# Supplementary Appendix for "Driving Turnout: The Effect of Car Ownership on Electoral Participation"

Justin de Benedictis-Kessner and Maxwell Palmer

Political Science Research and Methods

# Contents

| А | Matching Process                                                                 |
|---|----------------------------------------------------------------------------------|
| В | Effect of Car Access on 2016 Participation                                       |
| С | Effect of Car Access on 2020 Participation                                       |
| D | Effect of Drivers License on Turnout                                             |
| Е | Effects of Automobile Access and Drivers Licenses with Additional Controls A-8   |
| F | Interaction Between Automobile Access and Drivers Licenses                       |
| G | Effect of Car Access Among Sample of Voters Matched to Drivers' Licenses A-15    |
| Η | Descriptive Information on Travel Time to Polls and the Effect of Travel Time on |
|   | Participation                                                                    |
| Ι | Disparate Effects of Car Access                                                  |
| J | Effect on Vote Mode: Tabular Results                                             |
| Κ | Subgroup Effects within Individual Counties                                      |
| L | Effect in Survey Data                                                            |
|   |                                                                                  |

#### A Matching Process

Matching registrants to the drivers license file is relatively simple, as both files include names, addresses, and birth years. Overall, 96.7% of registered voters match to a drivers license. Most registrants (84.7%) match exactly on name, address, and birth year. The remainder match on variations of these variables or fuzzy matches that allow for small differences in full names or typos in birth years.

Matching registrants to the automobile registration data is somewhat more challenging, as this data includes only names and addresses. Our ultimate goal is to identify the people who have access to a car through someone in their household owning a car, rather than only those who personally own an automobile. Household ownership is a better measure of car access than personal ownership. For example, one person could own a car, but their spouse, family members, or others in the household may also have access to that vehicle. First, we matched 54.0% of registrants to at least one automobile using their exact name and address. An additional 24.1% of registrants live in the same household (based on the same full address) as a car owner. An additional 10.8% match on variations of name and address, and 0.90% matched on fuzzy matches or variations of of name and address. Overall, we matched 89.7% of registrants to an automobile, and the average voter matched to 2.4 unique cars.

#### Effect of Car Access on 2016 Participation $\mathbf{B}$

In Table A1 we replicate the analyses presented in the main text of the paper but with 2016 general and primary election turnout as the dependent variable. These results largely corroborate the primary analyses in the paper, and show that across a variety of modeling strategies, access to a car has a substantively large effect on participation.

|                                |                          |                          |                          | Dependen                | t variable:              |                          |                          |                        |
|--------------------------------|--------------------------|--------------------------|--------------------------|-------------------------|--------------------------|--------------------------|--------------------------|------------------------|
|                                |                          | 2016 Gener               | al Turnout               |                         |                          | 2016 Prima               | ry Turnout               |                        |
|                                | (1)                      | (2)                      | (3)                      | (4)                     | (5)                      | (6)                      | (7)                      | (8)                    |
| Auto in HH                     | $0.255^{*}$<br>(0.001)   | $0.248^{*}$<br>(0.001)   | $0.215^{*}$<br>(0.001)   | $0.119^{*}$<br>(0.002)  | $0.107^{*}$<br>(0.001)   | $0.106^{*}$<br>(0.001)   | $0.101^{*}$<br>(0.001)   | $0.049^{*}$<br>(0.002) |
| Male                           | $-0.042^{*}$<br>(0.0004) | $-0.042^{*}$<br>(0.0004) | $-0.041^{*}$<br>(0.0003) | $-0.071^{*}$<br>(0.002) | $-0.010^{*}$<br>(0.0004) | $-0.010^{*}$<br>(0.0004) | $-0.010^{*}$<br>(0.0004) | -0.018, (0.002)        |
| White                          | $0.105^{*}$<br>(0.0005)  | $0.106^{*}$<br>(0.001)   | $0.034^{*}$<br>(0.001)   | $0.028^{*}$<br>(0.003)  | $0.060^{*}$<br>(0.001)   | $0.049^{*}$<br>(0.001)   | $0.048^{*}$<br>(0.001)   | $0.022^{*}$<br>(0.003) |
| Age                            | $0.003^{*}$<br>(0.00001) | $0.003^{*}$<br>(0.00001) | $0.003^{*}$<br>(0.00001) | $0.001^{*}$<br>(0.0001) | $0.008^{*}$<br>(0.00001) | $0.008^{*}$<br>(0.00001) | $0.008^{*}$<br>(0.00001) | $0.004^{*}$<br>(0.0001 |
| Constant                       | $0.270^{*}$<br>(0.001)   |                          |                          |                         | $-0.327^{*}$<br>(0.001)  |                          |                          |                        |
| FE for County                  |                          | $\checkmark$             |                          |                         |                          | $\checkmark$             |                          |                        |
| FE for Precinct                |                          |                          | $\checkmark$             | ,                       |                          |                          | $\checkmark$             | ,                      |
| FE for Address<br>Observations | 5,878,275                | 5,878,275                | 5,878,275                | ✓<br>346,093            | 5,047,643                | 5,047,643                | 5,047,643                | $\sqrt{256,929}$       |
| $R^2$                          | 0.062                    | 0.070                    | 0.099                    | 0.243                   | 0.104                    | 0.111                    | 0.133                    | 0.310                  |
| Adjusted $\mathbb{R}^2$        | 0.062                    | 0.070                    | 0.099                    | 0.243<br>0.147          | 0.104                    | 0.111                    | 0.133                    | 0.194                  |
| Note:                          |                          |                          |                          |                         |                          |                          |                          | *p<0.0                 |

Table A1: Effect of Automobile Access on 2016 Voter Turnout

Note:

#### C Effect of Car Access on 2020 Participation

Following the 2018 election, the state of Michigan passed a law allowing no-excuse absentee voting. In line with the theory and results outlined in the main body of the paper, this expansion of absentee voting might lower inequalities in participation between those with and without access to a car given that people without access to a car could opt to instead vote absentee. On the other hand, allowing universal absentee voting might not mobilize this segment of the population given the need (despite eligibility) to fill out and mail in a request for an absentee ballot by each voter.

To examine this question, we assessed 2020 voter turnout among the sample of people for whom we had 2018 data. In Table A2 we replicate the analyses presented in the main text of the paper but with 2020 general election turnout as the dependent variable. These results largely corroborate the primary analyses in the paper, and show that – even after absentee voting was expanded in its eligibility – transportation still remained a powerful barrier to participation.

|                                                                                                 |                               |                               | Dependen                                                   | t variable:                   |                               |                             |
|-------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|------------------------------------------------------------|-------------------------------|-------------------------------|-----------------------------|
|                                                                                                 |                               |                               | 2020 Gener                                                 | ral Turnout                   |                               |                             |
|                                                                                                 | (1)                           | (2)                           | (3)                                                        | (4)                           | (5)                           | (6)                         |
| Auto in HH                                                                                      | $0.300^{*}$<br>(0.001)        | $0.292^{*}$<br>(0.001)        | $0.251^{*}$<br>(0.001)                                     |                               |                               |                             |
| Drivers License                                                                                 |                               |                               |                                                            | $0.548^{*}$<br>(0.001)        | $0.545^{*}$<br>(0.001)        | $0.506^{*}$<br>(0.001)      |
| Male                                                                                            | $-0.034^{*}$<br>(0.0003)      | $-0.033^{*}$<br>(0.0003)      | $-0.033^{*}$<br>(0.0003)                                   | $-0.041^{*}$<br>(0.0003)      | $-0.040^{*}$<br>(0.0003)      | $-0.040^{*}$<br>(0.0003)    |
| White                                                                                           | $0.107^{*}$<br>(0.0005)       | $0.112^{*}$<br>(0.0005)       | $0.041^{*}$<br>(0.001)                                     | $0.137^{*}$<br>(0.0004)       | $0.137^{*}$<br>(0.0005)       | $0.046^{*}$<br>(0.001)      |
| Age                                                                                             | $0.004^{*}$<br>(0.00001)      | $0.004^{*}$<br>(0.00001)      | $0.004^{*}$<br>(0.00001)                                   | $0.004^{*}$<br>(0.00001)      | $0.004^{*}$<br>(0.00001)      | $0.004^{*}$<br>(0.00001)    |
| Constant                                                                                        | $0.201^{*}$<br>(0.001)        |                               |                                                            | $-0.075^{*}$<br>(0.001)       |                               |                             |
| FE for County<br>FE for Precinct                                                                |                               | $\checkmark$                  | $\checkmark$                                               |                               | $\checkmark$                  | $\checkmark$                |
| $\begin{array}{l} \text{Observations} \\ \text{R}^2 \\ \text{Adjusted } \text{R}^2 \end{array}$ | $6,387,524 \\ 0.085 \\ 0.085$ | $6,387,524 \\ 0.096 \\ 0.096$ | $\begin{array}{c} 6,387,524 \\ 0.132 \\ 0.131 \end{array}$ | $6,387,524 \\ 0.093 \\ 0.093$ | $6,387,524 \\ 0.104 \\ 0.104$ | 6,387,524<br>0.144<br>0.143 |
| Note:                                                                                           |                               |                               |                                                            |                               |                               | *p<0.01                     |

Table A2: Effect of Automobile Access on 2020 Voter Turnout

#### D Effect of Drivers License on Turnout

Due to the logistical aid that having a drivers license as a form of identification might provide to potential voters, in this section we assess whether the effects of access to a car that we examine in the main body of the paper are confounded by access to a drivers license.

First, in Figure A1 we show that the rate of matching to the drivers' license database (i.e. the likelihood of having a drivers' license) varies across racial and age categories, though by less than the amount of variation in access to a car, as we show in Appendix I.

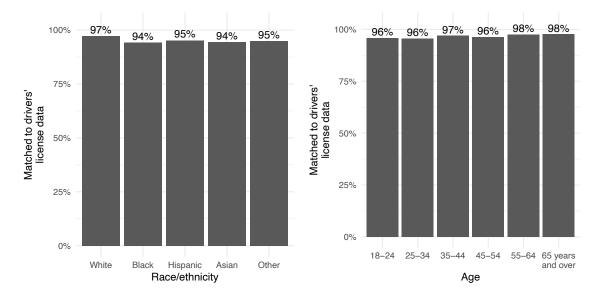



Figure A1: Differences in Drivers' License among Race and Age Subgroups

In Table A3 and Table A4, we demonstrate that access to a drivers license also has an effect on voter participation.

|                         |                 |                 |                 | Depender     | nt variable: |              |              |              |
|-------------------------|-----------------|-----------------|-----------------|--------------|--------------|--------------|--------------|--------------|
|                         |                 | 2018 Gener      | al Turnout      |              |              | 2018 Prima   | ary Turnout  |              |
|                         | (1)             | (2)             | (3)             | (4)          | (5)          | (6)          | (7)          | (8)          |
| Drivers License         | $0.457^{*}$     | $0.456^{*}$     | $0.433^{*}$     | $0.293^{*}$  | $0.255^{*}$  | $0.256^{*}$  | $0.245^{*}$  | $0.150^{*}$  |
|                         | (0.001)         | (0.001)         | (0.001)         | (0.004)      | (0.001)      | (0.001)      | (0.001)      | (0.004)      |
| Male                    | $-0.027^{*}$    | $-0.026^{*}$    | $-0.026^{*}$    | $-0.047^{*}$ | $-0.016^{*}$ | $-0.015^{*}$ | $-0.015^{*}$ | $-0.022^{*}$ |
|                         | (0.0004)        | (0.0004)        | (0.0004)        | (0.002)      | (0.0004)     | (0.0004)     | (0.0004)     | (0.001)      |
| White                   | $0.133^{*}$     | $0.133^{*}$     | $0.049^{*}$     | $0.033^{*}$  | $0.074^{*}$  | $0.086^{*}$  | $0.047^{*}$  | $0.030^{*}$  |
|                         | (0.0005)        | (0.001)         | (0.001)         | (0.003)      | (0.0005)     | (0.001)      | (0.001)      | (0.002)      |
| Age                     | $0.005^{*}$     | $0.005^{*}$     | $0.005^{*}$     | $0.003^{*}$  | $0.008^{*}$  | $0.008^{*}$  | $0.008^{*}$  | $0.004^{*}$  |
| -                       | (0.00001)       | (0.00001)       | (0.00001)       | (0.0001)     | (0.00001)    | (0.00001)    | (0.00001)    | (0.00005)    |
| Constant                | $-0.172^{*}$    |                 |                 |              | $-0.362^{*}$ |              |              |              |
|                         | (0.001)         |                 |                 |              | (0.001)      |              |              |              |
| FE for County           |                 | ✓               |                 |              |              | ✓            |              |              |
| FE for Precinct         |                 |                 | $\checkmark$    |              |              |              | $\checkmark$ |              |
| FE for Address          |                 |                 |                 | $\checkmark$ |              |              |              | $\checkmark$ |
| Observations            | $6,\!407,\!557$ | $6,\!407,\!557$ | $6,\!407,\!557$ | 409,192      | 6,140,366    | 6,140,366    | 6,140,366    | $372,\!898$  |
| $\mathbf{R}^2$          | 0.082           | 0.093           | 0.123           | 0.220        | 0.100        | 0.108        | 0.128        | 0.247        |
| Adjusted R <sup>2</sup> | 0.082           | 0.093           | 0.123           | 0.137        | 0.100        | 0.108        | 0.127        | 0.159        |
| Note:                   |                 |                 |                 |              |              |              |              | *p<0.01      |

