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1 Stochastic Blockmodels and Spectral Graph Theory

Spectral graph theory is a deterministic correspondence to our Bayesian approach. A large
volume of literature in spectral graph theory provides information on the properties of the
decomposed traits in our approach (Mieghem, 2011; Peixoto, 2013; X. Zhang, Nadakuditi,
& Newman, 2014). Since analytic scrutiny of Bayesian approach is infeasible, we introduce
recent findings in spectral graph theory to clarify the modeling scheme in the main text.

Following a formulation from Peixoto (2013), well-known representations of undirected
networks, including adjacency matrix, graph Laplacian, normalized Laplacian and modular-
ity matrix, can be expressed as C + M = (C + M − 〈M〉) + 〈M〉, where C is a random
diagonal matrix and M is a random symmetric matrix. Each element in the mean interac-
tion matrix C + 〈M〉, where off-diagonal entries of M− 〈M〉 have zero mean, is associated
with the connection probability among the corresponding pair of nodes in the planted block
diagram.

The eigenvalue spectrum of C + M consists of two qualitatively different compartments
for all matrix types mentioned. To be specific, M − 〈M〉 is associated with a bulk of
continuous band of eigenvalues which does not involve block-diagram related information.
The other compartment is associated with the eigenvalue spectrum of C+〈M〉. Since C+〈M〉
corresponds to the planted block diagram of the realized network, the set of eigenvalues
belonging to its compartment approximate to the eigenvalues of a transformed version of the
block diagram matrix represented by 〈M〉. Accordingly, their corresponding eigenvectors
reveal node group related information entailed in the planted block diagram.

The rank of C+〈M〉 is associated with the number of dimensions one needs to recover for
a block diagram assumed. If the block diagram has rank R, the rank of a degree-corrected
version of C + 〈M〉 becomes R− 1. This relationship can be easily derived from the nullity
theorem, rank(C + 〈M〉) + nul(C + 〈M〉) = numcol(C + 〈M〉). For the N × N matrix
C+ 〈M〉, there are N×N−R+1 non-zero basis vectors for its null space. Because C+ 〈M〉
has R unique column vectors due to the rank of the planted block diagram, and the degree
correction procedure reduces its rank by 1. Same result holds for adjacency matrix A,
when excluding its principal eigenvalue which is associated with its eigenvector centrality.
Figure S1 and Figure S2 supplement the theoretical results by showing the eigenspectra
of homophilic block diagram induced networks with different number of node groups. The
graphs demonstrate that the number of eigenvalues separated from the bulk is equal to the
rank of the planted block structure.

For an arbitrary block diagram induced network, in which assortative and dissortative
interactions are simultaneously present, one needs to choose R− 1 eigenvalues and eigenvec-
tors. Such low-rank approximation successfully recovers planted group labels for an arbitrary
block diagram induced network as exemplified in Figure S3. Eigenvalue associated with each
axis characterizes the rule of node-to-node association on each dimension. Positive values
indicate assortative interactions whereas negative values indicate disassortative interactions.
For A − Pmodul and A − Pprinc, eigenvalues associated with the block structures, which
correspond to the spectrum for C + 〈M〉, are the ones with R − 1 eigenvalues largest in
their absolute values (Peixoto, 2013). Their corresponding eigenvectors are the estimates
for node positions in the role equivalence space. The discrepancy between two node trait
distributions increases as the shapes of the induced diagrams or their reflections (exactly
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opposite diagrams) become dissimilar.
Our Bayesian rank reduction algorithm naturally recovers latent traits that correspond

to the R− 1 largest eigenvalues in their absolute values. The MCMC procedure entailed in
the algorithm proceeds to minimize ‖W−Ŵ‖F in which W is the matrix to be approximated
and ‖W − Ŵ‖F is Frobenius norm of the error function calculated from the actual and the
estimated. Due to Eckart-Young theorem, which states that for Ŵ with rank R, ‖W−Ŵ‖F is
minimized when Ŵ =

