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A Appendix: proofs
A.l Theorem 1

Q1. This is straightforward since Vz, € R? :

0(2) = Privy = 1[z) = [ p(z))r(z.2))dz;

Q2.
G(x)_'kapk:rkaPr(Ds:k)
k=0 k=0
n—1 .
:]gf/y“-/gp(m) -p(2,) Pr(Dy = k|.#)dz, ---dz,

]dzl---dzn

[ﬂ p(z; ] {HE[ Vil ]}dzl”'dln
:/Qp [Z{ﬁp Z] xr(ZS’ZJ)+1_r(ZSaZj)]}dZ]"'dZn

n—1
p(zj) [rr(zs,2;) + 1 —r(Zs,zj)]dzj} dzg

z
n—1
x/pz] (zs,z])dzj—i—l—/pz] (zs7z])dz]} dz

— /mfp(zs) ¥0(z,) +1— 6(z,)]"" daz,.

Il
Q\
"B
'—'r—/h\/—/h\

AD

(A2)



Z7U064-05-FPR

LatentPositionModelsSupplementaryMaterial 17 September 2016 11:10

2 R. Rastelli, N. Friel and A. E. Raftery
Q3. The r-th factorial moment of D, corresponds to the r-th derivative of G evaluated in
1:
"G a" _
S0 = [ p@) 5o x0)+1-0()"  dz
_ / p(z)(n—1)(n—1)0 (z,) [xO(z,) +1— 0(z)" " 'dz,  (A3)

- “%/ P(2,) 0 (2,)" [v6(z,) + 1 - 0(z)]" " day:

and the final formula evaluated in x = 1 gives (11).

Q4. The average degree is the first factorial moment, thus:

F=G(1)= EZ:;;:/gp(zs)ﬂ(zs)dzs:(n—l)/j{_’p(zs)e(zs)dzs. (Ad)

Q5. The distribution of the degree of a random node can be recovered by differentiating
G as well. Indeed, using (A 3), for every k:

Pe= %?9;?(0) - (nZ 1) /,g,mzs) 0(z)[1-6(z)" " 'dz.  (AS)

Q6. Define the PGF for the degree of a random node once its latent information is fixed to
Z:

(x:2y) Z X*Pr(Dy = k|zy)

e
J#s

n—1
- {/g"(zﬂ bor (202) + 1~ r<zx,zj->1dzf}
— {xG (zs) +1-0 (zs)}"fl :

which is simply the PGF of a binomial random variable with parameters n — 1 and 0 (z;).
Hence its average degree is k (z;) = (n— 1) 6 (). Note that dz_, =[], dz;.

s ///] dz_g

(A6)

Q7. We now write down the PGF for the degree of a random neighbour of a node located
in z.

H (x;zy) Zkar i =klysj = 1,2)

n—1
/ Zj|YSj:1aZs)Zkar(Dj:k|ysj:17ZS7Zj)de (A7)
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Note that E [xPi|y,; = 1,2,,2;] corresponds to the PGF for the so called excess degree
(Newman et al. 2001), i.e. the degree of a node at one extreme of an edge picked at random.

Hence, such PGF is equal to Xg(/ EXZZ’)), where G has been defined in (A 6). Then:
Zj

/ p Zj|yv; G (1 ))dZ]

Pr yY]_1|Z]7 P( ) -2
_ 1-0@)"\dz (A8
oy 21T [xb0 (@ +1-0@)) bz, (A9

- @ ./,@f’p(zj)r(z”ZS) {x[xe (zj+1-6 (Zj))]”d}dz]-.

Its average degree is then given by:

7 TS . . _ 2\ dz.
Fon (25) = H (1,15)—m/@f’p(z/)r(z/,zs){l—i—(n 2)6 (z;)} dz; "

=1+ (Z ZZ)) /fp(zj)r(Zj,Zs)e(zj)dzj'

Q8. The PGF for the degree of a neighbour of a node with degree k is given by:
n—
k)= Zerr(Dj = r|Ds =k,ysj=1)
r=0

n—1
=Y [ p@IDs =k Pr(D; = rlay = 1)da,
r=0 =2

pi p(25) Pr(Dy = klz,) H (x;2,) dz, (A 10)
k

L ) [ 60| H k)
= P ()| 556 (05 X;Zg) dzg

Pk

1 n—1 n—k—1 . .
ﬁ p(zs) ( X ) O(ZS)]‘ [1—06(z)] H (x;z4) dzg;

and its first derivative evaluated in x = 1 yields:

l_c,m(k):i/g p(zs)<n;1>9( D[ = 0(25)]" 5 o (2, )d 2. (A1)

PrJZ

A.1.1 Proof for Corollary 1

Recall that a convolution of two Gaussian densities is still a Gaussian density:

/Rdf" (zisi ) fa(2j —2is Wy, Vo) dzi = fu (Zjs by + o, V1 + 1) (A12)

for every z;,z;, i, [, in R? and every positive real numbers y; and .
That being said:
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QL.
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)/PZJ r(z5,2;) 0 (z;)dz;
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A.1.2 Proof for Corollary 2
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While Q7 is straightforward from (13).