### Table A3: Effect of Drivers Licenses on 2018 Voter Turnout

Note:

|                         |                 |                 |                 | Dependen     | t variable:          |                 |                 |              |  |  |
|-------------------------|-----------------|-----------------|-----------------|--------------|----------------------|-----------------|-----------------|--------------|--|--|
|                         |                 | 2016 Gener      | al Turnout      |              | 2016 Primary Turnout |                 |                 |              |  |  |
|                         | (1)             | (2)             | (3)             | (4)          | (5)                  | (6)             | (7)             | (8)          |  |  |
| Drivers License         | $0.530^{*}$     | $0.527^{*}$     | $0.504^{*}$     | $0.358^{*}$  | $0.179^{*}$          | $0.179^{*}$     | $0.173^{*}$     | $0.115^{*}$  |  |  |
|                         | (0.001)         | (0.001)         | (0.001)         | (0.004)      | (0.001)              | (0.001)         | (0.001)         | (0.004)      |  |  |
| Male                    | $-0.049^{*}$    | $-0.048^{*}$    | $-0.047^{*}$    | $-0.075^{*}$ | $-0.012^{*}$         | $-0.013^{*}$    | $-0.012^{*}$    | $-0.019^{*}$ |  |  |
|                         | (0.0004)        | (0.0003)        | (0.0003)        | (0.002)      | (0.0004)             | (0.0004)        | (0.0004)        | (0.002)      |  |  |
| White                   | $0.130^{*}$     | $0.126^{*}$     | $0.036^{*}$     | $0.026^{*}$  | $0.072^{*}$          | $0.059^{*}$     | $0.049^{*}$     | $0.022^{*}$  |  |  |
|                         | (0.0005)        | (0.001)         | (0.001)         | (0.003)      | (0.0005)             | (0.001)         | (0.001)         | (0.003)      |  |  |
| Age                     | $0.003^{*}$     | $0.003^{*}$     | $0.003^{*}$     | $0.001^{*}$  | $0.008^{*}$          | $0.008^{*}$     | $0.008^{*}$     | $0.004^{*}$  |  |  |
| 0                       | (0.00001)       | (0.00001)       | (0.00001)       | (0.0001)     | (0.00001)            | (0.00001)       | (0.00001)       | (0.0001)     |  |  |
| Constant                | $-0.015^{*}$    |                 |                 |              | $-0.404^{*}$         |                 |                 |              |  |  |
|                         | (0.001)         |                 |                 |              | (0.001)              |                 |                 |              |  |  |
| FE for County           |                 | √               |                 |              |                      | √               |                 |              |  |  |
| FE for Precinct         |                 |                 | $\checkmark$    |              |                      |                 | $\checkmark$    |              |  |  |
| FE for Address          |                 |                 |                 | $\checkmark$ |                      |                 |                 | $\checkmark$ |  |  |
| Observations            | $5,\!878,\!275$ | $5,\!878,\!275$ | $5,\!878,\!275$ | $346,\!093$  | $5,\!047,\!643$      | $5,\!047,\!643$ | $5,\!047,\!643$ | $256,\!929$  |  |  |
| $\mathbb{R}^2$          | 0.080           | 0.089           | 0.120           | 0.250        | 0.105                | 0.112           | 0.134           | 0.310        |  |  |
| Adjusted R <sup>2</sup> | 0.080           | 0.089           | 0.119           | 0.156        | 0.105                | 0.112           | 0.133           | 0.194        |  |  |
| Note:                   |                 |                 |                 |              |                      |                 |                 | *p<0.01      |  |  |

# Table A4: Effect of Drivers Licenses on 2016 Voter Turnout

#### E Effects of Automobile Access and Drivers Licenses with Additional Controls

Here we supplement our previous analyses with additional data on registrants' household income, education, and homeowner status using commercial data provided on the voter file from L2. The use of these data comes with several tradeoffs. Income and homeownership status are estimated by L2 using proprietary data and models that have been validated by L2, but these data are not available for all registrants. Nevertheless, we include them here as an additional robustness check to ensure that car access is not simply a proxy for income or education levels. These models confirm our primary results presented in the main paper. However, the coefficients on income, education, and renting should be interpreted with caution, and missing data and modeled covariates may bias the results.

Tables A5 and A6 present models with the effect of automobile access with these control variables on turnout in the 2018 and 2016 elections, and Tables A7 and A7 present results for the effect of drivers licenses.

