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A.1. Model Estimation and Factor Selection

We report the detailed MCMC algorithm for estimating the proposed MLST-MF model. In

the R package bpNet we developed, we offer several options to specify the state equation

of 𝜌𝑡 , but our discussion here focuses on the algorithm based on the AR(1) specification

of 𝜌𝑡 . When specifying 𝜌𝑡 as a random walk, the model can be estimated using the same

simulation algorithm by setting 𝜅 = 1. When 𝜌𝑡 is specified as a varying slop coefficient,

we simply treat 𝜌𝑡 as an ordinary random coefficient in a truncated parameter space, and

the algorithm specified below can be applied with minor modifications.

A.1.1. The Posterior. To offer more flexibilities, the MCMC algorithm in the package

bpNet is based on a more general form of the model than the one in the main text:

𝑦𝑖𝑡 = 𝜌𝑡w𝑖𝑡y𝑡 + w𝑖𝑡X𝑡 𝜷1𝑖𝑡 + 𝛾𝑦𝑖,𝑡−1 + x𝑖𝑡 𝜷2 + 𝜈𝑖 + 𝜓𝑡 + 𝜻 𝑖f𝑡 + 𝜖𝑖𝑡 , (A1)

𝜷1𝑖𝑡 = 𝜷1 + b𝑖 + c𝑡 , (A2)

𝜌𝑡 = 𝜅𝜌𝑡−1 + Z′
𝑡𝜶 + 𝜂𝑡 (A3)

The major difference between this model specification and the one in the main text is that

here we also allow the exogenous network effects to vary. The user can choose whether

to turn on or off the options of b𝑖 and c𝑡 when using the package. When estimating

parameters, we put the fixed-effects into the multifactor term and reparameterize the factor

loadings for applying Bayesian shrinkage. We use the following reduced form of the

model in a matrix expression:

A(𝜌𝑡 )y𝑡 = 𝛾y𝑡−1 + X1𝑡 𝜷 + X2𝑡b + X2𝑡c𝑡 + ℨ(𝝎 · f𝑡 ) + 𝝐 𝑡 (A4)
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where A(𝜌𝑡 ) = I − 𝜌𝑡W𝑡 is an 𝑁 × 𝑁 matrix, X1𝑡 = {W𝑡X𝑡 , x𝑡 } is a 𝑁 × 2𝑝 matrix,

𝜷 = (𝜷′
1, 𝜷

′
2) ′ is a 2𝑝 × 1 column vector, X2𝑡 = w𝑡x𝑡 is a 𝑁 × 𝑝 matrix, and X2𝑡 is a

𝑁 × 𝑁𝑝 matrix with

X2𝑡 =

©­­­­­«
x2𝑡 ,1 · · · 0
...

. . .
...

0 0 x2𝑡 ,𝑁

ª®®®®®¬
where x2𝑡 ,𝑖 is the 𝑖𝑡ℎ row of X2𝑡 . b = (b′

1, · · · , b
′
𝑖
, · · · , b′

𝑁
) ′ is a 𝑁𝑝 × 1 column vector,

and c𝑡 is a 𝑝×1 column vector. 𝜔 is an 𝑟×1 weights vector, 𝑓𝑡 is an 𝑟×1 vector of common

factor at time 𝑡, and ℨ is an 𝑁 × 𝑟 matrix of factor loadings after reparameterization. “·”

represents point-wise product. Assume that E(𝝐 𝑡𝝐 ′𝑡 ) = 𝜎2
𝑒I𝑁 , ∀𝑡, and that 𝝐 𝑡 and 𝜂𝑡 are

not correlated. The covariate matrices X1𝑡 and X2𝑡 can both include a constant. When

there is a constant in X2𝑡 , no fixed effects should be included in the multifactor term.

The priors of the parameters to be estimated are specified as the following:

𝜷 ∼ N(𝜷0,B0), 𝜶 ∼ N(𝜶0,A0), 𝜸 ∼ U𝑆𝛾 , 𝜌𝑡 ∼ U𝑆𝜌𝑡
, 𝜅 ∼ U𝑆𝜅

b𝑖 ∼ N(0,D), c𝑡 ∼ N(0,E), f𝑡 ∼ N(0,I𝑟 ), 𝜻 𝑖 ∼ N(0,I𝑟 )

D−1 ∼ W(𝑑0,D0), E−1 ∼ W(𝑒0,E0), 𝜎−2
𝑒 ∼ G(𝑔1, 𝑔2), 𝜎−2

𝜂 ∼ G(𝑔3, 𝑔4)

𝜔 𝑗 |𝜏2
𝑗 ∼ N(0, 𝜏2

𝑗 ), 𝜏2
𝑗 |𝜆2 ∼ 𝐸𝑥𝑝(𝜆

2

2
), ∀1 ≤ 𝑗 ≤ 𝑟, 𝜆2 ∼ G(𝑔5, 𝑔6),

where N denotes (multivariate) Normal distribution, G(𝑎, 𝑏) denotes Gamma distribution

with parameters a and b, W denote Wishart distribution, 𝐸𝑥𝑝(𝜆) denotes Exponential

distribution with parameter 𝜆, and U𝑆 represents Uniform distribution within the space of

𝑆. Except the shrinkage priors, we make the priors flat and let the likelihood dominate the
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posterior. Following the Bayes Rule, the posterior is as the following:

