democratic Choice

(1) (2)

Treatment -0.121** -0.121**

(0.047) (0.047)

Period 0.000

(0.002)

Constant 0.761 0.755

(0.031) (0.046)

Observations 720 720

Note: OLS specification. Standard errors clustered at the elec-

torate level. Clustered standard errors are reported in the

parentheses. The signs ∗, ∗∗, ∗ ∗ ∗ indicate significance at

10%, 5%, and 1% level, respectively.

C Regression Analysis of Willingness to Vote

We conduct linear regressions to investigate the extent to which individual voters’ will-

ingness to vote is different between the Control Group and Treatment Group. The results

are reported in Table A2. Expert is a dummy variable that we use to investigate the

difference of willingness to vote when a subject is assigned expertise as compared to when
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the subject is a nonexpert voter. Treatment is a dummy variable that we use to indicate

the Treatment Group. ElectionPeriod is the number of rounds which we use to control

for learning effects. Against and Neutral are dummy variables that are used to identify

what a specific level of partisan bias a subject plays. The inclusion of the interaction

of the Treatment dummy and the Partisan Bias dummies explore treatment effects con-

ditional on a specific level of the partisan bias. In Model 7 of Table A2, we further

control for the demographic variables including gender, age, and subjects’ performance

on a Cognitive Reflection Task (CRT) developed by Frederick (2005).1

The results of Table A2 can be summarized as follows. First, on average, a subject’s

willingness to vote is significantly larger when she has expertise as compared to when

she is a nonexpert voter. Second, expert voters in the Treatment Group always have a

significantly lower cutoff willingness to vote, whether we only regress the voting data on

the Treatment dummy or include additional control variables such as election periods,

the level of partisan bias, and the demographic variables. Third, relative to the voting

decisions in the scenario in which the level of the partisan bias is supportive, a voter’s

willingness to vote is significantly higher when the partisan bias is against and neutral.

All these results yield conclusions that are the same as what we report in the main text.

1The CRT is conducted after subjects have finished all voting decisions. It is not incentivized; subjects
are not paid for the CRT task.
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D Learning Effects

To address the role of subject learning over the course of the experiment, we look at how

the percentage of times voters succeed changes over time in our experiment. We consider

the estimated quality of democratic choices as a function of the Period in a session. The

results of the OLS regressions are summarized in Table A3.

We find that, although the quality of democratic choice generally increases with the

number of periods in the Control Group, it decreases with the number of periods in the

Treatment Group. We test whether the coefficients are significantly different by treat-

ment, and find that the coefficient of each treatment is statistically indistinguishable by

treatment. We conducted similar regressions to investigate whether individuals’ willing-

ness to vote changes over time, and we find the same qualitative results. In sum, we

find no evidence that differences in the quality of democratic choice can be attributed to

subjects learning over the course of the experiment.

Table A3: Quality of Democratic Choice as a Function of Period

Treatment Coefficient t Pr > |z|

Control 0.002 0.71 0.495
Treatment -0.001 0.34 0.739

Note: OLS specification. Standard errors clustered at electorate level. Dependent vari-
able is the estimate of the quality of democratic choice. Independent variable is the
number of election-period. The signs ∗, ∗∗, ∗ ∗ ∗ indicate significance at 10%, 5%, and
1% level, respectively.
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E Experiment Instructions

You are participating in group decision-making experiment, where you will be making

decisions as a member of a committee. We will start with a brief instruction period.

During the instruction period, you will be given a complete description of the experiment

and will be shown how to use the computers. If you have any questions during the

instruction period, please raise your hand and your question will be answered out loud

so everyone can hear. If you have any questions after the experiment has begun, raise

your hand, and an experimenter will come and assist you. The instruction period will be

followed by the paid session. The experiment consists of 30 rounds, and at the end one

of the 30 rounds will be randomly selected by the computer as the round to be paid. You

will also receive an additional show-up fee of $7. Everyone will be paid in private and you

are under no obligation to tell others how much you earned. Your earnings during the

experiment are denominated in Points (experimental currency). Everyone will be given

an initial starting budget that is 100 Points. The experimental currency will be converted

to US dollars and you will be paid by check. The exchange rate is 10 Points = $1.

Procedure

We begin the first round by dividing you into committees of five members each. Each of

you is assigned to exactly one of these committees and you are not told the identity of

the other members of your committee. Your committee is tasked with making a group

decision. The decision is simply a choice between one of two alternatives: A and B.

Committees make decisions by voting, where whichever alternative receives more votes

is the committee’s decision, and ties are broken by a fair coin toss.

At the beginning of each round, the computer will randomly select a state of the

world for your committee. The state of the world will be either A or B. Each state of the

world will be selected with a 50% chance. For each committee, and for each round, the

computer will choose the state of the world separately, which means the selected state of

the world could be different for different committees, and the selected state of the world

would vary from one round to the other. Within one committee, the assigned state of
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the world will be the same for every member. Please note that you do not know the

randomly assigned state of the world at first.

The computer will also randomly cast two votes. There is no connection

between the assigned state of the world for your committee and how the computer cast

the 2 votes. This means that:

� the state of the world and computerized votes operate independently and separately.

� The computer may either cast two votes for A, two votes for B, or split their votes

evenly between A and B. Please note that each of these events is equally likely.

For example, on average, 33% of the time the computer will cast two votes for A,

33% of the time the computer will cast two votes for B, and 33% of the time the

computer will cast one vote for A and one vote for B.