| Auto in HH0. $(0.1)$ (0.1)Male $-0$ $(0.4)$ (0.1)White0.1 $(0.6)$ (0.6)Age0.1 $(0.6)$ (0.6)Est. HH Income0.6 $(0.6)$ (0.7)HS Diploma0.1 $(0.7)$ (0.7)Vocational Degree0.1 $(0.7)$ (0.7)Some College0.1 $(0.7)$ (0.7)Grad Degree0.1 $(0.7)$ (0.7)Renter $-0$ $(0.7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1)<br>180*<br>.001)<br>0.017*<br>0005)<br>025*<br>.001)<br>005*<br>00002)<br>0005*<br>00000)<br>022*<br>.001)<br>061*<br>.005)<br>055*<br>001) | $\begin{array}{c} 2018 \text{ Gener}\\(2)\\ 0.179^{*}\\(0.001)\\ -0.016^{*}\\(0.0005)\\ 0.033^{*}\\(0.001)\\ 0.005^{*}\\(0.00002)\\ 0.0004^{*}\\(0.00000)\\ 0.020^{*}\\(0.001)\\ 0.062^{*}\\(0.005)\\ 0.050^{*}\end{array}$ | ral Turnout<br>(3)<br>$0.177^*$<br>(0.001)<br>$-0.015^*$<br>(0.0005)<br>$0.031^*$<br>(0.001)<br>$0.005^*$<br>(0.00002)<br>$0.0002^*$<br>(0.00001)<br>$0.014^*$<br>(0.001)<br>$0.056^*$<br>(0.005) | $\begin{array}{c} (4) \\ 0.109^{*} \\ (0.003) \\ -0.025^{*} \\ (0.003) \\ 0.003 \\ (0.005) \\ 0.003^{*} \\ (0.0001) \\ -0.0002^{*} \\ (0.00003) \\ 0.016^{*} \\ (0.004) \\ 0.083^{*} \\ (0.030) \end{array}$ | $\begin{array}{c} (5) \\ 0.131^{*} \\ (0.001) \\ -0.017^{*} \\ (0.001) \\ -0.001 \\ (0.001) \\ 0.009^{*} \\ (0.0002) \\ 0.0002^{*} \\ (0.00001) \\ 0.005^{*} \\ (0.001) \\ 0.040^{*} \\ (0.005) \end{array}$ | $\begin{array}{c} 2018 \text{ Prima} \\ (6) \\ 0.133^{*} \\ (0.001) \\ -0.016^{*} \\ (0.001) \\ 0.020^{*} \\ (0.001) \\ 0.009^{*} \\ (0.0002) \\ 0.0001^{*} \\ (0.0001) \\ 0.004^{*} \\ (0.001) \\ 0.040^{*} \\ (0.005) \end{array}$ | $\begin{array}{c} \hline & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$                                                                                                                | (0.00003)<br>$0.017^{*}$<br>(0.004)<br>$0.080^{*}$                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Auto in HH0. $(0.)$ (0.)Male $-0$ $(0.)$ (0.)White0.) $(0.)$ (0.)Age0.)(0.)(0.)Est. HH Income0.0 $(0.)$ (0.)HS Diploma0.)(0.)(0.)Vocational Degree0.)(0.)(0.)Some College0.)(0.)(0.)Grad Degree0.(0.)(0.)Renter $-0$ (0.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 180*<br>.001)<br>0.017*<br>0005)<br>025*<br>.001)<br>005*<br>00002)<br>0005*<br>00000)<br>022*<br>.001)<br>061*<br>.005)<br>055*                | $\begin{array}{c} 0.179^{*} \\ (0.001) \\ -0.016^{*} \\ (0.0005) \\ 0.033^{*} \\ (0.001) \\ 0.005^{*} \\ (0.00002) \\ 0.0004^{*} \\ (0.00000) \\ 0.020^{*} \\ (0.001) \\ 0.062^{*} \\ (0.005) \end{array}$                  | $\begin{array}{c} 0.177^{*} \\ (0.001) \\ -0.015^{*} \\ (0.0005) \\ 0.031^{*} \\ (0.001) \\ 0.005^{*} \\ (0.00002) \\ 0.0002^{*} \\ (0.00001) \\ 0.014^{*} \\ (0.001) \\ 0.056^{*} \end{array}$   | $\begin{array}{c} 0.109^{*} \\ (0.003) \\ -0.025^{*} \\ (0.003) \\ 0.003 \\ (0.005) \\ 0.003^{*} \\ (0.0001) \\ -0.0002^{*} \\ (0.00003) \\ 0.016^{*} \\ (0.004) \\ 0.083^{*} \end{array}$                   | $\begin{array}{c} 0.131^{*} \\ (0.001) \\ -0.017^{*} \\ (0.001) \\ -0.001 \\ (0.001) \\ 0.009^{*} \\ (0.0002) \\ 0.0002^{*} \\ (0.00001) \\ 0.005^{*} \\ (0.001) \\ 0.040^{*} \end{array}$                   | $\begin{array}{c} 0.133^{*} \\ (0.001) \\ -0.016^{*} \\ (0.001) \\ 0.020^{*} \\ (0.001) \\ 0.009^{*} \\ (0.00002) \\ 0.0001^{*} \\ (0.00001) \\ 0.004^{*} \\ (0.001) \\ 0.040^{*} \end{array}$                                       | $\begin{array}{c} 0.136^{*} \\ (0.001) \\ -0.015^{*} \\ (0.001) \\ 0.041^{*} \\ (0.001) \\ 0.009^{*} \\ (0.00002) \\ 0.00001 \\ (0.00001) \\ 0.002 \\ (0.001) \\ 0.038^{*} \end{array}$ | $\begin{array}{c} 0.080^{*} \\ (0.003) \\ -0.013^{*} \\ (0.003) \\ 0.021^{*} \\ (0.005) \\ 0.005^{*} \\ (0.0001) \\ -0.0001^{*} \\ (0.0003) \\ 0.017^{*} \\ (0.004) \\ 0.080^{*} \end{array}$ |
| (0. Male = -0) (0.1 Male = - | .001)<br>0.017*<br>0005)<br>025*<br>.001)<br>005*<br>00002)<br>0005*<br>00005*<br>00000)<br>022*<br>.001)<br>061*<br>.005)<br>055*              | $\begin{array}{c} (0.001) \\ -0.016^{*} \\ (0.0005) \\ 0.033^{*} \\ (0.001) \\ 0.005^{*} \\ (0.00002) \\ 0.0004^{*} \\ (0.00000) \\ 0.020^{*} \\ (0.001) \\ 0.062^{*} \\ (0.005) \end{array}$                               | $\begin{array}{c} (0.001) \\ -0.015^{*} \\ (0.0005) \\ 0.031^{*} \\ (0.001) \\ 0.005^{*} \\ (0.00002) \\ 0.0002^{*} \\ (0.00001) \\ 0.014^{*} \\ (0.001) \\ 0.056^{*} \end{array}$                | $\begin{array}{c} (0.003) \\ -0.025^{*} \\ (0.003) \\ 0.003 \\ (0.005) \\ 0.003^{*} \\ (0.0001) \\ -0.0002^{*} \\ (0.00003) \\ 0.016^{*} \\ (0.004) \\ 0.083^{*} \end{array}$                                | $\begin{array}{c} (0.001) \\ -0.017^{*} \\ (0.001) \\ -0.001 \\ (0.001) \\ 0.009^{*} \\ (0.00002) \\ 0.0002^{*} \\ (0.0001) \\ 0.005^{*} \\ (0.001) \\ 0.040^{*} \end{array}$                                | $\begin{array}{c} (0.001) \\ -0.016^{*} \\ (0.001) \\ 0.020^{*} \\ (0.001) \\ 0.009^{*} \\ (0.00002) \\ 0.0001^{*} \\ (0.0001) \\ 0.004^{*} \\ (0.001) \\ 0.040^{*} \end{array}$                                                     | $\begin{array}{c} (0.001) \\ -0.015^* \\ (0.001) \\ 0.041^* \\ (0.001) \\ 0.009^* \\ (0.00002) \\ 0.00001 \\ (0.00001) \\ 0.002 \\ (0.001) \\ 0.038^* \end{array}$                      | $\begin{array}{c} (0.003) \\ -0.013^{*} \\ (0.003) \\ 0.021^{*} \\ (0.005) \\ 0.005^{*} \\ (0.0001) \\ -0.0001^{*} \\ (0.00003) \\ 0.017^{*} \\ (0.004) \\ 0.080^{*} \end{array}$             |
| Male $-0$<br>(0.4White $0.1$<br>(0.Age $0.1$<br>(0.0Age $0.1$<br>(0.0Est. HH Income $0.0$<br>(0.0HS Diploma $0.1$<br>(0.0Vocational Degree $0.1$<br>(0.0Some College $0.1$<br>(0.0College Degree $0.1$<br>(0.0Grad Degree $0.1$<br>(0.0Renter $-0$<br>(0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.017*<br>0005)<br>025*<br>.001)<br>005*<br>00002)<br>0005*<br>00005*<br>00000)<br>022*<br>.001)<br>061*<br>.005)<br>055*                       | $\begin{array}{c} -0.016^{*} \\ (0.0005) \\ 0.033^{*} \\ (0.001) \\ 0.005^{*} \\ (0.00002) \\ 0.0004^{*} \\ (0.00000) \\ 0.020^{*} \\ (0.001) \\ 0.062^{*} \\ (0.005) \end{array}$                                          | $\begin{array}{c} -0.015^{*}\\ (0.0005)\\ 0.031^{*}\\ (0.001)\\ 0.005^{*}\\ (0.00002)\\ 0.0002^{*}\\ (0.00001)\\ 0.014^{*}\\ (0.001)\\ 0.056^{*} \end{array}$                                     | $\begin{array}{c} -0.025^{*}\\ (0.003)\\ 0.003\\ (0.005)\\ 0.003^{*}\\ (0.0001)\\ -0.0002^{*}\\ (0.00003)\\ 0.016^{*}\\ (0.004)\\ 0.083^{*} \end{array}$                                                     | $\begin{array}{c} -0.017^{*} \\ (0.001) \\ -0.001 \\ (0.001) \\ 0.009^{*} \\ (0.00002) \\ 0.0002^{*} \\ (0.0001) \\ 0.005^{*} \\ (0.001) \\ 0.040^{*} \end{array}$                                           | $\begin{array}{c} -0.016^{*} \\ (0.001) \\ 0.020^{*} \\ (0.001) \\ 0.009^{*} \\ (0.00002) \\ 0.0001^{*} \\ (0.0001) \\ 0.004^{*} \\ (0.001) \\ 0.040^{*} \end{array}$                                                                | $\begin{array}{c} -0.015^{*} \\ (0.001) \\ 0.041^{*} \\ (0.001) \\ 0.009^{*} \\ (0.00002) \\ 0.00001 \\ (0.00001) \\ 0.002 \\ (0.001) \\ 0.038^{*} \end{array}$                         | $\begin{array}{c} -0.013^{*}\\ (0.003)\\ 0.021^{*}\\ (0.005)\\ 0.005^{*}\\ (0.0001)\\ -0.0001^{*}\\ (0.0003)\\ 0.017^{*}\\ (0.004)\\ 0.080^{*} \end{array}$                                   |
| (0.4) White $0.4$ (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.  | 00005)<br>025*<br>.001)<br>005*<br>00002)<br>0005*<br>00000)<br>022*<br>.001)<br>061*<br>.005)<br>055*                                          | $\begin{array}{c} (0.0005) \\ 0.033^* \\ (0.001) \\ 0.005^* \\ (0.00002) \\ 0.0004^* \\ (0.00000) \\ 0.020^* \\ (0.001) \\ 0.062^* \\ (0.005) \end{array}$                                                                  | $\begin{array}{c} (0.0005) \\ 0.031^{*} \\ (0.001) \\ 0.005^{*} \\ (0.00002) \\ 0.0002^{*} \\ (0.00001) \\ 0.014^{*} \\ (0.001) \\ 0.056^{*} \end{array}$                                         | $\begin{array}{c} (0.003) \\ 0.003 \\ (0.005) \\ 0.003^* \\ (0.0001) \\ -0.0002^* \\ (0.00003) \\ 0.016^* \\ (0.004) \\ 0.083^* \end{array}$                                                                 | $\begin{array}{c} (0.001) \\ -0.001 \\ (0.001) \\ 0.009^* \\ (0.00002) \\ 0.0002^* \\ (0.00001) \\ 0.005^* \\ (0.001) \\ 0.040^* \end{array}$                                                                | $\begin{array}{c} (0.001) \\ 0.020^{*} \\ (0.001) \\ 0.009^{*} \\ (0.00002) \\ 0.0001^{*} \\ (0.0001) \\ 0.004^{*} \\ (0.001) \\ 0.040^{*} \end{array}$                                                                              | $\begin{array}{c} (0.001) \\ 0.041^* \\ (0.001) \\ 0.009^* \\ (0.00002) \\ 0.00001 \\ (0.00001) \\ 0.002 \\ (0.001) \\ 0.038^* \end{array}$                                             | $\begin{array}{c} (0.003) \\ 0.021^{*} \\ (0.005) \\ 0.005^{*} \\ (0.0001) \\ -0.0001^{*} \\ (0.00003) \\ 0.017^{*} \\ (0.004) \\ 0.080^{*} \end{array}$                                      |
| White       0.1         Age       0.1         (0.         Age       0.1         (0.0         Est. HH Income       0.0         (0.0         HS Diploma       0.1         (0.0         Vocational Degree       0.1         (0.1         Some College       0.1         (0.1       0.1         College Degree       0.1         (0.1       0.1         Grad Degree       0.1         (0.1       0.1         Renter       -0         (0.1       0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 025*<br>.001)<br>005*<br>00002)<br>0005*<br>00000)<br>022*<br>.001)<br>061*<br>.005)<br>055*                                                    | $\begin{array}{c} 0.033^{*} \\ (0.001) \\ 0.005^{*} \\ (0.00002) \\ 0.0004^{*} \\ (0.00000) \\ 0.020^{*} \\ (0.001) \\ 0.062^{*} \\ (0.005) \end{array}$                                                                    | $\begin{array}{c} 0.031^{*} \\ (0.001) \\ 0.005^{*} \\ (0.00002) \\ 0.0002^{*} \\ (0.00001) \\ 0.014^{*} \\ (0.001) \\ 0.056^{*} \end{array}$                                                     | $\begin{array}{c} 0.003\\ (0.005)\\ 0.003^{*}\\ (0.0001)\\ -0.0002^{*}\\ (0.00003)\\ 0.016^{*}\\ (0.004)\\ 0.083^{*} \end{array}$                                                                            | $\begin{array}{c} -0.001 \\ (0.001) \\ 0.009^* \\ (0.00002) \\ 0.0002^* \\ (0.00001) \\ 0.005^* \\ (0.001) \\ 0.040^* \end{array}$                                                                           | 0.020*<br>(0.001)<br>0.009*<br>(0.00002)<br>0.0001*<br>(0.0001)<br>0.004*<br>(0.001)<br>0.040*                                                                                                                                       | $\begin{array}{c} 0.041^{*} \\ (0.001) \\ 0.009^{*} \\ (0.00002) \\ 0.00001 \\ (0.00001) \\ 0.002 \\ (0.001) \\ 0.038^{*} \end{array}$                                                  | $\begin{array}{c} 0.021^{*} \\ (0.005) \\ 0.005^{*} \\ (0.0001) \\ -0.0001^{*} \\ (0.0003) \\ 0.017^{*} \\ (0.004) \\ 0.080^{*} \end{array}$                                                  |
| (0.<br>Age 0.<br>(0.0<br>Est. HH Income 0.0<br>(0.0<br>HS Diploma 0.<br>(0.<br>Vocational Degree 0.<br>(0.<br>Some College 0.<br>College Degree 0.<br>(0.<br>Grad Degree 0.<br>(0.<br>Renter -0<br>(0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .001)<br>005*<br>00002)<br>0005*<br>00000)<br>022*<br>.001)<br>061*<br>.005)<br>055*                                                            | $\begin{array}{c} (0.001) \\ 0.005^{*} \\ (0.00002) \\ 0.0004^{*} \\ (0.00000) \\ 0.020^{*} \\ (0.001) \\ 0.062^{*} \\ (0.005) \end{array}$                                                                                 | $\begin{array}{c} (0.001) \\ 0.005^{*} \\ (0.00002) \\ 0.0002^{*} \\ (0.00001) \\ 0.014^{*} \\ (0.001) \\ 0.056^{*} \end{array}$                                                                  | $\begin{array}{c} (0.005) \\ 0.003^{*} \\ (0.0001) \\ -0.0002^{*} \\ (0.00003) \\ 0.016^{*} \\ (0.004) \\ 0.083^{*} \end{array}$                                                                             | $\begin{array}{c} (0.001) \\ 0.009^* \\ (0.00002) \\ 0.0002^* \\ (0.00001) \\ 0.005^* \\ (0.001) \\ 0.040^* \end{array}$                                                                                     | $\begin{array}{c} (0.001) \\ 0.009^{*} \\ (0.00002) \\ 0.0001^{*} \\ (0.00001) \\ 0.004^{*} \\ (0.001) \\ 0.040^{*} \end{array}$                                                                                                     | $\begin{array}{c} (0.001) \\ 0.009^{*} \\ (0.00002) \\ 0.00001 \\ (0.00001) \\ 0.002 \\ (0.001) \\ 0.038^{*} \end{array}$                                                               | $\begin{array}{c} (0.005) \\ 0.005^{*} \\ (0.0001) \\ -0.0001^{*} \\ (0.00003) \\ 0.017^{*} \\ (0.004) \\ 0.080^{*} \end{array}$                                                              |
| Age     0.4<br>(0.0)       Est. HH Income     0.0<br>(0.0)       HS Diploma     0.4<br>(0.0)       Vocational Degree     0.4<br>(0.0)       Some College     0.4<br>(0.0)       College Degree     0.4<br>(0.0)       Grad Degree     0.4<br>(0.0)       Renter     -0<br>(0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0005*<br>00002)<br>0005*<br>00000)<br>022*<br>.001)<br>061*<br>.005)<br>055*                                                                    | $\begin{array}{c} 0.005^{*}\\ (0.00002)\\ 0.0004^{*}\\ (0.00000)\\ 0.020^{*}\\ (0.001)\\ 0.062^{*}\\ (0.005) \end{array}$                                                                                                   | $\begin{array}{c} 0.005^{*}\\ (0.00002)\\ 0.0002^{*}\\ (0.00001)\\ 0.014^{*}\\ (0.001)\\ 0.056^{*} \end{array}$                                                                                   | $\begin{array}{c} 0.003^{*} \\ (0.0001) \\ -0.0002^{*} \\ (0.00003) \\ 0.016^{*} \\ (0.004) \\ 0.083^{*} \end{array}$                                                                                        | 0.009*<br>(0.00002)<br>0.0002*<br>(0.00001)<br>0.005*<br>(0.001)<br>0.040*                                                                                                                                   | 0.009*<br>(0.00002)<br>0.0001*<br>(0.00001)<br>0.004*<br>(0.001)<br>0.040*                                                                                                                                                           | 0.009*<br>(0.00002)<br>0.00001<br>(0.00001)<br>0.002<br>(0.001)<br>0.038*                                                                                                               | $0.005^{*}$<br>(0.0001)<br>$-0.0001^{*}$<br>(0.00003)<br>$0.017^{*}$<br>(0.004)<br>$0.080^{*}$                                                                                                |
| (0.0<br>Est. HH Income 0.0<br>(0.0<br>HS Diploma 0.1<br>(0.<br>Vocational Degree 0.1<br>(0.<br>Some College 0.1<br>(0.<br>College Degree 0.1<br>(0.<br>Grad Degree 0.1<br>(0.<br>Renter -0<br>(0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00002)<br>0005*<br>00000)<br>022*<br>.001)<br>061*<br>.005)<br>055*                                                                             | $\begin{array}{c} (0.00002) \\ 0.0004^* \\ (0.00000) \\ 0.020^* \\ (0.001) \\ 0.062^* \\ (0.005) \end{array}$                                                                                                               | $\begin{array}{c} (0.00002)\\ 0.0002^{*}\\ (0.00001)\\ 0.014^{*}\\ (0.001)\\ 0.056^{*} \end{array}$                                                                                               | $\begin{array}{c} (0.0001) \\ -0.0002^{*} \\ (0.00003) \\ 0.016^{*} \\ (0.004) \\ 0.083^{*} \end{array}$                                                                                                     | $\begin{array}{c} (0.00002) \\ 0.0002^{*} \\ (0.00001) \\ 0.005^{*} \\ (0.001) \\ 0.040^{*} \end{array}$                                                                                                     | $\begin{array}{c} (0.00002) \\ 0.0001^{*} \\ (0.00001) \\ 0.004^{*} \\ (0.001) \\ 0.040^{*} \end{array}$                                                                                                                             | $\begin{array}{c} (0.00002) \\ 0.00001 \\ (0.00001) \\ 0.002 \\ (0.001) \\ 0.038^* \end{array}$                                                                                         | $\begin{array}{c} (0.0001) \\ -0.0001^{*} \\ (0.00003) \\ 0.017^{*} \\ (0.004) \\ 0.080^{*} \end{array}$                                                                                      |
| Est. HH Income 0.0<br>(0.0<br>HS Diploma 0.4<br>(0.<br>Vocational Degree 0.4<br>(0.<br>Some College 0.4<br>(0.<br>College Degree 0.4<br>(0.<br>Grad Degree 0.4<br>(0.<br>Renter -0<br>(0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0005*<br>00000)<br>022*<br>.001)<br>061*<br>.005)<br>055*                                                                                       | $\begin{array}{c} 0.0004^{*}\\ (0.00000)\\ 0.020^{*}\\ (0.001)\\ 0.062^{*}\\ (0.005) \end{array}$                                                                                                                           | $\begin{array}{c} 0.0002^{*}\\ (0.00001)\\ 0.014^{*}\\ (0.001)\\ 0.056^{*} \end{array}$                                                                                                           | $\begin{array}{c} -0.0002^{*}\\ (0.00003)\\ 0.016^{*}\\ (0.004)\\ 0.083^{*} \end{array}$                                                                                                                     | 0.0002*<br>(0.00001)<br>0.005*<br>(0.001)<br>0.040*                                                                                                                                                          | 0.0001*<br>(0.00001)<br>0.004*<br>(0.001)<br>0.040*                                                                                                                                                                                  | $\begin{array}{c} 0.00001\\ (0.00001)\\ 0.002\\ (0.001)\\ 0.038^* \end{array}$                                                                                                          | $-0.0001^{*}$<br>(0.00003)<br>$0.017^{*}$<br>(0.004)<br>$0.080^{*}$                                                                                                                           |
| (0.0<br>HS Diploma 0.4<br>(0.<br>Vocational Degree 0.4<br>(0.<br>Some College 0.4<br>(0.<br>College Degree 0.4<br>(0.<br>Grad Degree 0.4<br>(0.<br>Renter -0<br>(0.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00000)<br>022*<br>.001)<br>061*<br>.005)<br>055*                                                                                                | $\begin{array}{c} (0.00000) \\ 0.020^* \\ (0.001) \\ 0.062^* \\ (0.005) \end{array}$                                                                                                                                        | (0.00001)<br>$0.014^{*}$<br>(0.001)<br>$0.056^{*}$                                                                                                                                                | (0.00003)<br>$0.016^{*}$<br>(0.004)<br>$0.083^{*}$                                                                                                                                                           | (0.00001)<br>$0.005^{*}$<br>(0.001)<br>$0.040^{*}$                                                                                                                                                           | $(0.00001) \\ 0.004^{*} \\ (0.001) \\ 0.040^{*}$                                                                                                                                                                                     | (0.00001)<br>0.002<br>(0.001)<br>$0.038^*$                                                                                                                                              | $\begin{array}{c} (0.00003) \\ 0.017^{*} \\ (0.004) \\ 0.080^{*} \end{array}$                                                                                                                 |
| HS Diploma 0.4<br>(0.<br>Vocational Degree 0.4<br>(0.<br>Some College 0.4<br>(0.<br>College Degree 0.4<br>(0.<br>Grad Degree 0.<br>(0.<br>Renter -0<br>(0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 022*<br>.001)<br>061*<br>.005)<br>055*                                                                                                          | $\begin{array}{c} 0.020^{*} \\ (0.001) \\ 0.062^{*} \\ (0.005) \end{array}$                                                                                                                                                 | $0.014^{*}$<br>(0.001)<br>$0.056^{*}$                                                                                                                                                             | $0.016^{*}$<br>(0.004)<br>$0.083^{*}$                                                                                                                                                                        | $0.005^{*}$<br>(0.001)<br>$0.040^{*}$                                                                                                                                                                        | $0.004^{*}$<br>(0.001)<br>$0.040^{*}$                                                                                                                                                                                                | 0.002<br>(0.001)<br>$0.038^*$                                                                                                                                                           | $0.017^{*}$<br>(0.004)<br>$0.080^{*}$                                                                                                                                                         |
| (0.<br>Vocational Degree 0.<br>(0.<br>Some College 0.<br>(0.<br>College Degree 0.<br>(0.<br>Grad Degree 0.<br>(0.<br>Renter -0<br>(0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .001)<br>061*<br>.005)<br>055*                                                                                                                  | (0.001)<br>$0.062^{*}$<br>(0.005)                                                                                                                                                                                           | (0.001)<br>$0.056^*$                                                                                                                                                                              | (0.004)<br>$0.083^*$                                                                                                                                                                                         | (0.001)<br>$0.040^*$                                                                                                                                                                                         | (0.001)<br>0.040*                                                                                                                                                                                                                    | (0.001)<br>$0.038^*$                                                                                                                                                                    | (0.004)<br>$0.080^*$                                                                                                                                                                          |
| Vocational Degree 0.<br>(0.<br>Some College 0.<br>(0.<br>College Degree 0.<br>(0.<br>Grad Degree 0.<br>(0.<br>Renter -0<br>(0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 061*<br>.005)<br>055*                                                                                                                           | $0.062^{*}$<br>(0.005)                                                                                                                                                                                                      | 0.056*                                                                                                                                                                                            | 0.083*                                                                                                                                                                                                       | 0.040*                                                                                                                                                                                                       | 0.040*                                                                                                                                                                                                                               | 0.038*                                                                                                                                                                                  | 0.080*                                                                                                                                                                                        |
| (0.<br>Some College 0.<br>(0.<br>College Degree 0.<br>(0.<br>Grad Degree 0.<br>(0.<br>Renter -0<br>(0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .005)<br>$055^*$                                                                                                                                | (0.005)                                                                                                                                                                                                                     |                                                                                                                                                                                                   |                                                                                                                                                                                                              |                                                                                                                                                                                                              |                                                                                                                                                                                                                                      |                                                                                                                                                                                         |                                                                                                                                                                                               |
| Some College 0.<br>(0.<br>College Degree 0.<br>(0.<br>Grad Degree 0.<br>(0.<br>Renter -0<br>(0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 055*                                                                                                                                            | ( )                                                                                                                                                                                                                         | (0.005)                                                                                                                                                                                           | (0.030)                                                                                                                                                                                                      | (0.005)                                                                                                                                                                                                      | (0.005)                                                                                                                                                                                                                              | (0.005)                                                                                                                                                                                 | (0, 000)                                                                                                                                                                                      |
| (0.<br>College Degree 0.<br>(0.<br>Grad Degree 0.<br>(0.<br>Renter -0<br>(0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                 | 0.050*                                                                                                                                                                                                                      |                                                                                                                                                                                                   |                                                                                                                                                                                                              | ()                                                                                                                                                                                                           | (0.000)                                                                                                                                                                                                                              | (0.005)                                                                                                                                                                                 | (0.029)                                                                                                                                                                                       |
| College Degree 0.<br>(0.<br>Grad Degree 0.<br>(0.<br>Renter -0<br>(0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 001)                                                                                                                                            | 0.050                                                                                                                                                                                                                       | $0.037^{*}$                                                                                                                                                                                       | $0.030^{*}$                                                                                                                                                                                                  | $0.045^{*}$                                                                                                                                                                                                  | $0.040^{*}$                                                                                                                                                                                                                          | $0.031^{*}$                                                                                                                                                                             | $0.023^{*}$                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .001)                                                                                                                                           | (0.001)                                                                                                                                                                                                                     | (0.001)                                                                                                                                                                                           | (0.005)                                                                                                                                                                                                      | (0.001)                                                                                                                                                                                                      | (0.001)                                                                                                                                                                                                                              | (0.001)                                                                                                                                                                                 | (0.005)                                                                                                                                                                                       |
| Grad Degree 0.<br>(0.<br>Renter -0<br>(0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $095^{*}$                                                                                                                                       | $0.084^{*}$                                                                                                                                                                                                                 | $0.067^{*}$                                                                                                                                                                                       | $0.043^{*}$                                                                                                                                                                                                  | $0.065^{*}$                                                                                                                                                                                                  | $0.057^{*}$                                                                                                                                                                                                                          | $0.044^{*}$                                                                                                                                                                             | $0.047^{*}$                                                                                                                                                                                   |
| $\begin{array}{c} (0.) \\ \text{Renter} \\ (0.) \\ (0.) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .001)                                                                                                                                           | (0.001)                                                                                                                                                                                                                     | (0.001)                                                                                                                                                                                           | (0.005)                                                                                                                                                                                                      | (0.001)                                                                                                                                                                                                      | (0.001)                                                                                                                                                                                                                              | (0.001)                                                                                                                                                                                 | (0.005)                                                                                                                                                                                       |
| Renter $-0$ (0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $129^{*}$                                                                                                                                       | $0.112^{*}$                                                                                                                                                                                                                 | $0.088^{*}$                                                                                                                                                                                       | $0.059^{*}$                                                                                                                                                                                                  | $0.111^{*}$                                                                                                                                                                                                  | $0.095^{*}$                                                                                                                                                                                                                          | $0.072^{*}$                                                                                                                                                                             | $0.066^{*}$                                                                                                                                                                                   |
| (0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .001)                                                                                                                                           | (0.001)                                                                                                                                                                                                                     | (0.001)                                                                                                                                                                                           | (0.006)                                                                                                                                                                                                      | (0.002)                                                                                                                                                                                                      | (0.002)                                                                                                                                                                                                                              | (0.002)                                                                                                                                                                                 | (0.006)                                                                                                                                                                                       |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ).101*                                                                                                                                          | $-0.105^{*}$                                                                                                                                                                                                                | $-0.105^{*}$                                                                                                                                                                                      | $-0.035^{*}$                                                                                                                                                                                                 | $-0.077^{*}$                                                                                                                                                                                                 | $-0.081^{*}$                                                                                                                                                                                                                         | $-0.088^{*}$                                                                                                                                                                            | $-0.064^{*}$                                                                                                                                                                                  |
| Constant 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .001)                                                                                                                                           | (0.001)                                                                                                                                                                                                                     | (0.001)                                                                                                                                                                                           | (0.009)                                                                                                                                                                                                      | (0.001)                                                                                                                                                                                                      | (0.001)                                                                                                                                                                                                                              | (0.001)                                                                                                                                                                                 | (0.008)                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $168^{*}$                                                                                                                                       |                                                                                                                                                                                                                             |                                                                                                                                                                                                   |                                                                                                                                                                                                              | $-0.247^{*}$                                                                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                                                                                                                         |                                                                                                                                                                                               |
| (0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .002)                                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                   |                                                                                                                                                                                                              | (0.002)                                                                                                                                                                                                      |                                                                                                                                                                                                                                      |                                                                                                                                                                                         |                                                                                                                                                                                               |
| FE for County                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 | $\checkmark$                                                                                                                                                                                                                |                                                                                                                                                                                                   |                                                                                                                                                                                                              |                                                                                                                                                                                                              | ✓                                                                                                                                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                               |
| FE for Precinct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                 |                                                                                                                                                                                                                             | $\checkmark$                                                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                                                                              |                                                                                                                                                                                                                                      | $\checkmark$                                                                                                                                                                            |                                                                                                                                                                                               |
| FE for Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 04.000                                                                                                                                          | 0.404.000                                                                                                                                                                                                                   | 0.404.000                                                                                                                                                                                         | 170,004                                                                                                                                                                                                      | 0.000 500                                                                                                                                                                                                    | 0.000 500                                                                                                                                                                                                                            | 0.000 500                                                                                                                                                                               | √<br>101.000                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34,399                                                                                                                                          | 3,434,399                                                                                                                                                                                                                   | 3,434,399                                                                                                                                                                                         | 173,024                                                                                                                                                                                                      | 3,363,529                                                                                                                                                                                                    | 3,363,529                                                                                                                                                                                                                            | 3,363,529                                                                                                                                                                               | 161,238                                                                                                                                                                                       |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                 | 0.082                                                                                                                                                                                                                       | 0.101                                                                                                                                                                                             | $0.291 \\ 0.119$                                                                                                                                                                                             | $0.102 \\ 0.102$                                                                                                                                                                                             | $0.109 \\ 0.109$                                                                                                                                                                                                                     | $0.126 \\ 0.125$                                                                                                                                                                        | 0.315<br>0.130                                                                                                                                                                                |
| Note:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .075<br>.075                                                                                                                                    | 0.082                                                                                                                                                                                                                       | 0.100                                                                                                                                                                                             |                                                                                                                                                                                                              |                                                                                                                                                                                                              | 11 1119                                                                                                                                                                                                                              | 0.120                                                                                                                                                                                   | 0.139                                                                                                                                                                                         |

