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1 Gibbs sampler

1.1 Full conditional distributions

We first place the following priors on the unknowns.

α|σ2 ∼ N(µα, νασ
2),

σ2 ∼ IG(γσ/2, ησ/2),

Σ ∼ IW (γΣ,ΓΣ),

θ ∼ `N(µθ, νθ),

β1 ∼ `N(µβ, νβ),

ω ∼ IG(γω/2, ηω/2),

Zi
iid∼ N(0, σ2

zIp),

σ2
z ∼ IG(γz/2, ηz/2),

where IG(a, b) is the inverse gamma distribution with shape a and scale b, IW (a,B) is the
inverse Wishart distribution with degrees of freedom a and scale matrix B, and `N(a, b) is
the log normal distribution with log-mean a and log-variance b.

We have closed form solutions for most of the full conditional distributions. The full con-
ditional distributions for the A∗k,ij’s are trivially given by the truncated normal distribution
with mean and variance as given in the main text. The full conditional for each αk is given
by

αk|· ∼ N(µαk
, σ2

αk
), (1)

1

σ2
αk

=
1

σ2
+
∑
i 6=j

τk,ij,

µαk
=
α/σ2 +

∑
i 6=j τk,ij(A

∗
k,ij − si − rj + ‖Zi − Zj‖)

1/σ2 +
∑

i 6=j τk,ij
.

For the sender and receiver effects we have(
s′ r′

)′ |· ∼ N(µsr,Σsr), (2)

Σ−1
sr =

∑
k∈S

(
Diag(Tk1) Tk

Tk Diag(Tk1)

)
+ Σ−1 ⊗ In,

µsr = Σsr

∑
k∈S

(
diag(ÃkTk)

diag(Ã′kTk)

)
,

[Ãk]ij = A∗k,ij − αk + ‖Zi − Zj‖,
[Tk]ij = τk,ij1{j 6=i},

where Diag(a) is the square diagonal matrix with the vector a on the diagonal, and diag(A)
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is the vector equaling the diagonal entries of a square matrix A. For Σ we have

Σ|· ∼ IW (γ̃Σ, Γ̃Σ), (3)

γ̃Σ = γΣ + n,

Γ̃Σ = ΓΣ +
n∑
i=1

(
si
ri

)(
si ri

)
.

The full conditionals for α and σ2 are given as

α|σ2, · ∼ N(µ̃α, ν̃ασ
2), (4)

σ2|· ∼ IG(γ̃σ/2, η̃σ/2),

µ̃α =
µα + να

∑
k∈S αk

1 + ναn1

,

ν̃α =
να

1 + ναn1

,

γ̃σ = γσ + n1,

η̃σ = ησ +
∑
k∈S

α2
k +

µ2
α

να
− µ̃2

α

ν̃α
.

For β0k the full conditional is given by

β0k ∼ Ga(θ̃1k/2, θ̃2k/2), (5)

θ̃1k = θ + n(n− 1),

θ̃2k = θ +
∑
i 6=j

e−β1
(
‖Zk−Zi‖+‖Zk−Zj‖

)
· (A∗k,ij − αk − si − rj + ‖Zi − Zj‖)2.

For σ2
z we have

σ2
z ∼ IG(γ̃z/2, η̃z/2), (6)

γ̃z = γz + np,

η̃z = ηz +
n∑
i=1

‖Zi‖2.

There is no closed form well known distribution for Z, β1, or for θ. These require Metropolis-
Hastings steps to obtain posterior draws. In our analyses we used a simple multivariate
normal distribution with a spherical covariance matrix for Z, and a normal distribution
for log β1 and log θ. Tuning was done in an automated manner up over the duration of a
prespecified burn-in period to obtain an acceptance rate approximately 0.234, at which point
the tuning parameters were fixed for the remainder of the MCMC sampling.

To perform estimation when covariates are incorporated into the model, we need to first
assign priors to Bs, Br, and Bz, derive their full conditional distributions, and alter the full
conditional distributions above that are affected by the incorporation of covariates into the
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model. Let us assume that the prior distributions follow the form(
Bs

Br

)
∼ N(0, σ2

Bsr
I2q), (7)

Bz ∼ Nq×p(0, Ip ⊗ (σ2
Bz
Iq)). (8)

Then the new full conditionals are given by(
Bs

Br

)
∼ N(µBsr

,ΣBsr) (9)

Σ−1
Bsr

= Σ−1 ⊗ (X ′X) +
1

σ2
Bsr

I2q

µBsr
= ΣBsr(Σ

−1 ⊗X)′
(
s
r

)
,

and

Bz ∼ Nq×p(Mz, Ip ⊗ Uz) (10)

U−1
z =

1

σ2
z

X ′X +
1

σ2
Bz

Iq

Mz =
1

σ2
z

UzX
′Z.

In equation (2), we must change µsr such that

µsr = Σsr

[∑
k∈S

(
diag(ÃkTk)

diag(Ã′kTk)

)
+ (Σ−1 ⊗X)

(
Bs

Br

)]
, (11)

and in equation (6) change η̃z such that

η̃z = ηz +
n∑
i=1

‖Zi −XiBz‖2, (12)

where Xi is the ith row of X. In equation (3) we must replace si and ri with s̃i := si−XiBs

and r̃i := ri −XiBr

1.2 Initialization

To initialize the MCMC algorithm, I first ran a generalized linear model using all the data
to estimate the αk, s, and r; the average α̂k was used to initialize α. I then used multidi-
mensional scaling on the matrix given by

1

|S|
∑
k∈S

(αkJn + s1′ + 1r′ − Ak)

where the entries of this matrix were shifted in order to ensure no off-diagonal element was
less than 0.001. The β0k’s were all initialized at 1, and β1 was initialized at 0.1. Bs, Br,
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and BZ were initialized by finding the least squares estimate on the initialized s, r, and
Z respectively. σ2

Z was then initialized by taking the sample variance of vec(Z). Similarly
Σ was initialized by taking the sample covariance of the initialized s and r, and σ2 was
initialized by the sample variance of the initialized αk’s.
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2 Advice-seeking network

2.1 MCMC plots

2.1.1 Trace plots

(a) α (b) σ2 (c) β1

(d) θ (e) σ2
Z (f) Bs

(g) Br
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2.1.2 ACF plots

(a) α (b) σ2 (c) β1

(d) θ (e) σ2
Z
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2.1.3 CCF Plots

Figure 3: Posterior correlation
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(a) α and β1 (b) α and σ2 (c) α and σ2
Z

(d) α and θ (e) beta1 and σ2
Z
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(a) β1 and θ (b) β1 and σ2 (c) σ2 and σ2
Z

(d) σ2 and θ (e) σ2
Z and θ
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2.2 Better starting positions

We analyzed the data of Section 5 of the main text using the initialization described above
in Section 1.2. We also analyzed the same data after initializing the MCMC algorithm with
the MAP estimators of the parameters and latent positions. This was done via an Iterated
Conditional Modes algorithm, using Lagrange multipliers to constrain the means of s and r
to be zero and of the β0k’s to be one. Figure 6 shows the boxplots for the posterior draws
of the model parameters comparing the two initialization schemes. From this figure it is
apparent that the posterior distributions are negligibly different.

Figure 6: Comparing the posterior distributions of the model parameters under two different
initialization schemes. The parameter draws have been rescaled by the same scalar for both
initialization schemes but different scalars for each parameter in order to increase the clarity
of the visualization.
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2.3 Color figure of latent position uncertainties
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2.4 Color figure of sender/receiver effect uncertainties
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