Decision Task

Before voting, you may be given expertise, in which case you are told which state of

the world was assigned to your committee, and how the computer has voted. [IN THE

TREATMENT ONLY: You are also told exactly how many people in your committee

are given expertise.] Whether you are given expertise is randomly decided. Specifically,

the computer will randomly generate a number for each of the 5 committee members

that is an independent random number between 1 and 100. The computer may generate

a different number for different participants. If the number generated for you is equal

to or lower than 70, you will be told the state of the world and computerized votes. If

the number generated for you is greater than 70, you will not be given expertise. Each

number between 1 and 100 is equally likely, and based on this mechanism, on average

70% of your committee members will be given expertise. Note that there is no cost for

expertise.

Then, once you find out whether you have been given expertise, you and your other

committee members will be asked to make a vote choice. You can vote for A, B, or you

can abstain. If your decision is voting for A or B, you will be asked to input your highest

willingness to pay in Points to make your ballot count. If your decision is to abstain, you
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will not be asked to input such a willingness to pay.

If you decide to vote for A or B, note that whether your ballot will be used in de-

termining your committee’s decision depends on your reported willingness to pay and a

randomly drawn voting cost. Specifically, the computer will independently generate a

random voting cost for you, which will be a number between 1 and 100, and where each

number is equally likely.

� If the randomly generated voting cost is equal to or lower than your reported will-

ingness to pay, then your vote will be counted as part of your committee’s decision,

and the voting cost will be deducted from your income.

� If the randomly generated voting cost is greater than your reported willingness

to pay, then your vote choice will not be used in determining your committee’s

decision, and you do not need to pay the voting cost.

� The higher (lower) your willingness to pay for the ballot to make it count, the more

(less) likely your ballot will be a valid vote that is used to determine the committee’s

decision.

� Your personal voting cost is randomly drawn by the computer independently, which

means different committee members may have different voting costs.

� If you abstain, you will not be charged a voting cost and your ballot will not be

cast.

Please note that when you are voting, the computer has cast the 2 votes. If you get

expertise, you will know how the computer has voted; otherwise, you do not know this

information.

For your committee, only the ballots of those who decide to vote meanwhile

whose willingness to pay are equal to or higher than their individual cost of

voting will be counted. The 2 votes cast by the computer will always be counted. The

valid ballots of your committee and the 2 votes cast by the computer will jointly make

a decision for your committee. Your committee’s decision will be applied to everyone
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in your committee, and it is determined by simple plurality, i.e. whichever alternative

receives more votes is the committee’s decision. For example, including the 2 votes

cast by the computer, if there are 4 votes for A, 3 votes for B, then your committee’s

decision is A. If there are 0 votes for A and 2 votes for B, then your committee’s decision

is B.

Ties (1-1, 2-2, 3-3) are broken randomly by a fair coin toss. So, for example, including

the 2 votes cast by the computer, if 2 votes are for A, 2 votes are for B, and other

participants abstain, then the total vote would be 2-2, which is a tie, and the tie is

broken randomly, meaning that with a 50% chance A will be the committee’s decision,

and with a 50% chance B will be the committee’s decision.

The other committees in the room face a similar task, but the correct decision may

be different for different committees. Remember that committees are completely inde-

pendent, and they act independently.

Payment

Payoffs are determined as follows. If your committee’s decision matches the assigned state

of the world, then all participants in your committee will receive a High payoff equal to

110 points.

� For example, if your committee decision is A and the assigned state of the world is

A, then all participants in your committee will receive a High payoff.

� Whether you vote or abstain, and whether your vote is A or B, if your committee’s

decision is correct, you will receive a High payoff.

If your committee’s decision does not match the assigned state of the world, then all

participants in the committee receive a Low payoff equal to 10 points.

� For example, if your committee’s decision is A but the assigned state of the world

is B, then all participants in your committee will receive a Low payoff.

� Whether you vote or abstain, and whether your vote is A or B, if your committee’s

decision is wrong, you will receive a Low payoff.
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Thus, your earning will be the realized payoff (High or Low) minus the cost of voting

(if any).

After the first round is completed, we will proceed to the second round and the process

repeats itself. The actual experiment will consist of 30 rounds. In each round, a new

state of the world will be chosen and new votes by the computer will be cast. Each round

is operated independently. One of the 30 rounds will be randomly chosen as the round to

be paid, and you will be paid by check. Please treat every round seriously as each round

is equally likely to be selected as the round to be paid.

[Experimenter: Do you have any questions?]

[Experimenter: We will first go through a practice round. During the practice round,

please do not hit any keys until you are asked to, and when you are instructed to enter

information, please do exactly as asked. You will not be paid for this practice round.]

The key information of the experimental procedure and decision task is

summarized below.

 

Your earning will be the realized payoff (High or Low) minus the cost of voting (if any). 

 

The key information of the experimental procedure and decision task is summarized below. 

 

 

 

After everyone in your committee has made her decision to either vote or abstain and stated their 
willingness to pay for the ballot, you will be told the outcome of the election. The other 
committee in the room faces a similar task, but the correct decision may be different for different 
committees. Remember that committees are completely independent, and they act independently. 

 

• A state of the world is randomly assigned for your committee. 
• At the same time, the computer randomly casts two votes. 
• These two things are operated independently and separately. 

• The 5 committee members do not know the assigned state of the world ex ante. 
• The computer determines whether you get expertise. 
• On average, about 70% of voters get expertise. 

• Every voter will be asked to decide whether to vote for A, vote for B or to abstain. 
• You will be asked to input your willingness to pay to make the ballot count if you 

decide to vote for A or B. 
• Only the ballots of those whose willingness to pay is equal to or higher than their 

voting cost will be counted to determine the committee’s decision. 
• The 2 votes cast by the computer will always be counted in the election. 