# Table A5: Effect of Car Access on 2018 Election Turnout, with Additional Controls

|                                |                      |                      |                      | Dependen           | t variable:          |                      |                      |                  |
|--------------------------------|----------------------|----------------------|----------------------|--------------------|----------------------|----------------------|----------------------|------------------|
|                                |                      | 2016 Gene:           | ral Turnout          |                    |                      | 2016 Prima           | ary Turnout          |                  |
|                                | (1)                  | (2)                  | (3)                  | (4)                | (5)                  | (6)                  | (7)                  | (8)              |
| Auto in HH                     | 0.141*               | 0.140*               | $0.136^{*}$          | $0.085^{*}$        | 0.074*               | $0.073^{*}$          | $0.079^{*}$          | 0.044*           |
|                                | (0.001)              | (0.001)              | (0.001)              | (0.003)            | (0.001)              | (0.001)              | (0.001)              | (0.003)          |
| Male                           | $-0.036^{*}$         | $-0.035^{*}$         | $-0.035^{*}$         | $-0.050^{*}$       | $-0.014^{*}$         | $-0.015^{*}$         | $-0.014^{*}$         | $-0.012^{*}$     |
|                                | (0.0004)             | (0.0004)             | (0.0004)             | (0.003)            | (0.0005)             | (0.0005)             | (0.0005)             | (0.003)          |
| White                          | $0.030^{*}$          | $0.034^{*}$          | $0.021^{*}$          | 0.0004             | $0.029^{*}$          | $0.020^{*}$          | $0.052^{*}$          | $0.019^{*}$      |
|                                | (0.001)              | (0.001)              | (0.001)              | (0.005)            | (0.001)              | (0.001)              | (0.001)              | (0.005)          |
| Age                            | $0.003^{*}$          | $0.003^{*}$          | $0.003^{*}$          | $0.001^{*}$        | $0.009^{*}$          | $0.009^{*}$          | $0.009^{*}$          | $0.005^{*}$      |
|                                | (0.00001)            | (0.00001)            | (0.00001)            | (0.0001)           | (0.00002)            | (0.00002)            | (0.00002)            | (0.0001)         |
| Est. HH Income                 | $0.0004^{*}$         | $0.0003^{*}$         | $0.0002^{*}$         | -0.0001            | $-0.0001^{*}$        | $-0.0001^{*}$        | $-0.0001^{*}$        | $-0.0001^{*}$    |
|                                | (0.00000)            | (0.00000)            | (0.00000)            | (0.00003)          | (0.00000)            | (0.00001)            | (0.00001)            | (0.00003)        |
| HS Diploma                     | 0.0002               | -0.001               | $-0.005^{*}$         | -0.005             | $-0.013^{*}$         | $-0.013^{*}$         | $-0.015^{*}$         | $0.023^{*}$      |
|                                | (0.001)              | (0.001)              | (0.001)              | (0.004)            | (0.001)              | (0.001)              | (0.001)              | (0.005)          |
| Vocational Degree              | $0.023^{*}$          | $0.024^{*}$          | $0.020^{*}$          | 0.034              | 0.009                | 0.010                | 0.008                | 0.057            |
|                                | (0.004)              | (0.004)              | (0.004)              | (0.028)            | (0.005)              | (0.005)              | (0.005)              | (0.029)          |
| Some College                   | $0.037^{*}$          | $0.035^{*}$          | $0.024^{*}$          | $0.020^{*}$        | $0.021^{*}$          | $0.022^{*}$          | $0.014^{*}$          | 0.023*           |
|                                | (0.001)              | (0.001)              | (0.001)              | (0.005)            | (0.002)              | (0.002)              | (0.002)              | (0.006)          |
| College Degree                 | $0.060^{*}$          | $0.053^{*}$          | $0.039^{*}$          | $0.012^{*}$        | $0.027^{*}$          | $0.028^{*}$          | $0.020^{*}$          | $0.033^{*}$      |
|                                | (0.001)              | (0.001)              | (0.001)              | (0.005)            | (0.001)              | (0.001)              | (0.001)              | (0.005)          |
| Grad Degree                    | $0.086^{*}$          | $0.075^{*}$          | $0.055^{*}$          | $0.027^{*}$        | $0.052^{*}$          | $0.053^{*}$          | $0.039^{*}$          | $0.056^{*}$      |
|                                | (0.001)              | (0.001)              | (0.001)              | (0.006)            | (0.002)              | (0.002)              | (0.002)              | (0.006)          |
| Renter                         | $-0.074^{*}$         | $-0.076^{*}$         | $-0.076^{*}$         | -0.018             | $-0.062^{*}$         | $-0.061^{*}$         | $-0.066^{*}$         | $-0.042^{*}$     |
|                                | (0.001)              | (0.001)              | (0.001)              | (0.008)            | (0.001)              | (0.001)              | (0.001)              | (0.009)          |
| Constant                       | $0.416^{*}$          |                      |                      |                    | $-0.318^{*}$         |                      |                      |                  |
|                                | (0.002)              |                      |                      |                    | (0.002)              |                      |                      |                  |
| FE for County                  |                      | $\checkmark$         |                      |                    |                      | $\checkmark$         |                      |                  |
| FE for Precinct                |                      |                      | $\checkmark$         |                    |                      |                      | $\checkmark$         |                  |
| FE for Address<br>Observations | 2 207 500            | 2 207 500            | 2 207 500            | √<br>155-254       | 2 025 022            | 2 025 022            | 2 025 022            | √<br>191.990     |
| Observations<br>R <sup>2</sup> | $3,307,509 \\ 0.052$ | $3,307,509 \\ 0.056$ | $3,307,509 \\ 0.078$ | $155,254 \\ 0.300$ | $3,025,023 \\ 0.104$ | $3,025,023 \\ 0.111$ | $3,025,023 \\ 0.135$ | 121,289<br>0.356 |
| Adjusted R <sup>2</sup>        | 0.052<br>0.052       | $0.056 \\ 0.056$     | 0.078                | $0.300 \\ 0.115$   | $0.104 \\ 0.104$     | $0.111 \\ 0.111$     | $0.135 \\ 0.134$     | $0.356 \\ 0.157$ |
| Note:                          | 0.00-                | 0.000                | 0.011                | 0.110              | 0.101                | 0.111                | 0.101                | *p<0.01          |