𝜋(𝚯|Y) ∝𝜎−𝑁𝑇
𝑒

𝑇∏
𝑡=1

|A(𝜌𝑡 ) |

exp[− 1
2𝜎2

𝑒

{A(𝜌𝑡 )y𝑡 − 𝛾y𝑡−1 − X1𝑡 𝜷 − X2𝑡b − X2𝑡c𝑡 − ℨ(𝜔 · 𝑓𝑡 )}′

{A(𝜌𝑡 )y𝑡 − 𝛾y𝑡−1 − X1𝑡 𝜷 − X2𝑡b − X2𝑡c𝑡 − ℨ(𝜔 · f𝑡 )}]

𝜎−𝑇
𝜂 exp

(
−
(𝜌1 − Z′

1𝜶)
2

2𝜎2
𝜂

)
𝑇∏
𝑡=2

exp

(
−
(𝜌𝑡 − 𝜅𝜌𝑡−1 − Z′

𝑡𝜶)2

2𝜎2
𝜂

)
𝑇∏
𝑡=1

𝜋0 (𝜌𝑡 )
𝑁∏
𝑖=1

𝜋0 (b𝑖 |D)
𝑇∏
𝑡=1

𝜋0 (c𝑡 |E)
𝑟∏
𝑗=1

𝜋0 (𝜔 𝑗 |𝜏2
𝑗 )𝜋0 (𝜏2

𝑗 |𝜆2)

𝜋0 (𝛾)𝜋0 (𝜅)𝜋0 (𝜷)𝜋0 (𝜶)𝜋0 (D)𝜋0 (E)𝜋0 (ℨ)𝜋0 (F)𝜋0 (𝜆2)𝜋0 (𝜎−2
𝑒 )𝜋0 (𝜎−2

𝜂 )

(A5)

A.1.2. The Stationarity Space. When spatio-temporal modeling techniques are applied

to network analysis, time-spatial stationarity is normally not a concern since the social

space is not imagined to be infinite and the time-dimensional dynamic can be treated

as a local trend. Nonetheless, the proposed model may also be applied to investigate

interdependence in a geographical space, and then stationarity is relevant. Below we

develop a joint stationarity space of the dynamic parameters for situations when asymptotic

stability of the system is a concern.

When the response variable takes a spatial-temporal autoregressive process, stationarity

is based on the concept of separability (Anselin, Gallo, and Jayet 2008). Separability

requires that the space-time variance-covariance matrix be decomposed into two parts

of the time and space covariance matrices, linked by a Kronecker product (Anselin,

Gallo, and Jayet 2008). Therefore, the stationarity conditions of the time process depend

on those of the spatial process, and vice versa (Debarsy, Ertur, and LeSage 2012).
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Denote 𝑆𝜅 , 𝑆𝛾 , 𝑆𝜌𝑡 , as the stationarity spaces of 𝜅, 𝛾, 𝜌𝑡 respectively, we develop the

multi-dimensional stationarity space following Elhorst 2012:

𝑆𝜌𝑡 :1/𝜇𝑡𝑚𝑖𝑛 ≤ 𝜌𝑡 ≤ 1/𝜇𝑡𝑚𝑎𝑥 , 𝑆𝜅 : −1 ≤ 𝜅 ≤ 1 (A6)

𝑆𝛾 : if 𝜌𝑡 > 0, −1 + max(𝜇𝑡𝑚𝑎𝑥𝜌𝑡 : 𝑡 = 1, ..., 𝑇) < 𝛾 < 1 − max(𝜇𝑡𝑚𝑎𝑥𝜌𝑡 : 𝑡 = 1, ..., 𝑇)

(A7)

if 𝜌𝑡 ≤ 0 − 1 + max(𝜇𝑡𝑚𝑖𝑛𝜌𝑡 : 𝑡 = 1, ..., 𝑇) < 𝛾 < 1 − max(𝜇𝑡𝑚𝑖𝑛𝜌𝑡 : 𝑡 = 1, ..., 𝑇)

(A8)

where 𝜇𝑡𝑚𝑎𝑥 and 𝜇𝑡
𝑚𝑖𝑛

are the largest and smallest eigenvalues of the matrix W𝑡 . When

stationarity is not a concern, we only need the condition of 𝑆𝜌𝑡 to ensure the matrix

I − 𝜌𝑡W𝑡 is invertible.

Note that in the MCMC algorithm, we do not restrict the dynamic parameters in the

stationarity space. If the researcher thinks that stationarity is relevant in a particular

research, she can check whether the conditions stated in Equation (A6) to Equation (A8)

are met based on the MCMC output and decide whether to re-specify the model to achieve

stationarity.

A.1.3. The MCMC Algorithm. The parameters can be sequentially updated by randomly

sampling from their conditional posterior distributions, and the updating process is iterative

until the Markov chain converges in the ergodic space of the joint posterior distribution.

The sampling scheme can be briefly summarized as the following:

1. Choose starting values of the parameters

2. Sequentially sample the parameters from the following conditional posterior distri-

butions with most updated values of the parameters:
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(a) Update 𝛾 by sampling from the conditional posterior, 𝛾 ∼ TN𝑆𝛾 (𝛾̄, 𝜎2
𝛾),

where :

𝜎2
𝛾 = (𝜎−2

𝑒

𝑇∑︁
𝑡=2

y′
𝑡−1y𝑡−1)−1 (A9)

𝛾̄ = 𝜎2
𝛾𝜎

−2
𝑒

𝑇∑︁
𝑡=2

y′
𝑡−1 [A(𝜌𝑡 )y𝑡 − X1𝑡 𝛽 − X2𝑡b − X2𝑡c𝑡 − ℨ(𝝎 · f𝑡 )] (A10)