∑R
r=1 λru

rurT where λr and ur are the rth eigenvalue and eigenvector
of W when sorted in a decreasing order by its absolute value (Eckart & Young, 1936), such
procedure outputs probabilistic estimates of {λr|1 ≤ r ≤ R} that are largest in their absolute
values.
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Figure S1: Eigenspectra of adjacency matrices for assortative networks with various number of groups.
All networks entail assortative block diagrams where within-group link density is 0.45 and inter-group link
desnity is 0.05. Each group consists of 100 nodes. Each number corresponds to the average number of
eigenvalues belonging to the subspectrum in the same color contained in 100 stochastic realizations.
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Figure S2: Eigenspectra of modularity matrices, A−Pmodul, for assortative networks with various number
of groups. All networks entail assortative block diagrams where within-group link density is 0.45 and inter-
group link desnity is 0.05. Each group consists of 100 nodes. Each number corresponds to the average number
of eigenvalues belonging to the subspectrum in the same color contained in 100 stochastic realizations.
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2 Clustering Techniques

Previous research discusses proper clustering schemes for latent node traits (Shi & Malik,
2000; Murphy, 2012; Richardson, Mucha, & Porter, 2009; Riolo & Newman, 2014; Z. Zhang,
Jordan, et al., 2008). The most popular approach to classify the latent trait distribution is
employing k-means clustering (Shi & Malik, 2000; Murphy, 2012). k-means clustering detects
k subgroups of nodes, in which mean distance of node traits to the nearest k centroid positions
becomes minimum. In our case, this procedure detect k groups with similar connection
profiles in the structural equivalence space.

Subsequent studies introduced clustering techniques on a multidimensional space through
simplex vector projection (Richardson et al., 2009; Riolo & Newman, 2014; Z. Zhang et al.,
2008). A set of transformed simplex vectors is obtained as follow. For R dimensional node
traits, R + 1 simplex vectors {wr|1 ≤ r ≤ R + 1} and {ws|1 ≤ s ≤ R + 1} are obtained
satisfying wT

r ws = crs ∀r, s where crs is a constant value assigned to {r, s} group pair. For
the group of vectors {wr|1 ≤ r ≤ R+1}, each vectors are adjusted by group size distribution,
rotated and stretched. After calculating the distances between these transformed simplex
vectors and each node’s trait vector, one selects the nearest transformed simplex vector, and
label each node accordingly. For details of the iterative algorithms, see Richardson et al.
(2009), Riolo and Newman (2014) and Z. Zhang et al. (2008).

8



3 Mutilayer Rank Reduction Algorithm

Let Bt ≡ At − Pt and B ≡ [Bt|t ∈ T ]. Assuming a generalized latent space with R
dimensions, the multilayer stochastic blockmodel using a layer specific null model Pt can be
written as follows:

Bt = At −Pt

Bt = UΛtU
T + Et

Et ∼ matrix normalN×N(0, σ2IN , IN).

where U indicates an N × R vector array and Λt = diag(λ1t , · · · , λRt ) is R × R diagonal
matrix at t.

Written in an array form,

B = 〈U,V,U〉+ E

E ∼ array normalN×N×T (0, σ2IN , IN , IT )

and, equivalently in a scalar form,

bi,j,t = 〈ui,vt,uj〉+ εi,j,t

εi,j,t ∼ N (0, σ2).

where ui = (u1i , · · · , uRi ) denotes the ith row of U and vt = (λ1t , · · · , λRt ) the tth row of V.
For parameter estimation, we adopt (Hoff, 2011)’s hierarchical Bayesian scheme to avoid

overfitting. Prior distributions for hierarchical parameters of U are as follows:

{u1, . . . ,uN} ∼ multivariate normal(µu,Ψu)

µu|Ψu ∼ multivariate normal(µ0,u,Ψu/κ0)

Ψu ∼ inverse Wishart(W0,u, v0,u)

Equivalently, prior distributions for hierarchical parameters of V are

{v1, . . . ,vT} ∼ multivariate normal(µv,Ψv)

µv|Ψv ∼ multivariate normal(µ0,v,Ψv/κ0)

Ψv ∼ inverse Wishart(W0,v, v0,v).

The prior distribution for σ2 is an inverse gamma distribution:

σ2 ∼ inverse gamma(c0, d0).