# Table A6: Effect of Car Access on 2016 Election Turnout, with Additional Controls

Note:

\*p < 0.01

|                         |                 |                 |                 | Dependen      | et variable: |              |                 |               |
|-------------------------|-----------------|-----------------|-----------------|---------------|--------------|--------------|-----------------|---------------|
|                         |                 | 2018 Gene       | ral Turnout     |               |              | 2018 Prima   | ary Turnout     |               |
|                         | (1)             | (2)             | (3)             | (4)           | (5)          | (6)          | (7)             | (8)           |
| Drivers License         | $0.337^{*}$     | $0.335^{*}$     | $0.332^{*}$     | $0.241^{*}$   | $0.186^{*}$  | $0.184^{*}$  | $0.183^{*}$     | $0.158^{*}$   |
|                         | (0.002)         | (0.002)         | (0.002)         | (0.011)       | (0.002)      | (0.002)      | (0.002)         | (0.011)       |
| Male                    | $-0.017^{*}$    | $-0.016^{*}$    | $-0.016^{*}$    | $-0.023^{*}$  | $-0.016^{*}$ | $-0.015^{*}$ | $-0.014^{*}$    | $-0.012^{*}$  |
|                         | (0.0005)        | (0.0005)        | (0.0005)        | (0.003)       | (0.001)      | (0.001)      | (0.001)         | (0.003)       |
| White                   | $0.036^{*}$     | $0.042^{*}$     | $0.030^{*}$     | 0.002         | $0.007^{*}$  | $0.026^{*}$  | $0.040^{*}$     | 0.020*        |
|                         | (0.001)         | (0.001)         | (0.001)         | (0.005)       | (0.001)      | (0.001)      | (0.001)         | (0.005)       |
| Age                     | $0.005^{*}$     | $0.005^{*}$     | $0.005^{*}$     | $0.003^{*}$   | 0.009*       | $0.009^{*}$  | $0.009^{*}$     | $0.005^{*}$   |
| 0                       | (0.00002)       | (0.00002)       | (0.00002)       | (0.0001)      | (0.00002)    | (0.00002)    | (0.00002)       | (0.0001)      |
| Est. HH Income          | $0.001^{*}$     | 0.0004*         | $0.0003^{*}$    | $-0.0001^{*}$ | 0.0002*      | 0.0001*      | $0.00003^{*}$   | $-0.0001^{*}$ |
|                         | (0.00000)       | (0.00000)       | (0.00001)       | (0.00003)     | (0.00001)    | (0.00001)    | (0.00001)       | (0.00003)     |
| HS Diploma              | $0.030^{*}$     | $0.028^{*}$     | $0.021^{*}$     | $0.017^{*}$   | $0.010^{*}$  | $0.010^{*}$  | $0.007^{*}$     | $0.017^{*}$   |
| -                       | (0.001)         | (0.001)         | (0.001)         | (0.005)       | (0.001)      | (0.001)      | (0.001)         | (0.004)       |
| Vocational Degree       | $0.071^{*}$     | $0.072^{*}$     | $0.066^{*}$     | $0.088^{*}$   | $0.047^{*}$  | 0.048*       | $0.045^{*}$     | $0.084^{*}$   |
|                         | (0.005)         | (0.005)         | (0.005)         | (0.030)       | (0.005)      | (0.005)      | (0.005)         | (0.029)       |
| Some College            | $0.061^{*}$     | $0.056^{*}$     | $0.042^{*}$     | $0.030^{*}$   | $0.049^{*}$  | $0.045^{*}$  | $0.035^{*}$     | 0.023*        |
|                         | (0.001)         | (0.001)         | (0.001)         | (0.005)       | (0.001)      | (0.001)      | (0.001)         | (0.005)       |
| College Degree          | $0.103^{*}$     | $0.092^{*}$     | $0.074^{*}$     | $0.043^{*}$   | $0.071^{*}$  | $0.063^{*}$  | $0.049^{*}$     | 0.048*        |
|                         | (0.001)         | (0.001)         | (0.001)         | (0.005)       | (0.001)      | (0.001)      | (0.001)         | (0.005)       |
| Grad Degree             | $0.138^{*}$     | $0.121^{*}$     | $0.095^{*}$     | $0.061^{*}$   | $0.118^{*}$  | $0.102^{*}$  | $0.078^{*}$     | $0.068^{*}$   |
|                         | (0.001)         | (0.001)         | (0.001)         | (0.006)       | (0.002)      | (0.002)      | (0.002)         | (0.006)       |
| Renter                  | $-0.119^{*}$    | $-0.123^{*}$    | $-0.119^{*}$    | $-0.036^{*}$  | $-0.091^{*}$ | $-0.095^{*}$ | $-0.099^{*}$    | $-0.065^{*}$  |
|                         | (0.001)         | (0.001)         | (0.001)         | (0.009)       | (0.001)      | (0.001)      | (0.001)         | (0.009)       |
| Constant                | -0.0001         |                 |                 |               | $-0.311^{*}$ |              |                 |               |
|                         | (0.003)         |                 |                 |               | (0.003)      |              |                 |               |
| FE for County           |                 | $\checkmark$    |                 |               |              | $\checkmark$ |                 |               |
| FE for Precinct         |                 |                 | $\checkmark$    |               |              |              | $\checkmark$    |               |
| FE for Address          |                 |                 |                 | $\checkmark$  |              |              |                 | $\checkmark$  |
| Observations            | $3,\!434,\!399$ | $3,\!434,\!399$ | $3,\!434,\!399$ | 173,024       | 3,363,529    | 3,363,529    | $3,\!363,\!529$ | $161,\!238$   |
| $\mathbb{R}^2$          | 0.073           | 0.080           | 0.099           | 0.286         | 0.100        | 0.106        | 0.123           | 0.311         |
| Adjusted R <sup>2</sup> | 0.073           | 0.080           | 0.098           | 0.113         | 0.100        | 0.106        | 0.122           | 0.135         |
| Note:                   |                 |                 |                 |               |              |              |                 | *p<0.01       |

# Table A7: Effect of Drivers License on 2018 Election Turnout, with Additional Controls

Note:

|                                |                  |                  |                  | Depender         | nt variable:     |                  |                  |                  |
|--------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|                                |                  | 2016 Gener       | ral Turnout      |                  |                  | 2016 Prima       | ry Turnout       |                  |
|                                | (1)              | (2)              | (3)              | (4)              | (5)              | (6)              | (7)              | (8)              |
| Drivers License                | $0.365^{*}$      | $0.363^{*}$      | $0.360^{*}$      | $0.335^{*}$      | $0.117^{*}$      | 0.117*           | $0.117^{*}$      | $0.133^{*}$      |
|                                | (0.002)          | (0.002)          | (0.002)          | (0.011)          | (0.002)          | (0.002)          | (0.002)          | (0.012)          |
| Male                           | $-0.037^{*}$     | $-0.036^{*}$     | $-0.035^{*}$     | $-0.049^{*}$     | $-0.014^{*}$     | $-0.014^{*}$     | $-0.014^{*}$     | $-0.011^{*}$     |
|                                | (0.0004)         | (0.0004)         | (0.0004)         | (0.003)          | (0.0005)         | (0.0005)         | (0.0005)         | (0.003)          |
| White                          | $0.038^{*}$      | $0.040^{*}$      | $0.020^{*}$      | -0.001           | $0.033^{*}$      | $0.024^{*}$      | $0.052^{*}$      | $0.018^{*}$      |
|                                | (0.001)          | (0.001)          | (0.001)          | (0.005)          | (0.001)          | (0.001)          | (0.001)          | (0.005)          |
| Age                            | $0.003^{*}$      | $0.003^{*}$      | $0.003^{*}$      | $0.001^{*}$      | $0.009^{*}$      | $0.009^{*}$      | $0.009^{*}$      | $0.005^{*}$      |
|                                | (0.00001)        | (0.00001)        | (0.00001)        | (0.0001)         | (0.00002)        | (0.00002)        | (0.00002)        | (0.0001)         |
| Est. HH Income                 | $0.0005^{*}$     | $0.0004^{*}$     | $0.0002^{*}$     | -0.00005         | $-0.0001^{*}$    | $-0.00003^{*}$   | $-0.0001^{*}$    | -0.0001          |
|                                | (0.00000)        | (0.00000)        | (0.00000)        | (0.00003)        | (0.00000)        | (0.00001)        | (0.00001)        | (0.00003)        |
| HS Diploma                     | $0.006^{*}$      | $0.005^{*}$      | 0.0002           | -0.005           | $-0.009^{*}$     | $-0.009^{*}$     | $-0.012^{*}$     | $0.023^{*}$      |
|                                | (0.001)          | (0.001)          | (0.001)          | (0.004)          | (0.001)          | (0.001)          | (0.001)          | (0.005)          |
| Vocational Degree              | $0.032^{*}$      | $0.032^{*}$      | $0.027^{*}$      | 0.040            | 0.013            | $0.014^{*}$      | 0.012            | 0.059            |
|                                | (0.004)          | (0.004)          | (0.004)          | (0.028)          | (0.005)          | (0.005)          | (0.005)          | (0.029)          |
| Some College                   | $0.042^{*}$      | $0.039^{*}$      | $0.028^{*}$      | $0.019^{*}$      | $0.023^{*}$      | $0.024^{*}$      | $0.016^{*}$      | $0.022^{*}$      |
|                                | (0.001)          | (0.001)          | (0.001)          | (0.005)          | (0.002)          | (0.002)          | (0.002)          | (0.006)          |
| College Degree                 | $0.066^{*}$      | $0.059^{*}$      | $0.045^{*}$      | $0.013^{*}$      | $0.030^{*}$      | $0.031^{*}$      | $0.023^{*}$      | $0.033^{*}$      |
|                                | (0.001)          | (0.001)          | (0.001)          | (0.005)          | (0.001)          | (0.001)          | (0.001)          | (0.005)          |
| Grad Degree                    | $0.092^{*}$      | $0.082^{*}$      | $0.061^{*}$      | $0.028^{*}$      | $0.056^{*}$      | $0.057^{*}$      | $0.043^{*}$      | $0.057^{*}$      |
|                                | (0.001)          | (0.001)          | (0.001)          | (0.006)          | (0.002)          | (0.002)          | (0.002)          | (0.006)          |
| Renter                         | $-0.087^{*}$     | $-0.089^{*}$     | $-0.085^{*}$     | -0.019           | $-0.070^{*}$     | $-0.068^{*}$     | $-0.072^{*}$     | $-0.043^{*}$     |
|                                | (0.001)          | (0.001)          | (0.001)          | (0.008)          | (0.001)          | (0.001)          | (0.001)          | (0.009)          |
| Constant                       | $0.187^{*}$      |                  |                  |                  | $-0.365^{*}$     |                  |                  |                  |
|                                | (0.002)          |                  |                  |                  | (0.003)          |                  |                  |                  |
| FE for County                  |                  | $\checkmark$     |                  |                  |                  | √                |                  |                  |
| FE for Precinct                |                  |                  | $\checkmark$     |                  |                  |                  | $\checkmark$     |                  |
| FE for Address                 | 9 907 500        | 9 907 500        | 9 907 500        | 155.054          | 2 005 002        | 2 005 002        | 2 005 002        | 101.000          |
| Observations<br>R <sup>2</sup> | 3,307,509        | 3,307,509        | 3,307,509        | 155,254          | 3,025,023        | 3,025,023        | 3,025,023        | 121,289          |
| $R^2$<br>Adjusted $R^2$        | $0.055 \\ 0.055$ | $0.059 \\ 0.059$ | $0.081 \\ 0.080$ | $0.300 \\ 0.116$ | $0.103 \\ 0.103$ | $0.111 \\ 0.111$ | $0.134 \\ 0.133$ | $0.355 \\ 0.156$ |
| Note:                          |                  |                  |                  |                  |                  |                  |                  | *p<0.01          |

| Table A8: Effect of Drivers License of | n 2016 Election Turnout | , with Additional Controls |
|----------------------------------------|-------------------------|----------------------------|
|----------------------------------------|-------------------------|----------------------------|

#### F Interaction Between Automobile Access and Drivers Licenses

In Table A9 and Table A10 we present the regression results for election turnout where we include indicators for automobile access, drivers licenses, and the interaction of both variables. These results show that the effect of access to a car on participation remains large for individuals both with and without a drivers license, but is even larger for those with a license.