(b) Jointly update 𝜷 and 𝝎 : denote 𝑋̃1,𝑖𝑡 = (𝑋 ′
1,𝑖𝑡 , 𝜻

′
𝑖 · f ′𝑡 ) ′ a (2𝑝 + 𝑟) × 1 vector,

and X̃1𝑡 the corresponding (2𝑝 + 𝑟) × 𝑁 matrix. B̃0 =
©­­«
B0 0

0 Σ𝜔

ª®®¬ with

Σ𝜔 = Diag(𝜏2
1 , . . . , 𝜏

2
𝑟 ). And 𝜷̃0 = (𝜷′

0, 0
′) ′. The joint conditional posterior

distribution of 𝜷 and 𝝎 is (𝜷′,𝝎′) ′ ∼ N( 𝜷̄,B1), where

B1 =

(
B̃0 + 𝜎−2

𝑒

𝑇∑︁
𝑡=1

X̃′
1𝑡 X̃1𝑡

)−1

(A11)

𝜷̄ = B1

(
B̃−1

0 𝜷̃0 + 𝜎−2
𝑒

𝑇∑︁
𝑡=1

X̃′
1𝑡 [A(𝜌𝑡 )y𝑡 − 𝛾y𝑡−1 − X2𝑡b − X2𝑡c𝑡 ]

)
(A12)

(c) Jointly update c𝑡 and f𝑡 : denote 𝑋̃2,𝑖𝑡 = (𝑋 ′
2,𝑖𝑡 ,𝝎

′ · 𝜻 ′
𝑖) ′ and X̃2𝑡 the corre-

sponding matrix. Ẽ =
©­­«
E0 0

0 I

ª®®¬. The joint conditional posterior distribution

of c𝑡 and f𝑡 is (c′𝑡 , f ′𝑡 ) ′ ∼ N(c̄𝑡 ,E𝑡 ), where

E𝑡 = (Ẽ−1 + 𝜎−2
𝑒 X̃′

2𝑡 X̃2𝑡 )−1 (A13)

c̄𝑡 = E𝑡𝜎
−2
𝑒 X̃′

2𝑡 (A(𝜌𝑡 )y𝑡 − 𝛾y𝑡−1 − X1𝑡 𝛽 − X2𝑡b) (A14)
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(d) Jointly update b𝑖 and 𝜻 𝑖: denote 𝑋̃2,𝑖𝑡 = (𝑋 ′
2,𝑖𝑡 ,𝝎

′ · f ′𝑡 ) ′ and D̃ =
©­­«
D0 0

0 I

ª®®¬. The

joint conditional posterior distribution of 𝜷𝑖 and 𝜻 𝑖 is (𝜷′
𝑖 , 𝜻

′
𝑖) ′ ∼ N(b̄𝑖 ,D𝑖),

where

D𝑖 = (D̃−1 + 𝜎−2
𝑒

𝑇∑︁
𝑡=1

𝑋̃2,𝑖𝑡 𝑋̃
′
2,𝑖𝑡 )

−1 (A15)

b̄𝑖 = D𝑖𝜎
−2
𝑒

𝑇∑︁
𝑡=1

𝑋̃2,𝑖𝑡 (𝑦𝑖𝑡 − 𝜌𝑡

𝑁∑︁
𝑗=1

𝑤𝑖 𝑗𝑡 𝑦 𝑗𝑡 − 𝑋 ′
1,𝑖𝑡 𝛽 − 𝑋 ′

2,𝑖𝑡𝑐𝑡 ) (A16)

(e) Update 𝜌𝑡 : because the conditional posterior distribution of 𝜌𝑡 is not a standard

distribution from which we can directly sample, we apply an MH algorithm to

update 𝜌’s. Re-arrange the posterior to develop the conditional distribution of

the parameters to be updated: define 𝜀(𝜌𝑡 ) = y𝑡 − 𝜌𝑡W𝑡y𝑡 − 𝛾y𝑡−1 − X1𝑡 𝜷 −

X2𝑡b − X2𝑡c𝑡 − ℨ(𝝎 · f𝑡 ). For 𝑡 = 2, . . . , 𝑇 − 1:

𝜋(𝜌𝑡 |Y) ∝𝜎−𝑁
𝑒 |A(𝜌𝑡 ) | exp

[
− 1

2𝜎2
𝑒

𝜀(𝜌𝑡 ) ′𝜀(𝜌𝑡 )
]

exp[− 1
2𝜎2

𝜂

(𝜌𝑡 − 𝜅𝜌𝑡−1 − Z′
𝑡𝜶)2] exp[− 1

2𝜎2
𝜂

(𝜌𝑡+1 − 𝜅𝜌𝑡 − Z′
𝑡+1𝜶)

2]

(A17)

The proposal density is 𝜌∗ ∼ TN𝑆𝜌𝑡
(𝜙1,Φ1) where

Φ1 =

(
𝜎−2
𝑒 (W𝑡y𝑡 ) ′(W𝑡y𝑡 ) + (1 + 𝜅2)𝜎−2

𝜂

)−1
(A18)

𝜙1 = Φ1

(
𝜎−2
𝑒 (W𝑡y𝑡 ) ′𝜀(𝜌𝑡 ) + 𝜎−2

𝜂 [𝜅(𝜌𝑡−1 + Z′
𝑡𝜶) + 𝜅(𝜌𝑡+1 − Z′

𝑡+1𝜶)]
)

(A19)
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Draw a proposal from the proposal distribution, and calculate the posterior:

𝜁𝑡 =

|A(𝜌∗𝑡 ) | exp[− 1
2𝜎2

𝑒

𝜀 (𝜌∗𝑡 )′𝜀 (𝜌∗𝑡 ) ] exp[− 1
2𝜎2

𝜂

(𝜌∗𝑡 − 𝜅𝜌𝑡−1 − Z′
𝑡𝜶)2 ] exp[− 1

2𝜎2
𝜂

(𝜌𝑡+1 − 𝜅𝜌∗𝑡 − Z𝑡+1𝜶)2 ]

|A(𝜌𝑡 ) | exp[− 1
2𝜎2

𝑒

𝜀 (𝜌𝑡 )′𝜀 (𝜌𝑡 ) ] exp[− 1
2𝜎2

𝜂

(𝜌𝑡 − 𝜅𝜌𝑡−1 − Z′
𝑡𝜶)2 ] exp[− 1

2𝜎2
𝜂

(𝜌𝑡+1 − 𝜅𝜌𝑡 − Z′
𝑡+1𝜶)2 ]

(A20)

The determinant can be calculated as |A(𝜌𝑡 ) | =
∏𝑚

𝑖=1 (1− 𝜌𝑡𝜆𝑖) where 𝜆𝑖 is an

eigenvalue of W𝑡 (citations). Accept 𝜌∗𝑡 as the updated value with probability

min{𝜁𝑡 , 1}.

(f) Update 𝜅 by sampling from its conditional posterior, 𝜅 |𝝆,𝜶, 𝜎2
𝜂 ∝ exp[− 1

2𝜎2
𝜂

∑𝑇
𝑡=2 (𝜌𝑡−

𝜅𝜌𝑡−1 − Z′
𝑡𝜶)2], where

𝜅 ∼ N𝑆𝜅
(𝜅, 𝜎2

𝜅 ), 𝜎2
𝜅 = (𝜎−2

𝜂

𝑇∑︁
𝑡=2

𝜌2
𝑡−1)

−1, 𝜅 = 𝜎2
𝜅𝜎

−2
𝜂

𝑇∑︁
𝑡=2

(𝜌𝑡 − Z′
𝑡𝜶)𝜌𝑡−1

(A21)

(g) Update 𝜶 by sampling from its conditional posterior, 𝜶 ∼ N(𝜶̄,A1), where

A1 =

(
A0 + 𝜎−2

𝜂

𝑇∑︁
𝑡=1

Z𝑡Z′
𝑡

)−1

(A22)

𝜶̄ = A1

(
A−1

0 𝜶0 + 𝜎−2
𝜂

𝑇∑︁
𝑡=1

Z𝑡 (𝜌𝑡 − 𝜅𝜌𝑡−1)
)

(A23)

(h) Update 𝜏2
𝑗
by sampling from its conditional posterior, 𝜏−2

𝑗
∼ IG(

√︂
𝜆2

𝜔2
𝑗

, 𝜆2), ∀1 ≤

𝑗 ≤ 𝑟

(i) Update D by sampling from its conditional posterior, D ∼ W(𝑑1,D1), where

𝑑1 = 𝑑0 + 𝑁 and D1 = D0 +
𝑁∑
𝑖=1

𝑏𝑖𝑏
′
𝑖

(j) Update E by sampling from its conditional posterior, E ∼ W(𝑒1,E1), where
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𝑒1 = 𝑒0 + 𝑇 , and E1 = E0 +
𝑇∑
𝑡=1

𝑐𝑡𝑐
′
𝑡

(k) Update 𝜎−2
𝜂 by sampling from its conditional posterior, 𝜎−2

𝜂 ∼ G(𝑔̃3, 𝑔̃4),

where 𝑔̃3 = 𝑔3 + 𝑇 , and 𝑔̃4 = 𝑔4 + (𝜌1 − Z′
1𝜶)

2 + ∑𝑇
𝑡=2 (𝜌𝑡 − 𝜅𝜌𝑡−1 − Z′

𝑡𝜶)2

(l) Update 𝜎−2
𝑒 : define 𝜀(𝜌𝑡 ) = y𝑡 − 𝜌𝑡W𝑡y𝑡 − 𝛾y𝑡−1 − X1𝑡 𝛽 − X2𝑡b − X2𝑡c𝑡 −

ℨ(𝝎 · f𝑡 ), and sample from the conditional posterior 𝜎−2
𝑒 ∼ G(𝑔̃1, 𝑔̃2), where

𝑔̃1 = 𝑔1 + 𝑁𝑇 , and 𝑔̃2 = 𝑔2 +
∑𝑇

𝑡=1 𝜀(𝜌𝑡 ) ′𝜀(𝜌𝑡 )

(m) Update 𝜆2 by sampling from its conditional posterior, 𝜆2 ∼ G(𝑔5 + 𝑟, 𝑔6 +
1
2

𝑟∑
𝑗=1

𝜏2
𝑗
)

(n) Following Fruhwirth-Schnatter and Wagner (2010), we make a permutation

on 𝝎 , ℨ and F: ∀1 ≤ 𝑗 ≤ 𝑟, since 𝜔 𝑗 · 𝜻 𝑖 𝑗 · f𝑡 𝑗 = 𝜔 𝑗 · (−𝜻 𝑖 𝑗 ) · (−f𝑡 𝑗 ) =

(−𝜔 𝑗 ) · (−𝜻 𝑖 𝑗 ) · f𝑡 𝑗 = (−𝜔 𝑗 ) · 𝜻 𝑖 𝑗 · (−f𝑡 𝑗 ), we generate a random number 𝑣 𝑗

from U(0, 1). If 1
4 < 𝑣 𝑗 ≤ 1

2 , let 𝜻 𝑖 𝑗 = −𝜻 𝑖 𝑗 and 𝑓𝑡 , 𝑗 = − 𝑓𝑡 , 𝑗 . If 1
2 < 𝑣 𝑗 ≤ 3

4 ,

let 𝜔 𝑗 = −𝜔 𝑗 and 𝜻 𝑖 𝑗 = −𝜻 𝑖 𝑗 . And if 3
4 < 𝑣 𝑗 ≤ 1, let 𝜔 𝑗 = −𝜔 𝑗 and

𝑓𝑡 , 𝑗 = − 𝑓𝑡 , 𝑗 . 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑗 ≤ 𝑟 .