1 

2 

3 

4 

• Collective decisions are made by simple plurality; i.e. whichever alternative 
receives more votes is the committee's decision. 

• Ties are broken by a fair coin toss. 
• If your committee's decision matches the assigned state of the world, then all 

participants in your committee receive a High payoff equal to 110 points. 
• If your committee's decision does not match the assigned state of the world, then 

all participants in the committee receive a Low payoff equal to 10 points. 
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F Comprehension Quiz

To make sure subjects understand how the experiment works, we ask them to answer the

following comprehension quiz before they start making voting decisions in the experiment.

The comprehension quiz is programmed using z-Tree (Fischbacher 2007) and conducted

via computerized network. If a subject provides a wrong answer to a question, detailed

explanations pop up on the computer screen. A subject can also raise her hand and

an experimenter would answer her questions in private. Subjects cannot skip questions.

They can make voting decisions only after they have answered all the questions correctly.

1. If in your committee, there are 2 votes for A, 0 votes for B, but in the other

committee, there are 2 votes for A, 5 votes for B, what would be your committee’s

decision? [Answer: A]

2. Because each state of the world will be chosen with a 50% chance, if A was chosen

for your committee in the last three rounds, does it mean that B will be chosen for

your committee in this round (with a somewhat higher probability)? [Answer: No]

3. Regarding the 2 votes cast by the computer, on average 33% of the time the 2 votes

are for A, 33% of the time the 2 votes are for B, and 33% of the time 1 vote is for

A and 1 vote is for B. If you saw that in the first round the 2 votes are for A, in

the second round there is 1 vote for A and 1 vote for B, does it mean that for the

current round, it is somewhat more likely that the 2 votes are for B? [Answer: No]

4. Assume that in the round to be paid, A was the state of the world, and including

the computerized votes your committee’s decision was A. Your willingness to pay

was 38 Points, in the end of the session, you find that your voting cost was 38

Points, what are your earnings for this round? [Answer: 72]

5. Assume that in the round to be paid, B was the state of the world, and including

the computerized votes your committee’s decision was A. Assume that your highest

willingness to pay to make your vote count was 61, but the voting cost for your was

83, what are your earnings for this round? [Answer: 10]
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6. Assume that in the round to be paid, including the computerized votes your com-

mittee’s decision was the state of the world. You decided to abstain. Your voting

cost was 48 Points. What are your earnings in this round? [Answer: 110]

7. Assume that the state of the world was A, the computer cast 2 votes for B. In your

committee, 4 voters decided to vote for A, 1 voter decided to abstain. For those

who decided to vote, their willingness to pay to make their vote count were 30,

50, 70, 90, respectively. If the computer randomly generated a voting cost 50 for

everyone, how many votes were used to decide the committee’s decision? [Answer:

3]

8. True or False: Based on the mechanism of how a voter is exogenously given ex-

pertise, on average about 70% of voters will have expertise. But in a particular

round, it is possible that all the 5 voters get expertise or only 1 of the 5 voters get

expertise. [Answer: True]

9. If A was the state of the world, the computer cast 1 vote for A and 1 vote for B.

There was 1 committee member who got expertise and whose willingness to pay

was 100 Points but he mistakenly voted for B, and the other committee members’

votes are not counted (either because they abstain or their willingness to vote is

less than their cost of voting), what was your committee’s decision? [Answer: B]

10. You decide to vote for A, but your group decision is B. If the state of the world is

B, and your willingness to pay is equal to or higher than your voting cost (which is

25 Points), how many points do you earn? [Answer: 85]

11. If A was the state of the world, and the computer cast 2 votes for A. Assume

everyone in your committee gets expertise and no one will vote for the wrong alter-

native, how many votes are needed for your committee to guarantee a High payoff?

[Answer: 0]

12. If B was the state of the world, and the computer cast 2 votes for A. Assume

everyone in your committee gets expertise and no one will vote for the wrong alter-
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native, how many votes are needed for your committee to guarantee a High payoff?

[Answer: 3]

13. Including the votes cast by the computer, 6 votes are used to determine the com-

mittee’s decision. Among the 6 votes, there are 3 votes for A and 3 votes for B.

What is the probability that everyone in your committee will get a High payoff (110

Points)? [Answer: 50%]

14. In the selected round to be paid, if you decided to vote for A, and you would like

to pay 75 points to make your vote count. The computer randomly generated a

voting cost for you, which is 11 points. Regardless of the election outcome, how

much voting cost will actually incur to your payoff? [Answer: 11]

15. In the selected round to be paid, if you decided to vote for B, and you would like

to pay 15 points to make your vote count. The computer randomly generated a

voting cost for you, which is 88 points. Regardless of the election outcome, how

much voting cost will actually incur to your payoff? [Answer: 0]

G Pivotal Voting Models

There are N individuals deciding between two alternatives, w = A and w = B, who make

a collective decision by holding a vote. There are two equally likely states of the world,

ω = A or ω = B, and voters receive a utility normalized to 1 if alternative w = ω is

adopted in state of the world ω, and 0 otherwise. In addition to this uncertainty, voters

also face a hurdle represented by a partisan bias, denoted by β, which determines how

many votes need to cast against a given alternative. This might represent partisan voters

(as in the case of the motivating example) whose preferences are independent of the state

of the world, in which case the total electorate would actually be larger. When β > 0,

then alternative B receives β votes and voters must cast more than β votes in favor of

alternative A in order to overturn alternative B. Similarly, when β < 0, then alternative

A receives partisan support of |β|, and voters need to place at least |β| votes in favor

of alternative B to achieve the desired alternative. The partisan bias is drawn from a
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uniform distribution on {−(N − 1), . . . , 0, . . . , N − 1}. Ties are broken by a fair coin toss

between the two alternatives A or B.