Table A9: Effects of Car Ownership and Drivers Licenses on 2018 Election Turnout

|                              |                 |                 |                 | Depender     | nt variable:    |                 |              |              |
|------------------------------|-----------------|-----------------|-----------------|--------------|-----------------|-----------------|--------------|--------------|
|                              |                 | 2018 Gener      | al Turnout      |              |                 | 2018 Prima      | ary Turnout  |              |
|                              | (1)             | (2)             | (3)             | (4)          | (5)             | (6)             | (7)          | (8)          |
| Auto in HH                   | $0.055^{*}$     | $0.060^{*}$     | $0.047^{*}$     | $0.020^{*}$  | $0.028^{*}$     | $0.033^{*}$     | $0.028^{*}$  | 0.006        |
|                              | (0.002)         | (0.002)         | (0.002)         | (0.008)      | (0.002)         | (0.002)         | (0.002)      | (0.007)      |
| Drivers License              | $0.203^{*}$     | $0.193^{*}$     | $0.179^{*}$     | $0.104^{*}$  | $0.140^{*}$     | $0.132^{*}$     | $0.125^{*}$  | $0.072^{*}$  |
|                              | (0.002)         | (0.002)         | (0.002)         | (0.008)      | (0.002)         | (0.002)         | (0.002)      | (0.007)      |
| Auto in HH x Drivers License | $0.264^{*}$     | $0.273^{*}$     | $0.273^{*}$     | $0.231^{*}$  | $0.124^{*}$     | $0.132^{*}$     | $0.133^{*}$  | $0.108^{*}$  |
|                              | (0.002)         | (0.002)         | (0.002)         | (0.005)      | (0.002)         | (0.002)         | (0.002)      | (0.004)      |
| Male                         | $-0.028^{*}$    | $-0.028^{*}$    | $-0.027^{*}$    | $-0.049^{*}$ | $-0.017^{*}$    | $-0.016^{*}$    | $-0.016^{*}$ | -0.023       |
|                              | (0.0004)        | (0.0004)        | (0.0004)        | (0.002)      | (0.0004)        | (0.0004)        | (0.0004)     | (0.001)      |
| White                        | $0.099^{*}$     | $0.104^{*}$     | $0.046^{*}$     | $0.032^{*}$  | $0.051^{*}$     | $0.066^{*}$     | $0.044^{*}$  | $0.029^{*}$  |
|                              | (0.0005)        | (0.001)         | (0.001)         | (0.003)      | (0.0005)        | (0.001)         | (0.001)      | (0.002)      |
| Age                          | $0.005^{*}$     | $0.005^{*}$     | $0.005^{*}$     | $0.003^{*}$  | $0.008^{*}$     | $0.008^{*}$     | $0.008^{*}$  | $0.004^{*}$  |
|                              | (0.00001)       | (0.00001)       | (0.00001)       | (0.0001)     | (0.00001)       | (0.00001)       | (0.00001)    | (0.00005)    |
| Constant                     | $-0.189^{*}$    |                 |                 |              | $-0.368^{*}$    |                 |              |              |
|                              | (0.002)         |                 |                 |              | (0.002)         |                 |              |              |
| FE for County                |                 | $\checkmark$    |                 |              |                 | $\checkmark$    |              |              |
| FE for Precinct              |                 |                 | $\checkmark$    |              |                 |                 | $\checkmark$ |              |
| FE for Address               |                 |                 |                 | $\checkmark$ |                 |                 |              | $\checkmark$ |
| Observations                 | $6,\!407,\!557$ | $6,\!407,\!557$ | $6,\!407,\!557$ | $409,\!192$  | $6,\!140,\!366$ | $6,\!140,\!366$ | 6,140,366    | $372,\!898$  |
| $\mathbb{R}^2$               | 0.104           | 0.115           | 0.140           | 0.231        | 0.109           | 0.117           | 0.135        | 0.252        |
| Adjusted R <sup>2</sup>      | 0.104           | 0.115           | 0.139           | 0.149        | 0.109           | 0.117           | 0.135        | 0.165        |
| Note:                        |                 |                 |                 |              |                 |                 |              | *p<0.0       |
|                              |                 |                 |                 |              |                 |                 |              |              |

A-13

|                              |                 |                 |                 | Dependen     | t variable:   |               |                 |              |
|------------------------------|-----------------|-----------------|-----------------|--------------|---------------|---------------|-----------------|--------------|
|                              |                 | 2016 Gener      | al Turnout      |              |               | 2016 Prima    | ry Turnout      |              |
|                              | (1)             | (2)             | (3)             | (4)          | (5)           | (6)           | (7)             | (8)          |
| Auto in HH                   | $0.061^{*}$     | $0.060^{*}$     | $0.045^{*}$     | -0.020       | $0.015^{*}$   | $0.018^{*}$   | $0.021^{*}$     | 0.010        |
|                              | (0.002)         | (0.002)         | (0.002)         | (0.008)      | (0.002)       | (0.002)       | (0.002)         | (0.008)      |
| Drivers License              | $0.170^{*}$     | $0.165^{*}$     | $0.154^{*}$     | $0.132^{*}$  | $0.088^{*}$   | $0.084^{*}$   | $0.076^{*}$     | $0.037^{*}$  |
|                              | (0.002)         | (0.002)         | (0.002)         | (0.008)      | (0.002)       | (0.002)       | (0.002)         | (0.008)      |
| Auto in HH x Drivers License | $0.365^{*}$     | $0.368^{*}$     | $0.365^{*}$     | $0.285^{*}$  | $0.097^{*}$   | $0.101^{*}$   | $0.104^{*}$     | $0.092^{*}$  |
|                              | (0.002)         | (0.002)         | (0.002)         | (0.005)      | (0.002)       | (0.002)       | (0.002)         | (0.005)      |
| Male                         | $-0.050^{*}$    | $-0.050^{*}$    | $-0.049^{*}$    | $-0.076^{*}$ | $-0.013^{*}$  | $-0.013^{*}$  | $-0.013^{*}$    | $-0.020^{*}$ |
|                              | (0.0003)        | (0.0003)        | (0.0003)        | (0.002)      | (0.0004)      | (0.0004)      | (0.0004)        | (0.002)      |
| White                        | $0.098^{*}$     | $0.099^{*}$     | $0.033^{*}$     | $0.025^{*}$  | $0.057^{*}$   | $0.046^{*}$   | $0.047^{*}$     | $0.022^{*}$  |
|                              | (0.0005)        | (0.001)         | (0.001)         | (0.003)      | (0.001)       | (0.001)       | (0.001)         | (0.003)      |
| Age                          | $0.003^{*}$     | $0.003^{*}$     | $0.003^{*}$     | $0.001^{*}$  | $0.008^{*}$   | $0.008^{*}$   | $0.008^{*}$     | $0.004^{*}$  |
| 0                            | (0.00001)       | (0.00001)       | (0.00001)       | (0.0001)     | (0.00001)     | (0.00001)     | (0.00001)       | (0.0001)     |
| Constant                     | $-0.039^{*}$    |                 |                 |              | $-0.407^{*}$  |               |                 |              |
|                              | (0.002)         |                 |                 |              | (0.002)       |               |                 |              |
| FE for County                |                 | $\checkmark$    |                 |              |               | √             |                 |              |
| FE for Precinct              |                 |                 | $\checkmark$    |              |               |               | $\checkmark$    |              |
| FE for Address               |                 |                 |                 | $\checkmark$ |               |               |                 | $\checkmark$ |
| Observations                 | $5,\!878,\!275$ | $5,\!878,\!275$ | $5,\!878,\!275$ | $346,\!093$  | $5,047,\!643$ | $5,047,\!643$ | $5,\!047,\!643$ | 256,929      |
| $\mathbb{R}^2$               | 0.100           | 0.108           | 0.135           | 0.259        | 0.109         | 0.116         | 0.137           | 0.312        |
| Adjusted R <sup>2</sup>      | 0.100           | 0.108           | 0.134           | 0.166        | 0.109         | 0.116         | 0.136           | 0.197        |
| Notes                        |                 |                 |                 |              |               |               |                 | * ~ < 0.01   |

#### Table A10: Effects of Car Ownership and Drivers Licenses on 2016 Election Turnout

Note:

#### G Effect of Car Access Among Sample of Voters Matched to Drivers' Licenses

Voter registration databases are notorious for having large numbers of "deadwood" registrants – people who are no longer alive, have moved, or are no longer eligible to vote in the state for a variety of other reasons. Deadwood in our voter registration database is generally less of a danger than in state-maintained registration lists given that the data vendor (L2) engages in a thorough cleaning and matching process to other data sources that can help eliminate deadwood, such as the National Change of Address database maintained by USPS and death records. However, there is still the danger that some deadwood registrants in our data might match to the auto ownership database at a rate that correlates with their voter turnout. For example, dead registrants are less likely to have a record of turning out to vote in recent elections and also less likely to match to an administrative dataset of car owners given that car registrations are updated regularly. This would potentially artificially depress the turnout rates of people without access to a car.

Though we believe this is unlikely due to the effort that L2 puts into removing deadwood from registrant lists, we engaged in an empirical exercise that helps to account for this potential differential matching. Since registrants matched between two administrative datasets are less likely to be deadwood, we use the subset of our registrant data that matched to the drivers' license dataset. Registrants matched to this dataset are unlikely to have this differential deadwood matching problem, given that all of these registrants have already matched to one administrative dataset (licenses). We then examined the effect of car access on these licensed registrants.

In Table A11 and Table A12, we demonstrate that access to a car has an effect on voter participation among the subsample of registrants whom we matched to the drivers' license database.

|                         | Depender                                      |                          |                          |                         | nt variable:             |                          |                          |                          |
|-------------------------|-----------------------------------------------|--------------------------|--------------------------|-------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|                         | 2018 General Turnout                          |                          |                          | 2018 Primary Turnout    |                          |                          |                          |                          |
|                         | (1)                                           | (2)                      | (3)                      | (4)                     | (5)                      | (6)                      | (7)                      | (8)                      |
| Auto in HH              | $0.258^{*}$<br>(0.001)                        | $0.252^{*}$<br>(0.001)   | $0.225^{*}$<br>(0.001)   | $0.123^{*}$<br>(0.002)  | $0.168^{*}$<br>(0.001)   | $0.165^{*}$<br>(0.001)   | $0.152^{*}$<br>(0.001)   | $0.078^{*}$<br>(0.002)   |
| Male                    | $-0.028^{*}$<br>(0.0004)                      | $-0.027^{*}$<br>(0.0004) | $-0.027^{*}$<br>(0.0004) | $-0.048^{*}$<br>(0.002) | $-0.017^{*}$<br>(0.0004) | $-0.016^{*}$<br>(0.0004) | $-0.016^{*}$<br>(0.0004) | $-0.022^{*}$<br>(0.001)  |
| White                   | $0.100^{*}$<br>(0.001)                        | $0.106^{*}$<br>(0.001)   | $0.048^{*}$<br>(0.001)   | $0.032^{*}$<br>(0.003)  | $0.052^{*}$<br>(0.001)   | $0.068^{*}$<br>(0.001)   | $0.047^{*}$<br>(0.001)   | $0.031^{*}$<br>(0.002)   |
| Age                     | $0.005^{*}$<br>(0.00001)                      | $0.005^{*}$<br>(0.00001) | $0.005^{*}$<br>(0.00001) | $0.003^{*}$<br>(0.0001) | $0.008^{*}$<br>(0.00001) | $0.008^{*}$<br>(0.00001) | $0.008^{*}$<br>(0.00001) | $0.005^{*}$<br>(0.00005) |
| Constant                | $0.060^{*}$<br>(0.001)                        |                          |                          |                         | $-0.258^{*}$<br>(0.001)  |                          |                          |                          |
| FE for County           |                                               | $\checkmark$             |                          |                         |                          | $\checkmark$             |                          |                          |
| FE for Precinct         |                                               |                          | $\checkmark$             |                         |                          |                          | $\checkmark$             |                          |
| FE for Address          |                                               |                          |                          | $\checkmark$            |                          |                          |                          | $\checkmark$             |
| Observations            | $6,\!201,\!533$                               | $6,\!201,\!533$          | $6,\!201,\!533$          | $388,\!235$             | 5,944,756                | $5,\!944,\!756$          | $5,\!944,\!756$          | $354,\!565$              |
| $R^2$<br>Adjusted $R^2$ | $\begin{array}{c} 0.078 \\ 0.078 \end{array}$ | $0.089 \\ 0.089$         | $0.115 \\ 0.115$         | $0.221 \\ 0.134$        | $0.102 \\ 0.102$         | $0.111 \\ 0.111$         | $0.129 \\ 0.128$         | $0.250 \\ 0.157$         |
| Note:                   |                                               |                          |                          |                         |                          |                          |                          | *p<0.01                  |