3. repeat Step 2 until the chain converges

Based on our tests, the MH algorithm works smoothly and the acceptance rate is

between 20% and 70%. When the proposal distribution is changed from a tailored one to

a random walk, mixing does not change much and the acceptance rate range is almost the

same.
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A.2. Monte Carlo Studies

We generate datasets in the simulation studies reported in the main text following the DGP

as below:

𝑦𝑖𝑡 = 𝜌𝑡w𝑖𝑡y𝑡 + 𝛽0 + 𝛽1𝑥1,𝑖𝑡 + 𝛽2𝑥2,𝑖𝑡+

(𝛽3 + 𝑏1,𝑖 + 𝑐1,𝑡 )w𝑖𝑡x1𝑡 + (𝛽4 + 𝑏2,𝑖 + 𝑐2,𝑡 )w𝑖𝑡x2𝑡+

𝜈𝑖 + 𝜓𝑡 + 𝜻 𝑖f𝑡 + 𝜀𝑖𝑡 ,

𝒃𝑖 = (𝑏1,𝑖 , 𝑏2,𝑖) 𝑖𝑖𝑑∼ N2 (0, 𝐼2), 𝒄𝑡 = (𝑐1,𝑡 , 𝑐2,𝑡 ) 𝑖𝑖𝑑∼ N2 (0, 𝐼2), 𝜀𝑖𝑡
𝑖𝑖𝑑∼ N(0, 1).

(A24)

The true values of the coefficients are 𝛽0 = 5, 𝛽1 = 1, 𝛽2 = 3, 𝛽3 = −2, 𝛽4 = 2. We do

not include the lagged outcome variable in the model simply because it does not cause any

further methodological complications.

A.2.1. Study I. The adjacency matrix expression of the network is as follows:

W =



w1 0 · · · 0

0 w2 · · · 0

0 · · · · · · 0

0 · · · · · · w20

200×200

, where w1 = · · · = w20 =



0 1 · · · 1

1 0 · · · 1

1 · · · · · · 1

1 · · · · · · 0

10×10

,

and 0 denotes a 10 × 10 matrix with all elements equal to zero. We row-standardize the

network when fitting the models.

We run 12 models in this study and each model has a large number of parameters. Due

to the space limitations, here we only report the results based on data generated by setting

𝜅𝑤 = 0.9 (strong confounding). Figure A1 shows the estimated 𝜷 based on the four model

specifications. M1, the 𝜌𝑡 -MLST-MF model with 2 factors performs the best, and M2 with
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10 initial factors and Bayesian shrinkage also performs well and almost as well as M1. The

𝜌𝑡 -MLST-FE performs the worst, even worse than the 𝜌-MLST-MF model, which shows

how important the multifactor term is for bias-correction. Figure A2 reports the posteriors

of the group-level parameters in the state-equation of 𝜌𝑡 , and the two multifactor models

nicely recover the group-level parameters with 95% credibility intervals covering the true

values. But the fixed-effect model overestimates some of the parameters. Figure A3 shows

the posteriors of the variance of the error term 𝜖 . The two 𝜌𝑡 -MLST-MF models correctly

estimate the error distribution, but the constant-𝜌 model and the fixed-effect model leave

the varying part of the spatial term or part of the latent confounders in the error term,

resulting in over-estimation of its variance.
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Figure A1. Coefficients 𝜷 (Study I)

Note: the dashed line in each figure indicates the true value of the coefficient, and the
vertical segments are 95% credibility intervals based on various model specifications.

A.2.2. Study II. In this study, the true network interdependence is constant and equal to zero.

Figure A4 reports the posteriors of the coefficients (𝛽1 and 𝛽2) and the exogenous network

effects (𝛽3 and 𝛽4). All the multifactor models, M1, M2, M4, recover these parameters

very well, but the fixed-effect model, M3 mis-estimates three of the four coefficients.
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Figure A2. Group-level Parameter 𝛼1 (Study I)
Note: The vertical dashed line in each graph indicates the true value of the parameter.

Figure A5 shows the estimates of group-level parameters. The multifactor varying-𝜌𝑡

models encounter a convergence problem when estimating the parameters in the state

equation. This is because M1 and M2 detect that interdependence barely varies over time

and therefore the group-level parameters cannot be identified due to the lack of variance
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Figure A3. Variance of Error Term 𝜖 (Study 1)
Note: The vertical dashed line in each graph indicates the true value of the parameter.

of the upper-level parameters. But the fixed-effect model produces the trajectory of 𝜌𝑡

with variation so large that the group-level parameters do not have convergence problems.

However, the well-shaped posteriors are biased. Figure A6 displays the estimated variance

of the error term. Again, the multifactor models recover the true value, whereas the

𝜌𝑡 -MLST-FE over-estimates the variance.

A.2.3. Study III. In this study, we use the ICEWS network that reflects “the undirected

dyadic relations between the 50 most active countries...during a 112-month period

from 2006 to 2015" (He and Hoff 2019). The network tie is defined as a degree of

cooperation/conflict between two countries estimated using the event data. Because the

network is too densely connected, we re-define the network by keeping the ties with top 3
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Figure A4. Coefficients 𝜷 (Study II)

Note: the dashed line in each figure indicates the true value of the coefficient, and the
vertical segments are 95% credibility intervals based on various model specifications.

countries in terms of their strength of connections. Also, we take out three countries (the

United States, China, and Russia) from the original network because their relationships

with other countries are so strong that make all other ties virtually zero. Due to space

limitations, here we only report the results of factor selection based on M2 in Figure A7.