At the beginning of the game, voter i gains expertise with probability γ ∈ [0, 1].

Expertise informs a voter of the state of the world and the partisan bias: (ω, β). A

voter’s private ballot cost is independently drawn from a uniform distribution on [0, 1].

Following the realization of her private ballot cost, ci, a voter must choose either to

abstain, vote for alternative A, or vote for alternative B.

Denote by d ≥ 0 a voter’s private benefit to casting a ballot independent of the

election’s result, i.e. her duty term a la Riker and Ordeshook (1968). Additionally, let

s ≥ 0 represent a voter’s sense of solidarity that she might receive by voting with other

voters, which linearly scales the number of other voters who vote. Let V represent a

voter’s conjecture of the number of other informed voters who cast a vote, voter i’s linear

utility if she votes is

1{ω=w} − ci + d+ s · V,

and

1{ω=w},

when i does not vote.

To summarize, the timing of the game is as follows:

1. The state ω, the partisan bias β, and private ballot costs are independently drawn.

2. Voters must decide whether to vote, and place their ballots.

3. The collective decision is reached and payoffs are received.

Instrumental Considerations. In a pivotal voter model, each voter is motivated by

her assessment of the likelihood that she will be pivotal. In general, a voter must consider

how many other voters have expertise. Let M be the random variable representing an

individual voter’s conjecture regarding the total number of expert voters. Notice that

when a voter learns this quantity, then her belief is simply a point mass on the correct

value, but when a voter is not informed of the number of other expert voters, then she
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must form a belief regarding this quantity. For a given partisan bias β, the probability a

voter’s preferred alternative wins if she votes is

P (M ≥ β) · P (V ≥ β |M) +
1

2
P (M ≥ β − 1) · P (V = β − 1 |M).

The first term is the probability that an expert voter turns a tie into a win and the second

term is the probability that an expert voter turns a loss into a tie. If an expert voter

instead abstains, then the probability her preferred alternative is chosen is

P (M ≥ β + 1) · P (V ≥ β + 1 |M) +
1

2
P (M ≥ β) · P (V = β |M).

From these expressions, an expert voter is pivotal with probability

1

2

[
P (M ≥ β) · P (V = β |M) + P (M ≥ β − 1) · P (V = β − 1 |M)

]
. (1)

In the proceeding sections we analyze two different cases of the model, which differ in that

the pivot probability, Equation (1), manifests differently in each case. First, we consider

an expert voter’s strategic decision to vote when she does not know how many other voters

also have expertise, which resembles the Control Group in our experiment. Second, we

consider the same strategic scenario, but where an expert voter knows the number of

other expert voters, which resembles the Treatment Group from our experiment. We

focus on the non-zero willingness to vote equilibria when they exist.

G.1 Unknown Number of Expert Voters

In this section we consider an expert voter’s decision to vote, based on her assessment of

the likelihood that she will affect the outcome of the election. We are interested in finding

a symmetric vote cost cutoff where an expert voter with cost c votes if and only if c ≤

c(γ; β), and abstains if c > c(γ; β). Denote by ĉ∗(γ) = (c(γ; 0), c(γ; 1), . . . , c(γ;N − 1)).

An expert voter does not know the number of other expert voters, so she instead uses

the distribution determining expertise to form a belief about the number of other expert

voters. Additionally, an expert voter, who knows other voters’ symmetric cost cutoff,
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c(γ; β), calculates the likelihood that other voters will vote. At a given partisan bias,

β, suppose that an expert voter expects other voters to use the symmetric cutoff rule c,

then from (1), the pivot probability for an individual expert voter is

Piv(γ, c; β) ≡
N−1∑
m=β

(
N − 1

m

)
γm (1− γ)N−1−m

(
m

β

)
(c)β (1− c)m−β

+
N−1∑

m=β−1

(
N − 1

m

)
γm (1− γ)N−1−m

(
m

β − 1

)
(c)β−1 (1− c)m−β−1

=

(
N − 1

β

)
(γc)β (1− γc)N−1−β +

1

2

(
N − 1

β − 1

)
(γc)β−1 (1− γc)N−1−(β−1) .

For a given γ, the symmetric best-response for an expert voter at a given state β, is

characterized by the balloting cost c∗ that solves

Piv(γ, c∗; β) + d+ s((N − 1)γc∗) = c∗. (2)

The left-hand side is the probability an individual committee member is pivotal, the

voter’s duty benefit, and her solidarity payoff, and the right-hand side is the private cost

of voting. Denote a solution to equation (2) by c∗(γ, d, s; β), which gives the vector of

symmetric pure-strategy Bayesian Nash equilibrium balloting cutoffs. Straightforward

calculations of the binomial density allows us to write (2) as:

(
N − 1

β

)(
γc∗β
)β (

1− γc∗β
)N−1−β

+
1

2

(
N − 1

β − 1

)(
γc∗β
)β−1 (

1− γc∗β
)N−1−(β−1)

+ d+ s((N − 1)γc∗β) = c∗β.

To generate point predictions, we set d = s = 0, thus focusing on pure pivotality

considerations, and compute c∗β using the parameters of our experiment, N = 5 and

γ = 0.7. When the partisan bias is against (β = −2), by solving

1

2

(
4

2

)
(0.7c∗)2(1− 0.7c∗)2 +

1

2

(
4

1

)
(0.7c∗)(1− 0.7c∗)3 = c∗,

we get c∗−2 = 0 and c∗−2 = 0.2755.
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Similarly, when the partisan bias is neutral, by solving

1

2

(
4

0

)
(0.7c∗)0(1− 0.7c∗)4 = c∗,

we get c∗0 = 0 and c∗0 = 0.2398. Finally, since when the partisan bias is supportive,

there is not a pivotal independent voter, the symmetric Bayesian Nash equilibrium cutoff

willingness to vote is c∗2 = 0.