The resulting posterior distribution is

p(U,V,µu,Ψu,µv,Ψv, σ
2|B) ∝ p(B|U,V,µu,Ψu,µv,Ψv, σ

2)

p(U|µu,Ψu)p(µu|Ψu)p(Ψu)

p(V|µv,Ψv)p(µv|Ψv)p(Ψv)p(σ
2),
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the samples of which are equivalent to samples from p(U,V, σ2|B) after integrating out
augmented parameters:

p(U,V, σ2|B) =

∫
p(U,V,µu,Ψu,µv,Ψv, σ

2|B)dµudΨudµvdΨv.

The MCMC sampling sequence of the above model can be summarized multiple steps of
the Gibbs sampling:

Step 1 For each layer, generate Bt = At −Pt by choosing a null model (Pt).

Step 2 Initialize (U,V,µu,Ψv,µv,Ψv, σ
2). For the starting values of U and V, find the

first R largest absolute eigenvalues and the corresponding eigenvectors of the mean
matrix of B over T .

Step 3 Sample U.

1. Sample Ψu from inverse Wishart((UTU +W−1
0,u )−1, N +R + 1).

2. Sample µu|Ψu from multivariate normal(UT1/(N + 1),Ψu/(N + 1)).

3. Sample U from matrix normalN×R(M̃u, IN , Ψ̃u) where

Ψ̃u = (Qu/σ
2 + Ψ−1u )−1

M̃u = (Lu/σ
2 + 1µT

uΨ−1u )Ψ̃u

Qu = (UTU) ◦ (VTV)

Lu =
∑
j,t

b·,j,t ⊗ (Uj,· ◦Vt,·)

where ◦ indicates element wise matrix multiplication and ⊗ indicates the Kronecker
product.

Step 4 Sample V.

1. Sample Ψv from inverse Wishart((VTV +W−1
0,v )−1, T +R + 1).

2. Sample µv|Ψv from multivariate normal(VT1/(T + 1),Ψv/(T + 1)).

3. Sample V from matrix normalT×R(M̃v, IT , Ψ̃v) where

Ψ̃v = (Qv/σ
2 + Ψ−1v )−1

M̃v = (Lv/σ
2 + 1µT

v Ψ−1v )Ψ̃v

Qv = (UTU) ◦ (UTU)

Lv =
∑
i,j

bi,j,· ⊗ (Ui,· ◦Uj,·).
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4 Network Changepoint Detection Algorithm

Here we introduce the network changepoint detection algorithm in detail. Now we consider
B as realizations of the stochastic process {Bt}Tt=1. The probability distribution of {Bt}Tt=1

depends on the realizations of hidden states {St}Tt=0.
Utilizing the conditional independence of data given hidden states, the joint density of

data (likelihood) and hidden states (S) is

p(B,S|Θ,G) = p(S0|Θ,G)
T∏
t=1

p(Bt|Bt−1,St,Θ,G)︸ ︷︷ ︸
one-step ahead predictive density

distribution of hidden states at t given the history︷ ︸︸ ︷
p(St|St−1,Bt−1,Θ,G)

where Θ = {U,V,µu,Ψu,µv,Ψv, σ
2}, St indicates the history of hidden states from t to T ,

G is a transition matrix, and Bt−1 indicate the history of observed data from t− 1 to T .
In order to sample hidden states from the above joint distribution, we have to specify

the transition matrix G. Among many variants of the transition matrix that have been
developed in the literature of hidden Markov model (Frühwirth-Schnatter, 2006; Cappe,
Moulines, & Ryden, 2005), we choose Chib (1998)’s non-ergodic Markov chain for multiple
changepoint detection.

Let γij = Pr(St = j|St−1 = i) denote the probability of going to state j from state i at
time t when the state at t − 1 is i. Then, the M ×M transition matrix for a non-ergodic
Markov chain takes the following form:

G =


γ11 γ12 0 . . . 0
0 γ22 γ23 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 γM−1,M−1 γM−1,M
0 0 0 1

 .

We employ the Beta prior distribution for transition probabilities:

γii ∼ Beta(a0, b0).