The patterns of the results of other parameters are similar to those in Study I, and details

of those posteriors are available upon request.

A.3. Empirical Applications

A.3.1. Migration and Terrorism. Table A1 reports descriptive statistics of the variables

used in the re-analysis of network interdependence of terrorist attacks. For the definitions

of these variables, refer to the original article of B&B. Figure A8 reports the results

of factor selection and six latent factors (Factors 4-5, 7, 8-10) clearly escape Bayesian

shrinkage. In Figure A9, we report the estimated posteriors of individual- and group-level

coefficients. The two multifactor models produce similar posteriors, whereas estimates of
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Note: The vertical dashed line in each graph indicates the true value of the parameter.

some coefficients based on the fixed-effect model are noticeably different from the other

two models.
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Figure A6. Variance of Error Term 𝜖 (Study II)
Note: The vertical dashed line in each graph indicates the true value of the parameter.

A.3.2. GATT/WTO and Free Trade. Table A2 and Table A3 report the definitions of

variables and their descriptive statistics. For more details about the definitions, measures

and data sources, refer to Chaudoin, Milner, and Pang (2015). Figure A10 compares the

estimated 𝜌𝑡 based on CMP and our initial analysis, when using the original scale of the

dependent variable, tariff rates. The trajectories are more similar to each other than the

results based on models with the dependent variable on a logarithm scale. Figure A11

shows that when not taking a logarithm of tariff rates, the number of factors is as large

as 30. But with logged tariff rates, the number of factors is more reasonable, as shown

in Figures A12 and A13. Figure A14 displays the posteriors of coefficients based on

different model specifications. The two multifactor models mostly agree with each, and

the fixed-effect model is more different.
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Figure A7. Factor Selection (Study III)
Note: The bimodal posteriors indicate that their associated factors should be included,
while the unimodal ones indicate that their associated factors are virtually excluded from
the model.

table A1 Descriptive Statistics: Migration and Terrorism
Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Terrorist attacks (ln) 2,914 1.103 1.502 0.000 0.000 1.946 6.658
Personalist regime 2,914 0.120 0.325 0 0 0 1
Military regime 2,914 0.079 0.270 0 0 0 1
Single-party regime 2,914 0.225 0.418 0 0 0 1
Monarchy 2,914 0.065 0.246 0 0 0 1
Hybrid regime 2,914 0.044 0.206 0 0 0 1
GNI pc (ln) 2,914 7.344 1.560 3.919 6.061 8.553 10.752
Population (ln) 2,914 2.199 1.572 −1.609 1.225 3.119 7.146
Area (ln) 2,914 12.264 2.069 5.756 11.320 13.690 16.048
Inequality (GINI) 2,914 43.994 8.699 17.800 36.700 50.800 72.000
Durable regime 2,914 26.643 30.109 0 7 34 191
Failed state 2,914 0.496 1.474 0 0 0 14
Cold War 2,914 0.677 0.468 0 0 1 1
Interstate conflict 2,914 0.100 0.517 0 0 0 3
ucdp_type3 2,914 0.306 0.790 0 0 0 3
Domestic conflict 2,914 11.925 1.675 7.691 10.702 13.178 17.200
Lagged DV 2,914 1.086 1.494 0.000 0.000 1.792 6.658

A.4. Comparison of MLST-MF and SAOM

As discussed in the main text, the proposed MLST-MF addresses different methodological

issues (i.e., network interdependence and latent confounders) from what the SAOM modelA-17
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Figure A8. Factor Selection (Global Migration Network)

does. Nonetheless, like the SAOM model, MLST-MF also concerns the selection process

of network evolution, though it treats the process as a nuisance. We use two examples to

illustrate the comparison summarized in Table 2 in the main text.

A.4.1. A Simulated Example. We use a simulated example to show that MLST-MF can be

used as a simpler alternative to SAOM when the researcher is only interested in network

influence. We simulate a longitudinal network based on SAOM and generate nodal

outcomes with the network and homophily. Then we fit a MLST-MF model to estimate

network interdependence. For the nodal attributes that drives the network evolution, we

leave them into the error term of MLST-MF and rely on the multifactor approach to correct

for bias. This simulation study investigates whether the MLST-MF model is able to reduce

bias without specifying the selection equation.

As in the simulation studies in the main text, we generate a sample of 200 units in

50 periods. The network starts in Period 0 as the exact network in Study I, consisting
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Figure A9. Posteriors of Coefficients (Migration & Terrorism)

Note: in each graph, the dots are the posterior means and the segments are 95% credibility intervals. In the
legend, “Constant" indicates the 𝜌-MLST-MF model, “Fixed-Effects" indicates the 𝜌𝑡 -MLST-FE model , and
“Multifactor" indicates the 𝜌𝑡 -MLST-MF model.

of 20 seperate groups each with 10 members. From Period 1 to Period 50, some units

are randomly selected in each period to optimize their utilities by taking actor-oriented

actions. Each of the selected units can choose to form a new link with a unit outside its

group or drop an existing link with a unit within its group. The SAOM model specifies a

tension function, and the selected units choose how to act by minimizing this function.