The average symmetric Bayesian Nash equilibrium willingness to vote, averaged over

equally likely realizations of the partisan bias, is given by

1

3

(
c∗−2 + c∗0 + c∗2

)
. (3)

From the symmetric Bayesian Nash equilibrium calculated when d = s = 0, and using

the parameters from our experiment, the average willingness to vote when the number of

expert voters remains unknown is

1

3
(c∗−2 + c∗0 + c∗2) =

1

3
(27.55 + 23.98 + 0) = 17.18.

G.2 Known Number of Expert Voters

In this section we consider the case where expert voters are also informed about the

number of other expert voters. Suppose the realized number of other expert voters is M ,

then for a given level of the partisan bias β, the pivot probability, (1), is

Piv(γ, c,M ; β) ≡1

2

[(
M − 1

β

)
(c)β (1− c)M−1−β +

(
M − 1

β − 1

)
(c)β−1 (1− c)M−1−(β−1)

]
.

The best-response cutoff for expert voters, c∗(β), must satisfy the equality

Piv(γ, c†β,M ; β) + d+ s(Mc†β) = c†β.
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Similar to above, the left-hand side is the probability an individual committee member

is pivotal, the voter’s duty benefit, and her solidarity payoff, and the right-hand side is

the private cost of voting. Denote a solution to equation (G.2) by c∗(γ, d, s;M,β), which

gives the vector of symmetric pure-strategy Bayesian Nash equilibrium balloting cutoffs.

We can write (G.2) as:

1

2

[(
M − 1

β

)(
c†β(M)

)β (
1− c†β(M)

)M−1−β
+

(
M − 1

β − 1

)(
c†β(M)

)β−1 (
1− c†β(M)

)M−1−(β−1)
]

+ d+ s(Mc†β(M)) = c†β(M).

To generate point predictions, we set d = s = 0, and compute c∗β(M). Based on the

setting of our experiment, when the partisan bias is against and there is only one expert

voter, which means M = 1, c†−2(1) = 0. When there are two expert voters, by solving

1

2
c†(2) = c†(2),

we get c†−2(2) = 0. When there are three expert voters, by solving

1

2

(
2

2

)
c†(3)2 +

1

2

(
2

1

)
c†(3)(1− c†(3)) = c†(3),

we get c†−2(3) = 0. When there are four expert voters, by solving

1

2

(
3

2

)
c†(4)2(1− c†(4)) +

1

2

(
3

1

)
c†(4)(1− c†(4))2 = c†(4),

we get c†−2(4) = 0 and c†−2(4) = 0.3333. When there are five expert voters, by solving

1

2

(
4

2

)
c†(5)2(1− c†(5))2 +

1

2

(
4

1

)
c†(5)(1− c†(5))3 = c†(5),

we get c†−2(5) = 0 and c†−2(5) = 0.3473.

Next, when the partisan bias is neutral and there is only one expert voter (M = 1),
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c†0(1) = 0.5. When there are two expert voters, by solving

1

2

(
1

0

)
(1− c†(2)) = c†(2)

we get c†0(2) = 0.3333. When there are three expert voters, by solving

1

2

(
2

0

)
(1− c†(3))2 = c†(3)

we get c†0(3) = 0.2679. When there are four expert voters, by solving

1

2

(
3

0

)
(1− c†(4))3 = c†(4)

we get c†0(4) = 0.2291. When there are five expert voters, by solving

1

2

(
4

0

)
(1− c†(5))4 = c†(5)

we get c†0(5) = 0.2024. Finally, when the partisan bias is supportive, there is not a pivotal

independent voter, so c†2(M) = 0 for all M .

The average symmetric Bayesian Nash equilibrium, averaged over equally likely real-

izations of the partisan bias and number of expert voters, is given by

1

3
c∗−2+

1

3

N∑
j=1

(
N

j

)
(c†0(j))j(1−c†0(j))N−jc†0(j)+

1

3

N∑
j=1

(
N

j

)
(c†2(j))j(1−c†2(j))N−jc†2(j). (4)

From the symmetric Bayesian Nash equilibrium calculated when d = s = 0, and using

the parameters from our experiment, the average willingness to vote when the number of
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expert voters is known is

1

3
c†2 +

1

3

N∑
j=1

(
N

j

)
(c†0(j))j(1− c†0(j))N−jc†0(j) +

1

3

N∑
j=1

(
N

j

)
(c†2(j))j(1− c†2(j))N−jc†2(j)

=
1

3
c†2 +

1

3

N∑
j=1

(
N

j

)
(c†0(j))j+1(1− c†0(j))N−j +

1

3

N∑
j=1

(
N

j

)
(c†2(j))j+1(1− c†2(j))N−j

=
1

3
(0 + 0.2180 + 0.0155) = 0.0778.

G.3 Combining the Models

We now compare the two cases of the pivotal voter model, one resembling our Control

Group and the other resembling our Treatment Group. Subtracting (4) from (3) we

obtain the difference

1

3

[ N∑
j=1

(
N

j

)
(c†0(j))j+1(1− c†0(j))N−j +

N∑
j=1

(
N

j

)
(c†2(j))j+1(1− c†2(j))N−j − c∗0 − c∗2

]
=17.18− 7.78 = 9.4,

which corresponds to the same calculation we use to obtain our main treatment effect,

where here the calculation is conducted on the symmetric Bayesian Nash equilibria of the

pivotal voting model that best resembles our experimental conditions.