A.2 Proof of Proposition 2

First, we recall a few properties of the Gaussian distribution through a Lemma:

Lemma A.1

(A 16)

(A17)

(A 18)
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Let fy(-;1,7) denote the d-dimensional Gaussian density centred in g, with covariance
matrix yI,. Let also x,u,v € R? and a,b, o € R*. Then:

b b
fa(xi0,a) fy (x:v,b) = fy (w—v:0,a+b) f4 (xzizvaib) : (A19)
_ u a
fa(axiua) = fy (x;a, @) . (A20)

Here follows the proof of Proposition 2 by mathematical induction on k. If k = 1, then:
d
Ei1(ziyzj) = hifa(z; — 12;;0,01) = T(2wQ)? fy(2; —2:50,0) = r(z;,z;).  (A21)
Now assume that & (z;,2;) = hfy (2j — 42:;0, ), then we need to prove that
Cir1(Zi,2)) = M1 fu (2; — 0441230, 04 1),

where Ay, 01, W4 are defined recursively by (27).

Enwa) = [ - [ p@)..pr@m)r(oz)dn --dn

:/Efp(zk)r(zhlj)/y.../ffp(zl)...p(Zkfl)x
><r(Zl‘,Z])..-r(Zk,l,Zk)dz]...dzk (A22)

= /gp (zi) 7 (2k,2)) I (2i, 24 ) dzy,
— [ pX)r (2 () dx.
P :
Now, we introduce the Gaussian LPM assumptions and use the results of the Lemma A.1:
d
Cir1(2i,2;) = T(2mQ) 2 Iy, /Rd fa(x:0,7) fa(x—2;;0,0) fy (X — 04250, @y ) dx
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A.3 Proof of Corollary 3

Let G be the PGF of the random variable D, denoting the degree of a node picked at
random. Then the r-th derivative of G evaluated in 1 is equal to the r-th factorial moment
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of D, denoted here c,:

cr—88;?(1):E[D(D—l)--~(D—r+1)]. (A24)

In particular:
c1 =E[D] =m (A25)
c2=EDD-1)]=E[D’| -ED]=m,—my (A 26)
== my =c|+c3, (A27)

where m; and m, denote the first two non-central moments of D. That being said, using
Corollary 1 the dispersion index can be evaluated exactly:

2
E[(D_ml) ] my—m:  m

9 = Zf—m1=1+c£—cl
mi nm nj €l
d
2 2
(-1 (n-2)e2{ & 5
- {(wo)(ij)} —(n—l)r{(p} (A28)
5 2y+o

(-1t {525}

:l+(n—2)f{my—(n—l)r{zyi(p}g,

which proves the corollary. Also, when d = 2, the threshold between underdispersion and
overdispersion is given by:

(n=2)Q2r+9) (n—-1) _
e Gree) Qrre) (A29)

Now, recalling that @ > 0 and y > 0, this is equivalent to:

(n—=2)2y+) = (n—1)(y+¢)(37+9) =0
=0 +4y0+ 57> —ny> =0 (A 30)
=@ = y(—Zix/ﬁ) .

One solution is negative thus not feasible, then the threshold is given by:

¢zy(m—2).
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A.4 Proof of Proposition 1

17 September 2016

11:10

‘We now show how to obtain the exact formula (25) under the Gaussian LPM. We solve the

numerator 6y and the denominator 4p independently.

%D = ./]Rd /Rd /I‘Rdp(Zi)p(Zk)p(Zj)r(Zi,Zk)r(Zk,Zj)dedZide

- de(zk) {/de(li)r(li,lk)dli} {/Rd P(Zj)r(lkvlj)dlj}dlk

= [, p(@)6 (@) dz,
R4
B G//(])
C(n=1)(n—-2)
(PZ

Now we solve the numerator.

a= [, [, [

= H%dp(zi)/]R p(zj)r(zj,z;) {/]Rd p(zk)r(z,-,zk)r(zk,zj)dzk}dzjdz,-

= Jure [

= / Zl 53 Z,Z; dZ,

where & (z;,;) is defined in (26) for every k € N, z; € R? and z; € R%.

2
{ (r+o0)Br+9)

For more clarity, we define the recurring quantity

z)r(zj,2;) & (2i,2)) dzjdz,

A=@>+3y9+7.