We make the tension function partially determined by homophily between units. That is,
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table A2 Covariates: GATT/WTO and Free Trade

Covariate Definition Covariate Definition
Ego’s Own Conditions Common Environment
(possibly observed homophily) AV TARIFF Average Sample Tariff Level

(t)

REGIME Polity IV Score US HEGEMONY The degree of U.S. hege-
mony in the international
market

LN POP Log Population 8 OPEN the openness of capital mar-
kets in the 8 largest countries
in the world

GDP PC GDP per capita GLOBAL WTO TRADE The percent of world trade
that takes place in mutual-
GATT/WTO member dyads

EC CRISIS Economic Crisis Network
BP CRISIS Balance of Payment Crisis W𝑡 Network formed by mutual

WTO membership

OFFICE Number of Years in Office DENSITY WTO Network Density

GATT GATT/WTO Member State

table A3 Descriptive Statistics: GATT/WTO and Free Trade

Variable N Mean St. Dev. Min Pctl(25) Pctl(75) Max

TARIFF 3,230 17.601 12.712 0.000 10.000 21.000 106.500
REGIME 3,230 0.117 6.944 −10 −7 7 10
LN POP 3,230 16.127 1.542 13.007 15.006 17.098 20.999
GDP PC 3,230 6.838 1.119 4.627 5.838 7.737 9.626
BP CRISIS 3,230 0.523 0.500 0 0 1 1
EC CRISIS 3,230 0.047 0.211 0 0 0 1
OFFICE 3,230 7.574 7.999 0 2 10 46
US HEGEMONY 3,230 0.139 0.011 0.117 0.130 0.146 0.161
AV TARIFF 3,230 17.516 3.517 10.450 15.424 19.949 23.825
8 OPEN 3,230 182.106 14.920 157.031 172.656 194.531 199.219
GLOBAL WTO TRADE 3,230 0.013 0.005 0.006 0.008 0.017 0.025
DENSITY 38 0.520 0.225 0.265 0.306 0.726 0.885
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Figure A11. Factor Selection (WTO Network and Varying-Slope 𝜌𝑡 )
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Figure A12. Factor Selection: 𝜌𝑡 -MLST-MF

forming a tie with unit 𝑗 changes unit 𝑖’s utility as follows:

−𝑎 | (𝜉𝑖 − 𝜉 𝑗 ) ′ 𝑓𝑡 | + 𝜀𝑖 𝑗 . (A25)

Here 𝑎 is a structural parameter to be estimated in SAOM, and 𝜉𝑖 and 𝜉 𝑗 are both two-

dimensional nodal attributes. We assume that 𝑎 = 1 in the DGP and sample 𝜀𝑖 𝑗 from 𝑖.𝑖.𝑑.

type I extreme value distribution with mean 0 and scale parameter 1. If unit 𝑖 is to form a

new tie with a unit outside its group at time 𝑡, the probability that it forms the tie with a
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Figure A13. Factor Selection: : 𝜌-MLST-MF

specific unit 𝑗 is:
exp(−|(𝜉𝑖 − 𝜉 𝑗 ) ′ 𝑓𝑡 |)∑

𝑘∉𝐺𝑖
exp(−|(𝜉𝑖 − 𝜉𝑘) ′ 𝑓𝑡 |)

(A26)

where 𝐺𝑖 is the set of units that are in the same group as unit 𝑖. Likewise, if unit 𝑖 is to

drop an existing tie with a unit within its group at time 𝑡, the probability that it drops the

tie with a certain unit 𝑘 is:

exp( | (𝜉𝑖 − 𝜉 𝑗 ) ′ 𝑓𝑡 |)∑
𝑘∈𝐺𝑖

exp( | (𝜉𝑖 − 𝜉𝑘) ′ 𝑓𝑡 |)
(A27)
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Figure A14. Posteriors of Invariant Parameters (GATT/WTO and Free Trade)
Note: in each graph, the dots are the posterior means and the segments are 95% credibility intervals.

Intuitively, a unit tends to form ties with similar units and drop ties with distinct ones.

The SAOM model sets network change to be a continuous time Markov process with

structural parameters to be estimated in the rate of actions. In order to apply MLST-MF,

we force selection to be a discrete process: In Period 1, we randomly select 4 units to

either form a new link or drop an existing link. If the action is to form a new link, then the

unit probabilistically forms a new link with a unit outside its group with probability stated

in Equation (A26). If the action is to drop an existing link, then the units probabilistically

drops a link with a unit within its group with probability specified in Equation (A27). We

repeat the practice from Period 2 to Period 50 and generate a longitudinal network. This

setup ensures that at expectation each unit only takes action once in the whole sample

period so that the network does not change radically.

Nodal outcomes are generated following Equation (A24). We make the impact of

homophily on outcomes vary over time; that is, the factor term in Equation (A24) is

𝜻 𝑖f𝑡 = 𝜉1𝑖 𝑓1𝑡 + 𝜉2𝑖 𝑓2𝑡 and 𝜉1𝑖 and 𝜉2𝑖 are the nodal attributes and 𝑓1𝑡 and 𝑓2𝑡 are the time-

varying effects of these attributes in Equations (A26) and (A27). We fit the MLST-MF
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Figure A15. Factor Selection for the Simulated Example

model and apply the multifactor approach to approximate the impact of homophily rather

than using the data of 𝜉1𝑖 and 𝜉2𝑖 . We include 10 initial factors and apply hierarchical

shrinkage priors to the factor loadings to determine the number of factors. Bayesian

shrinkage correctly detects 2 factors to be included in the regression model.