To summarize, the symmetric Bayesian Nash equilibrium for the various cases cov-

ered in our experiments are reported in Table A4. The point predictions are reported

in brackets. Based on Mann-Whitney sign-rank tests and exact Fisher-Pitman permuta-

tion tests, the purely instrumental symmetric Bayesian Nash equiibrium predictions are

significantly different from the experimental observations in every case at 0.01 level of

significance. Moreover, the numerical value for the average difference in willingness to

vote between pivotal voting models is 9.4, and the treatment effect from our experiment

is 15.4. The difference, 15.4− 9.4 = 6 is statistically significant at 0.05 level.
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Table A4: Symmetric Bayesian Nash equilibrium Predictions

Partisan Bias
Supportive Neutral Against Average

Unknown Expertise Obs.[Pred.] 21.3 [0] 46.4 [24.0] 51.5 [0 or 27.6] 40.3 [17.2]

Known Expertise

Average 13.6 [0] 28.5 [21.8] 32.4 [1.6] 24.9 [7.8]
M= 1 37.5 [0] 23.3 [50.0] 5 [0]
M= 2 11.8 [0] 29.7 [33.3] 31.1 [0]
M= 3 15.3 [0] 29.4 [26.8] 31.2 [0]
M= 4 12.0 [0] 27.8 [22.9] 35.0 [0 or 33.3]
M= 5 13.8 [0] 28.4 [20.2] 27.6 [0 or 34.7]

Note: In the estimation of average willingness to vote for each treatment group,
we use the non-zero cutoff equilibrium when it exists.

G.4 Existence Argument

We conclude our analysis of pivotal voting models by sketching the argument that es-

tablishes the existence of at least one symmetric Bayesian Nash equilibrium in each of

the two cases we analyze above. It is important to note that there are generally multiple

equilibria in each of the models presented.

Let z ∈ {0, 1} be an indicator, and define the following smooth mapping:

Ψz
β(c; s, d) = z(Piv(γ, c; β) + s(N − 1)γc) + (1− z)(Pv(γ, c,M ; β) + sMc) + d,

and note that a symmetric Bayesian Nash equilibrium is characterized by fixed points

of Ψz
β(c; s, d) in c at each β. Note first that Ψz

β(0; s, d) > 0 when β ≥ 0. Thus, when

Ψz
β(1; s, d) < 1, then, when β ≥ 0, existence of a symmetric Bayesian Nash equilibrium,

c∗β, follows by the Intermediate Value Theorem. When the partisan bias favors voters, so

that β < 0, then there is a unique cutoff, characterized by

d+ zs(N − 1)γc) + (1− z)sMc = c,

which, after rearranging, is

c∗β =
d

1− zs(N − 1)γc)− (1− z)sMc
.
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Finally, when Ψz
β(1; s, d) > 1, there is a symmetric Bayesian Nash equilibrium in which

c∗β = 1.

H Quantal Response Equilibrium Analysis

In this section, and building off the pivotal voting models presented in the previous sec-

tions, we introduce stochastic terms into the calculus of otherwise instrumentally minded

voters, and focus on symmetric quantal-response equilibria. We follow the logit specifi-

cation used in Goeree and Holt (2005) and discussed in Goeree, Holt and Palfrey (2016).

Specifically, let the parameter µ ≥ 0 represent the degree of noise in voters’ decisions

so that individual voter i’s expected utility includes a stochastic disturbance µεi, where

εi is drawn independently across i from a logistic distribution. This is equivalent to id-

iosyncratic duty terms, i.e. where di = µεi is the specification above. Denoting i’s pivot

probability by PIVi, i votes if and only if

PIVi ≥ µεi ⇒
PIVi
µ
≥ εi,

which occurs with probability

Prob(votei) = F

[
PIVi
µ

]

Taking the inverse of Prob(vote) = F (·) and multiplying both sides by µ yields

µF−1(Prob(vote)) = PIV.

Using the logistic distribution, F (x) = 1/(1 + e−x), we derive the quantal response

equilibrium condition:

µ

[
− ln

(
1− Prob(vote)
Prob(vote)

)]
= PIV,

where the right-hand side is obtained from (1). In the Control Group, when µ = 0, then

the symmetric quantal-response equilibrium condition is same as that for a symmetric
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Bayesian Nash equilibrium when s = 0, expressed above by (2). As a function of µ, Fig-

ure A2 illustrates how the symmetric quantal-response equilibrium provides a description

of how the disturbance term, ε, can influence vote choices, which are otherwise depen-

dent on pivotality concerns. Specifically, as µ increases, the symmetric quantal-response

equilibrium cutoff willingness to vote also increases.

0
.1

.2
.3

.4
.5

.6

Lo
gi

t-Q
R

E
cu

to
ff 

w
illi

ng
ne

ss
 to

 v
ot

e

0 .2 .4 .6 .8 1
µ (noise parameter)

Against
Neutral
Supportive

Figure A2: Symmetric Logit-QRE cutoff willingness to vote by µ (Control Group)

For the Treatment Group, when µ = 0, then the symmetric quantal response equilib-

rium condition is equivalent to the symmetric Bayesian Nash equilibrium. As above, the

symmetric quantal-response equilibrium cutoff willingness to vote increases as the logis-

tic errors have a greater influence on vote choices. Figure A3 illustrates the relationship

between the symmetric quantal-response equilibrium cutoff willingness to vote at each

level of the partisan bias, as a function of µ.