We first discover the quantities needed to write &3(z;,z;) explicitly:
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h =T(27t(p)% hy
2
o= Yy :L;
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Now, for h3, we use Lemma A.1 and join the two Gaussian densities:

_d
2

_ g (YEON [, (1) 21t o) I
hy =1 (2mQ) (y) {27:7/2} fd(ztsoaw)

(A 38)
d
2 A
et {i) nfeots)
' (27mo) o Ja |z vt e
Also:
(1-a5) = ‘me ¢) (A39)
@ _ Arte) (A 40)
(1-m;)> ¢Br+o)
(A41)
Then, it follows:
- 3
z,,z;) = (1 —« d z;;0, ———
&(zi,2i) = h3 (1 — a3) fd< (1a3>2>
d
2 A
_ B0l 2 0, (A 42)
T (2m) +e Jalz e X
A }”’ ( l(7+<p))
X — z;;0, ——— | .
{(P(3}’+<P) i ¢ (37+9)
Collapsing again the Gaussian densities:
d
PRS-, P R
&(ziz) =7 {2(3y+(p) fa 20, (A43)
We can now obtain the final result for the numerator:
CN = /R([P(Zi)é(liali)dli
d
_p3{_2me? / . ALY
=T {2(3Y+(P) R{Ifd(zz,ovy)fd z;;0, 3 dz, (A 44)
d
2 2
(Br+o)
The final formula for the clustering coefficient follows:
7 ¢’ 7 : g
g N _ {(3Y+(P)} T(YJr(P) . (A45)
r+o

6p 2 $
2 )
T {(7+<p)(3y+<p)}

A.5 Characterisation of the geodesic distances

Fronczak et al. (2004) focused on the family of fitness models for networks, which includes
Erd6s-Rényi random graphs and the preferential attachment model of Barabdsi and Albert
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(1999). These models satisfy assumptions A1 and A2, where the latent information is
coded by a fitness value A;, for every i € . Then, edge probabilities are given by:
hih;

ﬁ )
where f is a suitable constant. The model includes ErdGs-Rényi random graphs as a special
case, for example if h; = k for every i, and B = k(n—1).

Here, we exploit the fact that fitness models and LPMs both originate from LVMs,
generalising the work of Fronczak et al. (2004) to a wider family of models. To study the
connectivity of the networks and the path lengths’ distribution, we focus on the quantities
Y (zi,z;), defined as the probability that the shortest path between two nodes located in
z; and z; has length k. We also define r¢ (z;,z;) as the probability that a path of length
k exists between two nodes. In both definitions, and from now on, we condition on the
fact that the two nodes are connected, i.e. there exists a finite-length path that has the two
nodes as extremes. Such an assumption is natural since usually statistics of path lengths are
defined only for sets of connected nodes. Note that & (z;,z;) differs from ry (z;,2;) in that
the latter is the probability that there is at least one k-step path between the two nodes. We
now describe a way to evaluate ¢ (z;,z;) efficiently, as a function of the model parameters
of a Gaussian LPM.

r(hihj) = (A 46)

AS. The graphs considered are dense enough, such that for every (i, j) € % , if there exists
a path of length k between nodes i and j, then a path of length t exists between the same
nodes for everyt =k+1,...,n—1.

Proposition A.1
Under the Gaussian LPM and assumption A5, for any two nodes i and j, the following two
statements are equivalent:

e The geodesic distance between i and j is less than k.
o There exists a k-step path between i and j.

The proof of Proposition A.1 relies heavily on AS and is straightforward. From Proposition

A.1 it follows that, for any i and j:

rk(Zl'aZj): Kl (Ziazj)' (A47)

N
I agls
L

Moreover, since ¢ (z;,z;) = ry (2;,z;) = r(z;,z;), the following holds:
Ek(z,-,zj):rk(z,-,zj)—rk,l(zi,zj). (A48)

Hence, we aim at characterising r¢ (2;,z;), thereby deducing the properties of ¢y (z;, z;).
Each possible path of length k£ from i to j can be thought of as a Bernoulli random
variable, having a success if all the edges involved in the path appear, or not having a
success if any of those edges fail to appear. For an Erd6s-Rényi random graph with average
degree k= (n—1)p, the parameter of such a random variable is pk . For Gaussian LPMs,
the success probability is & (z;,z;), which has been characterised in Proposition 2.
However, we are interested in ry (;,Z j), which is the probability of the union of all the k-
steps paths from i to j. Unfortunately, these variables are not independent, since different
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paths will have edges in common. We circumvent this issue by pretending that all such
paths are mutually independent, following the reasoning of Fronczak et al. (2004). This
assumption makes sense when k is much smaller than n. In fact, for the purpose of the
study of shortest path lengths, estimates of ry (z;,z;) will be needed only for small ks,
since in the general case ¢ (z;,2;) will drop to zero very quickly.

Using the results of Proposition 2 and Lemma 1 of Fronczak et al. (2004), we can
approximate (A 48) by:

U (2i,2)) ~ exp{—nkilék,l (zi,zj)} —exp {—nkék(zi,zj)} ) (A 49)

Equation (32) gives a general formula to evaluate the distribution of the geodesic distance
i (zi,z;) for every k << n for dense Gaussian LPM networks.
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