The true and estimated time-varying endogenous network influence is displayed in

Figure A16. The 95% credibility interval of 𝜌𝑡 covers the true value most of the time, and

only occasionally it misses the true value. Note that this network evolves slowly and has

binary ties, and identifying the effect of such a network is not easy. The MLST-MF model

performs well in this simulation study, which demonstrates that the multifactor term is
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Figure A16. Estimated and True Network Influence of a Time-Varying Network

able to largely correct biases from the network selection process without modeling the

network process.

A.4.2. An Empirical Example: Human Rights and Trade Network

Chyzh (2016) applies a co-evolution SAOM model to test two interactive hypotheses.

Hypothesis 1 is “the level of human rights protections is positively (negatively) related to

the probability of forming direct (indirect) trade-links." And Hypothesis 2 is “a state’s

reliance on indirect trade-links is inversely related to its respect for human rights." Her

empirical analysis draws on data of 126 countries in the years from 1987 to 1999. The

tie of the global trade network is defined as the following: 𝑤𝑖 𝑗𝑡 = 1 if country 𝑖 exports

any goods to country 𝑗 in year 𝑡; 𝑤𝑖 𝑗𝑡 = 0, otherwise. Under this definition, the network

is a 126 × 126 directed, asymmetric, and binary network. Note that the network ties

are dichotomized in the original study to meet the restrictions required by SAOMs. The

trade network equation tests Hypothesis 1, and the dependent variable is a trade link

from country 𝑖 to country 𝑗 at time 𝑡. Several nodal attributes of country 𝑖 and country
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𝑗 are included to explain the formation or dissolution of a trade link. The coefficient

associated to human rights protections is primarily interesting. The behavior equation tests

Hypothesis 2, and the outcome variable is human rights protections measured as a 9-scale

ordinal variable with “0 as no respect for human rights" and “8 as full respect for human

rights". The hypothesis is tested with the estimated impact of the ratio of indirect trade

relationship (indirect degree), a nodal feature of network connections. Indirect degree

is measured as the number of unique second-order links a node has. Standard control

variables measuring national attributes are also included in the human rights equation.

The empirical results based on the co-evolution model support both hypotheses.

We apply MLST-MF to estimate the interdependence of states’ human rights protections

in the global trade network as well as the effect of indirect degree on this nodal behavior.

MLST-MF applies to continuous outcomes, and we treat the 9-scaled oridinal variable of

human rights protections approximately as a continuous one. Because MLST-MF only

focuses on explaining nodal behavior, it cannot test Hypothesis 1 on network evolution.

The MLST-MF model is also different from the behavior equation in the SAOM model:

network-effect terms are defining components for MLST-MF and they are interactive terms

consisting of the network W𝑡 and alters’ outcomes or attributes. In other words, network

effects in MLST-MF refer to intervening effects of the network. Therefore, the coefficient

associated to a country’s indirect degree is not regarded as a “network" effect but a direct

effect of a nodal attribute (in this case, it is nodal’s network position). Because of the

substantive focus and the SAOM setup, the original study does not specify a network-effect

term. We add a spatial lag term 𝜌𝑡W𝑡y𝑡 in the human rights equation to specify an

MLST-MF model, where W𝑡 is the global trade network and y𝑡 is the vector of human

rights practices of all the 126 sample countries at time 𝑡. There are reasons to suspect

that human rights practices of trade partners are correlated with each other. For instance,
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Greenhill (2010) finds that inter-governmental organizations promote diffusion of human

rights norms and practices among member states. Trade links also form channels for

information flows, norm diffusion, and building of shared identities. Therefore, we expect

network interdependence of human rights practices via trade links. Adding the spatial lag

term turns the behavior equation into simultaneous equations.
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Figure A17. Results of Factor Selection in the Empirical Example

The spatial autoregressive coefficient is the parameter of primary interest in the MLST-

MF model, whereas the original study focuses on the effect of indirect degree. From the

A-28



perspective of the original study, MLST-MF is to correct for network interdependence, an

omission of which may cause a biased estimate of the effect of indirect degree. Besides

the spatial lag term, we include indirect degree as the only covariate in MLST-MF. We

purposely omit all other covariates of nodal attributes in the human rights equation in the

original study. Instead, we use two-way fixed effects and multiple factors to correct for

bias caused by omitted attributes.A1 The 𝜌𝑡 process is simply specified as 𝜌𝑡 = 𝜌0 + 𝜀𝑡 .

We include 10 initial factors, six of which (Factors 5-10) escape Bayesian shrinkage, as

shown in Figure A17.

We report the estimated time series of 𝜌𝑡 in Figure A18. MLST-MF finds that network

influence is negative and barely varies over time. The coefficient associated to the ratio

of indirect degree is −0.505, with the 95 % credible interval as (−1.139, 0.156). The

co-evolution model in the original study estimates this coefficient as −1.25 with the

standard error as 0.23. The estimate based on MLST-MF is much smaller than SAOM,

probably because the behavior equation of the SAOM model does not separate the negative

impact of indirect degree from the negative network interdependence. The length of the

95% CI based on our model is also larger than that in SAOM, likely due to the difference

between Bayesian and frequent inferences. In generally, our analysis provides much

weaker evidence than the original study to support Hypothesis 2.

The negative network interdependence is not expected and is worthy of further

theoretical explorations. Here we leave the task to future substantive research. As a

methodological illustration, this example demonstrates that MLST-MF complements

co-evolution models if network interdependence is the research interest. Even when

A1We fill in the missing values with observed mean value across 13 years for each
country.
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Figure A18. Time-Varying Network Influence on Human Rights Protection

network interdependence is not the quantity of primary interest, the proposed model could

also serve as an alternative to co-evolution models because it estimates the coefficient of

primarily interest by correcting for bias caused not only by the network selection but also

by networked (interdependent) outcomes.
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