Figure A4 plots the pointwise difference between symmetric vote cost cutoff quantal-

response equilibrium willingness’ to vote. It is straightforward to see that the symmetric

vote cost cutoff quantal-response equilibrium willingness to vote is pointwise in µ higher

in the Control Group than in the Treatment Group.
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Figure A3: Symmetric Logit-QRE cutoff willingness to vote by µ (Treatment Group)
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Figure A4: Symmetric Logit-QRE cutoff willingness to vote by µ and Partisan Bias
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Finally, we compute the value of the weight on logistic noise, µ, that best fits our

experimental data via maximum likelihood, and denote the estimated value by µ̂. To

avoid issues related to over-fitting, we conduct the maximum likelihood estimation for

the pooled data of all treatments and all levels of the partisan bias, each weighted by one-

sixth, for all thirty periods of each session. We find that the value µ̂∗ = 0.23 provides the

best match between the symmetric quantal-response equilibrium and our experimental

data. Then, following standard practice (e.g., Goeree, Holt and Palfrey 2016), we use the

estimate of µ̂∗ we obtained from our data to derive point predictions of the symmetric

quantal-response equilibrium vote cost cutoffs for that data. These results are reported in

Table A5. Not surprisingly, the symmetric quantal-response equilibrium vote cost cutoff

predictions, calibrated from our data, fit our data better than those produced by the

symmetric Bayesian Nash equilibria of the pivotal voting model in the previous section,

which were independent of our data. However, when we break down the analysis by the

partisan bias, in 4 out of 6 cases, the predictions obtained by the quantal-response model

are significantly different from the experimental observations. These results may suggest

that a purely instrumental game-theoretical model, even with logistically distributed

errors added to vote choice, does not fit the experimental results well.

Table A5: Logit-QRE Estimations (µ = 0.23)

Partisan Bias
Supportive Neutral Against Average

Control Group
Obs. 21.3 46.4 51.5 40.3
Est. 30.2 37.9 49.4 39.2

Treatment Group
Obs. 13.6 28.5 32.4 24.9
Est. 25.1 29.2 25.3 26.6

I Utilitarian Welfare

Suppose that the utilitarian planner chooses a symmetric cost cutoff for voters to follow.
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I.1 Treatment Group

In this case the utilitarian planner chooses a symmetric vote cost cutoff which depends

on the number of expert voters, M ≤ N where N is the total number of voters, and the

partisan bias, β. We denote the utilitarian’s optimal cost cutoff by c∗U(M ; β).

For a supportive partisan bias, c∗U(M ; β = −2) = 0.

For a partisan bias of β, utilitarian welfare in the treatment group when the number

of expert voters is M is

W T
β (c;M) = N

( M∑
k=β+1

(
M

k

)
ck(1− c)M−k +

1

2

(
M

β

)
cβ(1− c)M−β

)
− M

2
c2.

When β = 0, and since N = 5, the problem is

max
c∈(0,1]

5(
M∑
k=1

(
M

k

)
ck(1− c)M−k +

1

2

(
M

0

)
c0(1− c)M)− M

2
c2,

which can be simplified to

max
c∈(0,1]

5(1− 1

2

(
M

0

)
c0(1− c)M +

1

2

(
M

0

)
c0(1− c)M)− M

2
c2,

which can be simplified to

max
c∈(0,1]

5(1− 1

2

(
M

0

)
c0(1− c)M)− M

2
c2,

which can be simplified to

max
c∈(0,1]

5(1− 1

2
(1− c)M)− M

2
c2.

The first derivative of this function

5

2
M(1− c)M−1 −Mc,
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so the first-order condition is

5

2
(1− c)M−1 = c. (5)

If M = 1, this first-order condition reduces to

5

2
= c,

and so

c∗U(1; β = 0) = min{5
2
, 1},

implying that c∗U(1; β = 0) = 1.

Case M = 2 then becomes

5

2
(1− c) = c,

which solving for c gives

7

2
c =

5

2
,

which rearranges to

c =
5

7
.

Cases M = 3, 4, 5 follow by substituting for M and solving (5) for c in each case.

When the partisan bias is against, it is obvious that c∗U(1; β = −2) = 0, so we can

focus on M = 2, 3, 4, 5. For M = 2, because voters can only trigger a tie, the utilitarian

planner’s problem reduces to

max
c∈[0,1]

Nc2 − c2,

which is linear and increasing in c2, so c∗U(2; β = 2) = 1. Finally, for M = 3, 4, 5, the

utilitarian planner’s problem is

max
c∈[0,1]

N

( M∑
k=β+1

(
M

k

)
ck(1− c)M−k +

1

2

(
M

β

)
cβ(1− c)M−β

)
− M

2
c2.
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Using standard results (e.g., Hartley and Fitch 1951), we can write

M∑
k=β+1

(
M

k

)
ck(1− c)M−k =

∫ c
0
tβ(1− t)M−β−1dt∫ 1

0
tβ(1− t)M−β−1dt

,

which using the Leibniz integral rule, the first-order condition is

cβ(1− c)M−β−1∫ 1

0
tβ(1− t)M−β−1dt

+
1

2

(
M

β

)
cβ−1(1− c)M−β−1[β(1− c)− (M − β)c] =

M

N
c,

which reduces to

cβ(1− c)M−β−1∫ 1

0
tβ(1− t)M−β−1dt

+
1

2

(
M

β

)
cβ−1(1− c)M−β−1[β −Mc] =

M

N
c.