# Table A11: Effect of Car Ownership on 2018 Turnout — Voters with Drivers Licenses

Note:

|                                                    |                             | Depender                    |                             |                                       |                                                            |                                                         |                                                         |                                |
|----------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------------------------|------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------|
|                                                    | 2016 General Turnout        |                             |                             | 2016 Primary Turnout                  |                                                            |                                                         |                                                         |                                |
|                                                    | (1)                         | (2)                         | (3)                         | (4)                                   | (5)                                                        | (6)                                                     | (7)                                                     | (8)                            |
| Auto in HH                                         | $0.231^{*}$<br>(0.001)      | $0.225^{*}$<br>(0.001)      | $0.196^{*}$<br>(0.001)      | $0.110^{*}$<br>(0.002)                | $0.102^{*}$<br>(0.001)                                     | $0.101^{*}$<br>(0.001)                                  | $0.096^{*}$<br>(0.001)                                  | $0.047^{*}$<br>(0.002)         |
| Male                                               | $-0.050^{*}$<br>(0.0004)    | $-0.050^{*}$<br>(0.0004)    | $-0.049^{*}$<br>(0.0003)    | $-0.076^{*}$<br>(0.002)               | $-0.013^{*}$<br>(0.0004)                                   | $-0.013^{*}$<br>(0.0004)                                | $-0.013^{*}$<br>(0.0004)                                | $-0.020^{*}$<br>(0.002)        |
| White                                              | $0.099^{*}$<br>(0.0005)     | $0.100^{*}$<br>(0.001)      | $0.035^{*}$<br>(0.001)      | $0.027^{*}$<br>(0.003)                | $0.059^{*}$<br>(0.001)                                     | $0.048^{*}$<br>(0.001)                                  | $0.050^{*}$<br>(0.001)                                  | $0.024^{*}$<br>(0.003)         |
| Age                                                | $0.003^{*}$<br>(0.00001)    | $0.003^{*}$<br>(0.00001)    | $0.003^{*}$<br>(0.00001)    | $0.001^{*}$<br>(0.0001)               | $0.008^{*}$<br>(0.00001)                                   | $0.008^{*}$<br>(0.00001)                                | $0.008^{*}$<br>(0.00001)                                | $0.004^{*}$<br>(0.0001)        |
| Constant                                           | $0.312^{*}$<br>(0.001)      |                             |                             |                                       | $-0.326^{*}$<br>(0.001)                                    |                                                         |                                                         |                                |
| FE for County<br>FE for Precinct<br>FE for Address |                             | $\checkmark$                | $\checkmark$                | √                                     |                                                            | $\checkmark$                                            | $\checkmark$                                            | √                              |
| $R^2$<br>Adjusted $R^2$                            | 5,687,215<br>0.057<br>0.057 | 5,687,215<br>0.065<br>0.065 | 5,687,215<br>0.093<br>0.092 | $\sqrt[4]{328,630} \\ 0.241 \\ 0.140$ | $\begin{array}{c} 4,877,742 \\ 0.105 \\ 0.105 \end{array}$ | $\begin{array}{c} 4,877,742\\ 0.112\\ 0.112\end{array}$ | $\begin{array}{c} 4,877,742\\ 0.134\\ 0.133\end{array}$ | v<br>243,853<br>0.311<br>0.190 |
| Note:                                              |                             |                             |                             |                                       |                                                            |                                                         |                                                         | *p<0.01                        |

# Table A12: Effect of Car Ownership on 2016 Turnout — Voters with Drivers Licenses

# H Descriptive Information on Travel Time to Polls and the Effect of Travel Time on Participation

In Figure A2 below we present the density of travel time to get to the polls both with and without access to a car for all registered voter in the 1% random sample of the voter file.

In Figure A3 we present the density of the difference between these two quantities for each potential voter in the 1% sample (i.e. the travel time with car access subtracted from the travel time without access to a car). As described in the main text of the paper, this additional time burden on voters without access to a car ranges from a median of approximately 18.5 minutes to time burdens of over an hour.

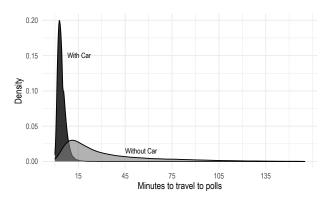



Figure A2: Minutes to travel to polls.

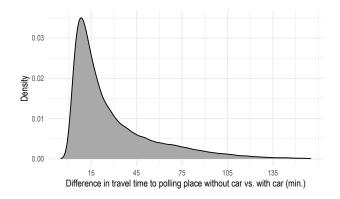



Figure A3: Differences in minutes to travel to polls with and without a car.

In Table A13 we show the results from the models presented in the main text of the paper in Figure 2, showing moderation of the effect of car access by travel time burden. In addition, we replicate this examination of the moderating effect of travel time using our within-address

|                         | Dependent variable: |              |              |              |  |  |  |
|-------------------------|---------------------|--------------|--------------|--------------|--|--|--|
|                         | 2018 Turnout        |              |              |              |  |  |  |
|                         | 1st Quartile        | 2nd Quartile | 3rd Quartile | 4th Quartile |  |  |  |
|                         | (1)                 | (2)          | (3)          | (4)          |  |  |  |
| Auto in HH              | $0.216^{*}$         | $0.225^{*}$  | $0.222^{*}$  | $0.268^{*}$  |  |  |  |
|                         | (0.012)             | (0.014)      | (0.015)      | (0.017)      |  |  |  |
| Male                    | $-0.036^{*}$        | $-0.043^{*}$ | -0.017       | 0.002        |  |  |  |
|                         | (0.008)             | (0.008)      | (0.008)      | (0.008)      |  |  |  |
| White                   | 0.030               | 0.033        | 0.038        | 0.038        |  |  |  |
|                         | (0.015)             | (0.015)      | (0.016)      | (0.023)      |  |  |  |
| Age                     | 0.004*              | $0.005^{*}$  | $0.005^{*}$  | $0.006^{*}$  |  |  |  |
| 0                       | (0.0002)            | (0.0002)     | (0.0002)     | (0.0002)     |  |  |  |
| FE for Precinct         | $\checkmark$        | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |  |
| Observations            | $15,\!975$          | $15,\!996$   | $15,\!999$   | 16,084       |  |  |  |
| $\mathbb{R}^2$          | 0.289               | 0.301        | 0.282        | 0.219        |  |  |  |
| Adjusted R <sup>2</sup> | 0.128               | 0.123        | 0.115        | 0.098        |  |  |  |
| Note                    |                     |              |              | *n<0.01      |  |  |  |

comparison (i.e. columns 4 and 8 of Table 1 in the main text) in Figure A4 and Table A14. Table A13: Within-Precinct Effect of Car Access on Turnout, by Quartile of Travel Time Burden

Note:

p < 0.01

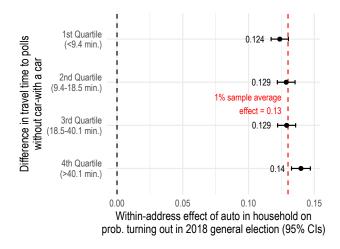



Figure A4: Within-address differences in participation rates, by travel time to polls.

|                         | Dependent variable: |              |              |              |  |  |  |  |
|-------------------------|---------------------|--------------|--------------|--------------|--|--|--|--|
|                         |                     | 2018 Turnout |              |              |  |  |  |  |
|                         | 1st Quartile        | 2nd Quartile | 3rd Quartile | 4th Quartile |  |  |  |  |
|                         | (1)                 | (2)          | (3)          | (4)          |  |  |  |  |
| Auto in HH              | $0.124^{*}$         | $0.129^{*}$  | $0.129^{*}$  | $0.140^{*}$  |  |  |  |  |
|                         | (0.003)             | (0.003)      | (0.003)      | (0.004)      |  |  |  |  |
| Male                    | $-0.048^{*}$        | $-0.042^{*}$ | $-0.053^{*}$ | $-0.035^{*}$ |  |  |  |  |
|                         | (0.003)             | (0.003)      | (0.003)      | (0.003)      |  |  |  |  |
| White                   | $0.046^{*}$         | 0.044*       | $0.021^{*}$  | $0.023^{*}$  |  |  |  |  |
|                         | (0.005)             | (0.005)      | (0.005)      | (0.005)      |  |  |  |  |
| Age                     | $0.002^{*}$         | $0.003^{*}$  | $0.003^{*}$  | $0.003^{*}$  |  |  |  |  |
| 0                       | (0.0001)            | (0.0001)     | (0.0001)     | (0.0001)     |  |  |  |  |
| FE for Address          | $\checkmark$        | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |  |  |
| Observations            | 104,029             | 102,436      | 102,105      | 100,504      |  |  |  |  |
| $\mathbb{R}^2$          | 0.220               | 0.226        | 0.220        | 0.215        |  |  |  |  |
| Adjusted $\mathbb{R}^2$ | 0.142               | 0.136        | 0.136        | 0.136        |  |  |  |  |
| Note:                   |                     |              |              | *p<0.01      |  |  |  |  |

Table A14: Within-Address Effect of Car Access on Turnout, by Quartile of Travel Time Burden

#### I Disparate Effects of Car Access

On whom do the effects of car access have the greatest impact on political participation? Underlying patterns of car ownership are not equal across certain demographic characteristics. While 92% of white registrants in our voter file have access to cars, only 74% of Black registrants and 86% of Hispanic registrants do. Similar (though smaller) differences occur across age categories, as we show in Figure A5. We might therefore expect car access to have differential effects on turnout.

To examine who bears the largest burden from a lack of access to a car (and whose participation is most boosted by car access) we next examine differences in turnout between those with a car and without a car by age and race. Figure A6 compares turnout rates in the 2018 general election by age and race. Across all subgroups, turnout is significantly higher among car owners compared to non-owners. The largest effects of car access on turnout are among white registrants and older registrants.<sup>10</sup> White registrants without access to a car turn out at an average rate of 39.3%, while Black registrants without a car turn out at a rate of 29.2% and Hispanic registrants at a rate of 24.6%. Meanwhile, among those with access to a car, 67.5% of white registrants turn out, while only 53.4% of Black registrants and 49.7% of Hispanic registrants turn out. The difference in turnout rates between White and Black registrants without car access is 10.1 percentage points, while this gap in turnout widens to 14.1 percentage points for those with access to a car. Similarly, the difference in turnout between White and Hispanic registrants is 14.7 percentage points among those without car access, but an even larger 17.8 percentage points for those with access to a car. In other words, disparate access to cars widens existing participatory gaps.

In Figure A7 we present the coefficients for the effect of car access within age and race/ethnicity subgroups, which represent the differences between the subgroup mean turnout rates presented in Figure A6. In Table A15 and Table A16 we present the tabular results for these models in each subgroup as well.

<sup>&</sup>lt;sup>10</sup>Figure A7 and Tables A15 and A16 present regression results for each subgroup, using the full voter file and precinct fixed effects. The differences in turnout due to car ownership appear across all groups.

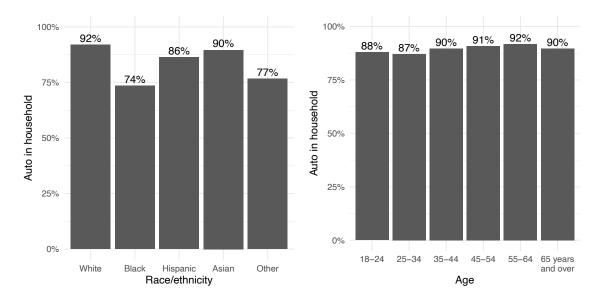



Figure A5: Differences in Car Access among Race and Age Subgroups

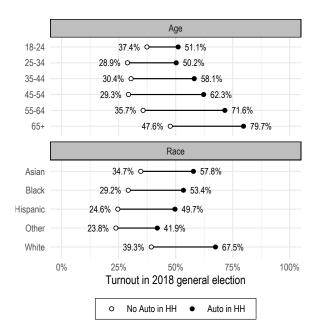



Figure A6: Differences in Turnout by Car Ownership among Age and Race Subgroups

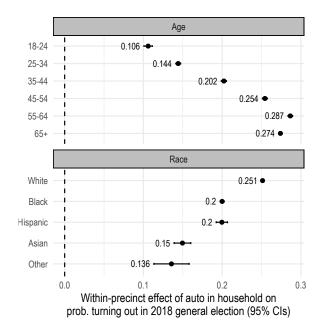



Figure A7: Differential effects of car access by race and age

|                         | Dependent variable: |                      |              |              |              |             |  |  |  |
|-------------------------|---------------------|----------------------|--------------|--------------|--------------|-------------|--|--|--|
|                         |                     | 2018 General Turnout |              |              |              |             |  |  |  |
|                         | 18-24               | 25 - 34              | 35-44        | 45-54        | 55-64        | 65 +        |  |  |  |
|                         | (1)                 | (2)                  | (3)          | (4)          | (5)          | (6)         |  |  |  |
| Auto in HH              | $0.106^{*}$         | 0.144*               | $0.202^{*}$  | 0.254*       | $0.287^{*}$  | $0.274^{*}$ |  |  |  |
|                         | (0.003)             | (0.002)              | (0.002)      | (0.002)      | (0.002)      | (0.001)     |  |  |  |
| Male                    | $-0.045^{*}$        | $-0.055^{*}$         | $-0.045^{*}$ | $-0.018^{*}$ | $-0.014^{*}$ | 0.012*      |  |  |  |
|                         | (0.002)             | (0.001)              | (0.001)      | (0.001)      | (0.001)      | (0.001)     |  |  |  |
| White                   | 0.042*              | $0.060^{*}$          | $0.051^{*}$  | $0.039^{*}$  | $0.050^{*}$  | $0.057^{*}$ |  |  |  |
|                         | (0.003)             | (0.002)              | (0.002)      | (0.002)      | (0.002)      | (0.002)     |  |  |  |
| FE for Precinct         |                     | $\checkmark$         | ✓            | $\checkmark$ | $\checkmark$ |             |  |  |  |
| Observations            | 397,722             | 958,711              | 988,012      | 1,137,469    | 1,275,008    | 1,650,635   |  |  |  |
| $\mathbb{R}^2$          | 0.063               | 0.081                | 0.088        | 0.095        | 0.097        | 0.101       |  |  |  |
| Adjusted $\mathbb{R}^2$ | 0.052               | 0.077                | 0.083        | 0.091        | 0.094        | 0.099       |  |  |  |
| Note:                   |                     |                      |              |              |              | *p<0.01     |  |  |  |