The joint posterior distribution can be decomposed into the product of two terms:

p(Θ,G|B) =

∫
p(Θ,G,S|B)dS∫
p(Θ|B,G,S)︸ ︷︷ ︸

Part 1

p(G,S|B)︸ ︷︷ ︸
Part 2

dS.

Draws of the Gibbs sampling from two conditional posterior distributions, p(Θ|B,G,S) and
p(G,S|B,Θ), provide proper samples from p(Θ,G|B):

Part 1: p(Θ|B,G,S)

Step 1 For each layer, generate Bt = At −Pt by choosing a null model (Pt).
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Step 2 Initialize (U,V,µu,Ψv,µv,Ψv, σ
2,S,G) in the same way with the above algorithm.

Set the total number of changepoints M .

Step 3 Sample Um which indicates U corresponding to state m.

1. Sample Ψu,m from inverse Wishart((UT
mUm +W−1

0,u )−1, N +R + 1).

2. Sample µu,m|Ψu,m from multivariate normal(UT
m1/(N + 1),Ψu/(N + 1)).

3. Sample Um from matrix normalN×R(M̃u,m, IN , Ψ̃u,m) where

Ψ̃u,m = (Qu,m/σ
2
m + Ψ−1u,m)−1

M̃u,m = (Lu,m/σ
2
m + 1µT

u,mΨ−1u,m)Ψ̃u,m

Qu,m = (UT
mUm) ◦ (VT

mVm)

Lu,m =
∑

j,t: t∈St=m

b·,j,t ⊗ (Um,j,· ◦Vm,t,·)

Step 4 Sample Vm which indicates V corresponding to state m.

1. Sample Ψv,m from inverse Wishart((VT
mVm +W−1

0,v )−1, Tm +R + 1).

2. Sample µv,m|Ψv,m from multivariate normal(VT
m1/(Tm + 1),Ψv,m/(Tm + 1)).

3. Sample Vm from matrix normalTm×R(M̃v,m, ITm , Ψ̃v,m) where

Ψ̃v,m = (Qv,m/σ
2
m + Ψ−1v,m)−1

M̃v,m = (Lv,m/σ
2
m + 1µTm

v,mΨ−1v,m)Ψ̃v,m

Qv,m = (UT
mUm) ◦ (UT

mUm)

Lv,m =
∑
i,j

bi,j,· ⊗ (Um,i,· ◦Um,j,·)

Part 2: p(G,S|B,Θ)

Step 5 Sample S
The joint conditional distribution of the latent states p(S0, . . . , ST |Θ,G,B) can be
written as the product of T numbers of independent conditional distributions:

p(S0, . . . , ST |Θ,G,B) = p(ST |Θ,G,B) . . . p(St|St+1,Θ,G,B) . . . p(S0|S1,Θ,G,B).

Using Bayes’ Theorem,

p(St|St+1,Θ,G,B) ∝ p(St|Θ,G,B1:t)p(St+1|St,G).

The second part on the right hand side is a transition probability at t, which can
be obtained from a sampled transition matrix (G). The first part on the right hand
side is simulated via a forward-filtering-backward-sampling algorithm as shown in Chib
(1998).
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Step 6 Sample G

γkk ∼ Beta(a0 + jk,k − 1, b0 + jk,k+1)

where γkk is the probability of staying when the state is k, and jk,k is the number of
jumps from state k to k, and jk,k+1 is the number of jumps from state k to k + 1.
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5 Scalability of the Changepoint Detection Algorithm

Figure S4 illustrates the scaling behavior of the run time of our changepoint detection al-
gorithm. The run time scales linearly with the squared value of the number of nodes and
the number of layers. As indicated in the main text, the R-implemented version of the algo-
rithm, used in the study, is reasonably fast, producing 100 samples in 30 seconds on a laptop
for the simulated examples analyzed. It is still affordable for larger networks with 1,000
nodes, producing 100 samples within an hour. We expect that C/C++ implementation of
the algorithm will yield a substantial improvement in its computational speed.
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Figure S4: The scaling behavior of the run time for the changepoint detection algorithm by the network
size and the number of layers. The unit of time on the y-axis does not convey substantive information. Each
point is the average value for 10 runs of the core-periphery transition time series. All types of the transitions
show almost identical scaling patterns.
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