Using that the beta function is

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt,

and thus ∫ 1

0

tβ(1− t)M−β−1dt = B(β + 1, N − β),

and using that B(x+ 1, y) = B(x, y) x
x+y

, we can write

B(β + 1,M − β) = B(β,M − β)
β

β +M − β
= B(β − 1,M − β)

β

M
· β − 1

β − 1 +M − β
,

and since β = 2, we have that

B(3,M − β) = B(1,M − 2) · 2

M
· 2

M − 1
,

and finally since B(1, x) = 1
x
,

B(3,M − β) =
2

M(M − 1)(M − 2)
.
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Thus, since N = 5 we can write the planner’s first-order condition as

5(M − 1)(M − 2)c2(1− c)M−3 + 5

(
M

2

)
c(1− c)M−3[2−Mc] = c. (6)

Solving (6) yields the utilitarian planner’s symmetric vote cost cutoffs when the partisan

bias is against and M = 3, 4, 5.

I.2 Control Group

In this case the utilitarian planner chooses a symmetric vote cost cutoff which depends

only on the partisan bias, β, which we denote by c∗U(β).

For a supportive partisan bias, c∗U(β = −2) = 0.

For a partisan bias of β, utilitarian welfare in the control group is

WC
β (c) =N

( N∑
k=β+1

(
N

k

)
(0.7c)k(1− 0.7c)N−k +

1

2

(
N

β

)
(0.7c)β(1− 0.7c)N−β

)
− N

2
0.7c2.

For a neutral partisan bias, we can write the utilitarian planner’s problem as

max
c∈[0,1]

N

(
1− 1

2

(
N

0

)
(0.7c)0(1− 0.7c)N

)
− N

2
0.7c2,

which simplifies to

max
c∈[0,1]

N

(
1− 1

2
(1− 0.7c)N

)
− N

2
0.7c2.

The first-order condition is

N(1− 0.7c)N−1 = 0.7c,

which since N = 5 is

5(1− 0.7c)4 = 0.7c. (7)

A solution to (7) gives c∗U(β = 0).

When the partisan bias is against, and using the same techniques as above, we write
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the first-order condition as

0.7N(N − 1)(N − 2)(0.7c)2(1− 0.7c)N−3

2
+ 0.35

(
N

2

)
c(1− c)N−3[2− 0.7Nc] = 0.7Nc,

which since N = 5, is

10.5(0.7c)2(1− 0.7c)2 + 0.35

(
5

2

)
c(1− c)2(2− 3.5c) = 3.5c. (8)

A solution to (8) gives c∗U(β = 2).

I.3 Comparisons

Table A6 summarizes the utilitarian planner’s symmetric cost vote cutoff prescription in

each case.

Table A6: Optimal Willingness to Vote by Treatment and Partisan Bias

Partisan Bias
Supportive Neutral Against

Control Group
Exp. Obs. 21.3 46.4 51.5

Pred. 0 48.2 96.2

Treatment Group

Exp. Obs. 13.6 28.5 32.4
Pred. M = 1 0 100 0
Pred. M = 2 0 71.4 100.0
Pred. M = 3 0 53.7 100.0
Pred. M = 4 0 44.0 86.7
Pred. M = 5 0 37.7 67.5

We use both Mann-Whitney sign-rank test and the exact Fisher-Pitman permutation

test to examine whether the experimental observations are different from the utilitarian

planner’s prescription. We use the electorate averages as the unit of independent obser-

vation in the statistical analysis to examine the difference on the quantities of interest.

The numbers reported in Table A7 are p-values of statistical tests. All statistical tests

reported in this table are two-sided and non-parametric.
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Table A7: Comparisons between Experimental Results and Utilitarian Planner’s Pre-
scriptions

Partisan Bias Statistical tests Control Group
Treatment Group

M=1 M=2 M=3 M=4 M=5

Panel A: Willingness to Vote

Against
Wilcoxon signed-rank 0.002 0.166 0.012 0.003 0.002 0.012

Fisher-Pitman permutation 0.000 0.500 0.008 0.001 0.000 0.008
# observations 12 3 8 11 11 7

Neutral
Wilcoxon signed-rank 0.938 0.109 0.008 0.002 0.003 0.037

Fisher-Pitman permutation 0.825 0.250 0.004 0.000 0.001 0.033
# observations 12 3 9 12 12 10

Supportive
Wilcoxon signed-rank 0.002 n/a 0.006 0.002 0.002 0.003

Fisher-Pitman permutation 0.000 n/a 0.004 0.000 0.000 0.001
# observations 12 1 10 12 12 11

Panel B: The Quality of Democratic Choice

Against
Wilcoxon signed-rank 0.002 n/a 0.012 0.003 0.006 0.311

Fisher-Pitman permutation 0.000 n/a 0.008 0.001 0.003 0.313
# observations 12 3 8 11 11 7

Neutral
Wilcoxon signed-rank 0.695 0.109 0.008 0.002 0.003 0.017

Fisher-Pitman permutation 0.492 0.250 0.004 0.000 0.001 0.018
# observations 12 3 9 12 12 10

Supportive
Wilcoxon signed-rank n/a n/a n/a n/a n/a n/a

Fisher-Pitman permutation n/a n/a n/a n/a n/a n/a
# observations 12 1 10 12 12 11

Note: When the partisan bias is supportive, the achieved quality of democratic choice is always 100%,
which is identical to the utilitarian planner’s prescription, so statistical tests are not applicable in these
cases. In the Treatment Group, when the partisan bias is against and there is only one expert voter,
the quality of democratic choice is zero, which is identical to the utilitarian planner’s prescription, so
statistical tests are not applicable in this case. When the partisan bias is supportive and there is only
one expert voter, we have only one observation, so statistical tests are omitted for this case.
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