Table A15: Effect of Car Ownership on 2018 General Election Turnout by Age

|                         | Dependent variable:  |              |              |             |              |  |  |
|-------------------------|----------------------|--------------|--------------|-------------|--------------|--|--|
|                         | 2018 General Turnout |              |              |             |              |  |  |
|                         | White                | Black        | Hispanic     | Asian       | Other        |  |  |
|                         | (1)                  | (2)          | (3)          | (4)         | (5)          |  |  |
| Auto in HH              | $0.251^{*}$          | $0.200^{*}$  | $0.200^{*}$  | $0.150^{*}$ | $0.136^{*}$  |  |  |
|                         | (0.001)              | (0.001)      | (0.004)      | (0.005)     | (0.011)      |  |  |
| Male                    | $-0.007^{*}$         | $-0.114^{*}$ | $-0.051^{*}$ | -0.005      | $-0.064^{*}$ |  |  |
|                         | (0.0004)             | (0.001)      | (0.002)      | (0.003)     | (0.009)      |  |  |
| Age                     | $0.005^{*}$          | $0.005^{*}$  | $0.003^{*}$  | $0.003^{*}$ | $0.003^{*}$  |  |  |
| 0                       | (0.00001)            | (0.00003)    | (0.0001)     | (0.0001)    | (0.0003)     |  |  |
| FE for Precinct         | $\checkmark$         | $\checkmark$ | $\checkmark$ | ✓           | √            |  |  |
| Observations            | $5,\!403,\!840$      | $719,\!191$  | 160,820      | $112,\!350$ | $11,\!356$   |  |  |
| $\mathbb{R}^2$          | 0.103                | 0.136        | 0.130        | 0.106       | 0.242        |  |  |
| Adjusted R <sup>2</sup> | 0.102                | 0.132        | 0.105        | 0.080       | 0.106        |  |  |
| Note:                   |                      |              |              |             | *p<0.01      |  |  |

Table A16: Effect of Car Ownership on 2018 General Election Turnout by Race

#### J Effect on Vote Mode: Tabular Results

In Table A17 we present the tabular results that correspond to the average turnout rates presented in Figure 3 of the main paper. Moreoever, in Table A18 we present the predicted probabilities of each choice options from multinomial logit analyses to examine the full choice set allowing of voting absentee, voting in person, and not voting. The coefficients from this multinomial logit are also presented in Table A19. These results confirm the OLS models and demonstrate that car access slightly increases the likelihood of absentee voting, but has a substantively much larger effect on in-person voting.

|                              |                       | Depender               | nt variable:          |                        |
|------------------------------|-----------------------|------------------------|-----------------------|------------------------|
|                              | 2018 General Absentee | 2018 General In-Person | 2018 Primary Absentee | 2018 Primary In-Person |
|                              | (1)                   | (2)                    | (3)                   | (4)                    |
| Auto in HH                   | $0.014^{*}$           | $0.117^{*}$            | $0.011^{*}$           | $0.069^{*}$            |
|                              | (0.001)               | (0.002)                | (0.001)               | (0.001)                |
| Male                         | $-0.029^{*}$          | $-0.015^{*}$           | $-0.020^{*}$          | -0.0003                |
|                              | (0.001)               | (0.001)                | (0.001)               | (0.001)                |
| White                        | $0.010^{*}$           | $0.025^{*}$            | $0.010^{*}$           | $0.020^{*}$            |
|                              | (0.002)               | (0.002)                | (0.002)               | (0.002)                |
| Age                          | $0.006^{*}$           | $-0.003^{*}$           | $0.004^{*}$           | $0.0004^{*}$           |
| 0                            | (0.00003)             | (0.0001)               | (0.00003)             | (0.00004)              |
| FE for Address               | $\checkmark$          | $\checkmark$           | $\checkmark$          | $\checkmark$           |
| Observations                 | 408,839               | 408,839                | $372,\!684$           | $372,\!684$            |
| $\mathbb{R}^2$               | 0.334                 | 0.212                  | 0.284                 | 0.186                  |
| Adjusted R <sup>2</sup>      | 0.264                 | 0.128                  | 0.200                 | 0.091                  |
| $\frac{R^2}{Adjusted \ R^2}$ |                       |                        |                       |                        |

Table A17: Effect of Car Ownership on 2018 General Election Voting Method

Note:

| Variable      | Did not vote | Absentee | In-person |
|---------------|--------------|----------|-----------|
| Auto in HH    | 44.74        | 15.27    | 39.99     |
| No Auto in HH | 61.52        | 13.87    | 24.61     |
| Male          | 53.61        | 12.42    | 33.97     |
| Female        | 49.03        | 16.08    | 34.89     |
| White         | 50.08        | 14.88    | 35.04     |
| Non-white     | 52.94        | 14.14    | 32.92     |
| Age: 18-24    | 52.41        | 1.83     | 45.76     |
| Age: 25-34    | 57.69        | 2.12     | 40.20     |
| Age: 35-44    | 59.52        | 2.33     | 38.15     |
| Age: 45-54    | 58.12        | 3.81     | 38.07     |
| Age: 55-64    | 50.37        | 11.60    | 38.04     |
| Age: 65+      | 38.64        | 40.53    | 20.83     |

Table A18: Predicted Probabilities of Full Choice Set from Multinomial Logit Regression

Table A19: Effect of Car Ownership on 2018 General Election Voting Method, Multinomial Logit

|                   | Dependent variable:             |                                  |  |  |  |
|-------------------|---------------------------------|----------------------------------|--|--|--|
|                   | Choose absentee over not voting | Choose in-person over not voting |  |  |  |
|                   | (1)                             | (2)                              |  |  |  |
| Auto in HH        | 0.429***                        | 0.807***                         |  |  |  |
|                   | (0.011)                         | (0.008)                          |  |  |  |
| Male              | $-0.428^{***}$                  | $-0.115^{***}$                   |  |  |  |
|                   | (0.011)                         | (0.007)                          |  |  |  |
| White             | 0.122***                        | 0.121***                         |  |  |  |
|                   | (0.013)                         | (0.008)                          |  |  |  |
| Age: 18-24        | $-1.374^{***}$                  | 0.113***                         |  |  |  |
| 0                 | (0.034)                         | (0.010)                          |  |  |  |
| Age: 25-34        | $-1.327^{***}$                  | $-0.121^{***}$                   |  |  |  |
| 0                 | (0.022)                         | (0.007)                          |  |  |  |
| Age: 35-44        | $-1.266^{***}$                  | $-0.207^{***}$                   |  |  |  |
| -                 | (0.026)                         | (0.008)                          |  |  |  |
| Age: 45-54        | $-0.748^{***}$                  | $-0.184^{***}$                   |  |  |  |
| -                 | (0.021)                         | (0.008)                          |  |  |  |
| Age: 55-64        | 0.515***                        | $-0.034^{***}$                   |  |  |  |
| -                 | (0.014)                         | (0.008)                          |  |  |  |
| Age: 65+          | 2.042***                        | $-0.370^{***}$                   |  |  |  |
|                   | (0.011)                         | (0.008)                          |  |  |  |
| Constant          | $-2.158^{***}$                  | $-0.803^{***}$                   |  |  |  |
|                   | (0.013)                         | (0.007)                          |  |  |  |
| Akaike Inf. Crit. | 707,899.600                     | 707,899.600                      |  |  |  |
| Note:             |                                 | *p<0.1; **p<0.05; ***p<0.01      |  |  |  |

# K Subgroup Effects within Individual Counties

In Figure A8 and Figure A9 we replicate the same models presented in the main text of the paper, but within county subgroups of registered voters for both 2018 general and primary election participation. In Figures A10 and A11 we do the same but for the 2016 general and primary elections.

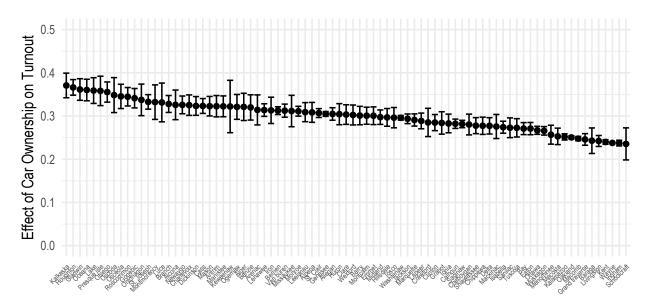



Figure A8: Effect of Car Ownership by County, 2018 General Election

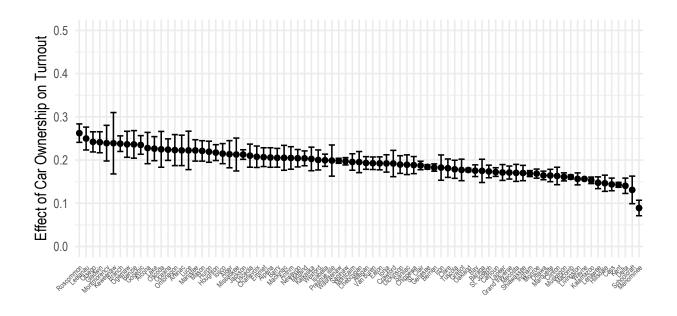



Figure A9: Effect of Car Ownership by County, 2018 Primary Election

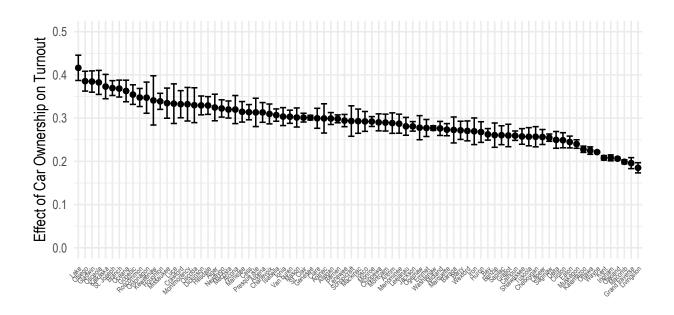



Figure A10: Effect of Car Ownership by County, 2016 General Election

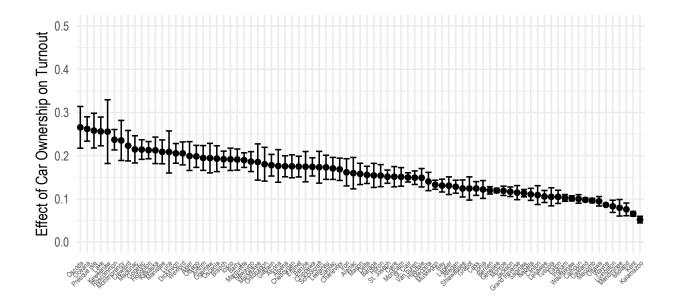



Figure A11: Effect of Car Ownership by County, 2016 Primary Election

#### L Effect in Survey Data

Few large-scale surveys that ask questions about political behavior also ask about access to transportation. The American National Election Studies, Cooperative Congressional Election Surveys, and National Annenberg Election Surveys all neglect to ask about transportation access or mode of transportation as it relates to voting. However, the American Panel Survey (TAPS), run by the Weidenbaum Center at Washington University in St. Louis, does ask questions about political participation and did briefly ask about frequency of driving in surveys run in 2014 and 2015. These surveys are publicly available online,<sup>11</sup> and so we used these data to assess whether the effects of car access that we observe in our administrative data might be confounded by other demographic characteristics of potential voters. In Table A20 we present the results of analyses comparing reported turnout rates in the 2014 midterm election among people who did and did not frequently drive. We find that access to a car still has a large positive effect on reported turnout even controlling for race, gender, education, and age – all of which are established as demographics that can influence turnout rates.

<sup>&</sup>lt;sup>11</sup>https://wc.wustl.edu/american-panel-survey

|                                               | Dependent variable:                                                             |                                                       |  |
|-----------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------|--|
|                                               | Reported Voti<br>Nov. 2014 Survey                                               | ng in Nov. 2014<br>Oct. 2015 Survey                   |  |
|                                               | (1)                                                                             | (2)                                                   |  |
| Reported driving a car regularly, Dec. 2014   | 0.189***<br>(0.041)                                                             |                                                       |  |
| Reported driving a car regularly, May 2015    |                                                                                 | $0.098^{**}$<br>(0.043)                               |  |
| Race/Eth.: Black, non-Hispanic                | $\begin{array}{c} 0.052 \\ (0.040) \end{array}$                                 | $0.136^{***}$<br>(0.042)                              |  |
| Race/Eth.: Other, non-Hispanic                | $-0.163^{***}$<br>(0.048)                                                       | -0.054<br>(0.052)                                     |  |
| Race/Eth.: Hispanic                           | $-0.145^{***}$<br>(0.035)                                                       | -0.019<br>(0.039)                                     |  |
| Race/Eth.: 2+ Races, non-Hispanic             | -0.067<br>(0.071)                                                               | -0.033<br>(0.075)                                     |  |
| Female                                        | $-0.041^{**}$<br>(0.021)                                                        | -0.022<br>(0.021)                                     |  |
| Education: High school degree                 | $0.164^{**}$<br>(0.070)                                                         | -0.027<br>(0.079)                                     |  |
| Education: Some college                       | $0.250^{***}$<br>(0.067)                                                        | $0.076 \\ (0.075)$                                    |  |
| Education: Bachelor's degree or higher        | $\begin{array}{c} 0.317^{***} \\ (0.066) \end{array}$                           | $0.151^{**}$<br>(0.074)                               |  |
| Age: 30-44                                    | $0.100^{**}$<br>(0.044)                                                         | $0.076 \\ (0.050)$                                    |  |
| Age: 45-59                                    | $\begin{array}{c} 0.277^{***} \\ (0.042) \end{array}$                           | $\begin{array}{c} 0.217^{***} \\ (0.047) \end{array}$ |  |
| Age: 60+                                      | $0.364^{***}$<br>(0.041)                                                        | $\begin{array}{c} 0.342^{***} \\ (0.046) \end{array}$ |  |
| Constant                                      | $0.123 \\ (0.081)$                                                              | $0.405^{***}$<br>(0.091)                              |  |
| Observations<br>R <sup>2</sup><br>F Statistic | $ \begin{array}{r} 1,378 \\ 0.177 \\ 24.385^{***} (df = 12; 1365) \end{array} $ | $1,167 \\ 0.130 \\ 14.433^{***} (df = 12; 1154$       |  |

# Table A20: Effect of Driving Frequency on 2014 General Election Turnout

 $\label{eq:constraint} \begin{array}{c} ^*p{<}0.1; \ ^{**}p{<}0.05; \ ^{***}p{<}0.01\\ \\ Omitted \ category \ for \ race \ is \ White, \ non-Hispanic\\ Omitted \ category \ for \ education \ is \ Less \ than \ high \ school \end{array}$ 

Omitted category for age is 18-29