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Abstract

The problem of anomaly detection in networks has attracted a lot of attention in recent
years, especially with the rise of connected devices and social networks. Anomaly detec-
tion spans a wide range of applications, from detecting terrorist cells in counter-terrorism
efforts to identifying unexpected mutations during RNA transcription. Fittingly, numerous
algorithmic techniques for anomaly detection have been introduced. However, to date, little
work has been done to evaluate these algorithms from a statistical perspective. This work
is aimed at addressing this gap in the literature, by carrying out statistical evaluation of a
suite of popular spectral methods for anomaly detection in networks. Our investigation on
statistical properties of these algorithms reveals several important and critical shortcomings,
and we make methodological improvements to address such shortcomings. Further, we carry
out a performance evaluation of these algorithms using simulated networks, and also extend
the methods to count networks.
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1. Statistical evaluation of the chi-square algorithm

Includes additional figures from section 3

1.1. Comparing the test statistic to the chi-square distribution

Figure 1: Left figures are histogram density plots of 10,000 simulations with chi-square distribution, df = 1,
overlaid. n = 128 and p0 = 0.1. Right figures are the Q-Q plots of the simulated statistics with the line y = x
representing the theoretical χ2 with df = 1.((Top) Erdös-Rényi, (Middle) R-MAT, and (Bottom) Chung-Lu
Model)
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Figure 2: Left figures are histogram density plots of 10,000 simulations with chi-square distribution, df = 1,
overlaid. n = 256 and p0 = 0.1. Right figures are the Q-Q plots of the simulated statistics with the line y = x
representing the theoretical χ2 with df = 1.((Top) Erdös-Rényi, (Middle) R-MAT, and (Bottom) Chung-Lu
Model)
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Figure 3: Left figures are histogram density plots of 10,000 simulations with chi-square distribution, df = 1,
overlaid. n = 1024 and p0 = 0.1. Right figures are the Q-Q plots of the simulated statistics with the line
y = x representing the theoretical χ2 with df = 1. ((Top) Erdös-Rényi, (Middle) R-MAT, and (Bottom)
Chung-Lu Model)
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1.2. Improving the chi-square algorithm

Figure 4: (Erdös-Rényi, R-MAT, and Chung-Lu Model) Number of anomalous subgraph varies from 3%, 4%,
5%, and 6% for n = 128. Detection rates are solid lines while false alarm rates are dashed lines. Background
connectivity, p0 = 0.01. A comparison of the traditional detection statistic and the improved version
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Figure 5: (Erdös-Rényi, R-MAT, and Chung-Lu Model) Number of anomalous subgraph varies from 3%, 4%,
5%, and 6% for n = 256. Detection rates are solid lines while false alarm rates are dashed lines. Background
connectivity, p0 = 0.01. A comparison of the traditional detection statistic and the improved version
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Figure 6: (Erdös-Rényi, R-MAT, and Chung-Lu Model) Number of anomalous subgraph varies from 1%, 2%,
3%, and 4% for n = 1024. Detection rates are solid lines while false alarm rates are dashed lines. Background
connectivity, p0 = 0.01. A comparison of the traditional detection statistic and the improved version

Figure 7: (Erdös-Rényi, R-MAT, and Chung-Lu Model) Number of anomalous subgraph varies from 1%, 2%,
3%, and 4% for n = 512. Detection rates are solid lines while false alarm rates are dashed lines. Background
connectivity, p0 = 0.01. A comparison of the traditional detection statistic and the improved version
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2. Eigenvector L1 norm algorithm methodology

2.1. Estimating am and bm using historical data and setting m < n

Figure 8: Left figures are histogram density plots when parameters am and bm are estimated using historical
data and MOM estimators with m < n. Solid black line represents the theoretical Gumbel distribution.
Right figures are the Q-Q plots of the simulated statistics with the line y = x representing the theoretical
Gumbel distribution. This example is with n = 128 and p0 = 0.1. ((Top) Erdös-Rényi, (Middle) R-MAT,
and (Bottom) Chung-Lu Model)
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Figure 9: Left figures are histogram density plots when parameters am and bm are estimated using historical
data and MOM estimators with m < n. Solid black line represents the theoretical Gumbel distribution.
Right figures are the Q-Q plots of the simulated statistics with the line y = x representing the theoretical
Gumbel distribution. This example is with n = 256 and p0 = 0.1. ((Top) Erdös-Rényi, (Middle) R-MAT,
and (Bottom) Chung-Lu Model)
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Figure 10: Left figures are histogram density plots when parameters am and bm are estimated using historical
data and MOM estimators withm < n. Solid black line represents the theoretical Gumbel distribution. Right
figures are the Q-Q plots of the simulated statistics with the line y = x representing the theoretical Gumbel
distribution. This example is with n = 1024 and p0 = 0.1. ((Top) Erdös-Rényi, (Middle) R-MAT, and
(Bottom) Chung-Lu Model)
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2.2. Estimating am and bm using the Extreme Value Theorem and setting m < n

Figure 11: Left figures are histogram density plots when parameters am and bm are estimated using the
Extreme Value Theorem with m < n. Solid black line represents the theoretical Gumbel distribution. Right
figures are the Q-Q plots of the simulated statistics with the line y = x representing the theoretical Gumbel
distribution. This example is with n = 128 and p0 = 0.1. ((Top) Erdös-Rényi, (Middle) R-MAT, and
(Bottom) Chung-Lu Model)
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Figure 12: Left figures are histogram density plots when parameters am and bm are estimated using the
Extreme Value Theorem with m < n. Solid black line represents the theoretical Gumbel distribution. Right
figures are the Q-Q plots of the simulated statistics with the line y = x representing the theoretical Gumbel
distribution. This example is with n = 256 and p0 = 0.1. ((Top) Erdös-Rényi, (Middle) R-MAT, and
(Bottom) Chung-Lu Model)
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Figure 13: Left figures are histogram density plots when parameters am and bm are estimated using the
Extreme Value Theorem with m < n. Solid black line represents the theoretical Gumbel distribution. Right
figures are the Q-Q plots of the simulated statistics with the line y = x representing the theoretical Gumbel
distribution. This example is with n = 1024 and p0 = 0.1. ((Top) Erdös-Rényi, (Middle) R-MAT, and
(Bottom) Chung-Lu Model)
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2.3. Estimating am and bm using historical data and setting m = n

Figure 14: Left figures are histogram density plots when parameters am and bm are estimated using historical
data and MOM estimators withm = n. Solid black line represents the theoretical Gumbel distribution. Right
figures are the Q-Q plots of the simulated statistics with the line y = x representing the theoretical Gumbel
distribution. This example is with n = 128 and p0 = 0.1. ((Top) Erdös-Rényi, (Middle) R-MAT, and
(Bottom) Chung-Lu Model)
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Figure 15: Left figures are histogram density plots when parameters am and bm are estimated using historical
data and MOM estimators withm = n. Solid black line represents the theoretical Gumbel distribution. Right
figures are the Q-Q plots of the simulated statistics with the line y = x representing the theoretical Gumbel
distribution. This example is with n = 256 and p0 = 0.1. ((Top) Erdös-Rényi, (Middle) R-MAT, and
(Bottom) Chung-Lu Model)
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Figure 16: Left figures are histogram density plots when parameters am and bm are estimated using historical
data and MOM estimators withm = n. Solid black line represents the theoretical Gumbel distribution. Right
figures are the Q-Q plots of the simulated statistics with the line y = x representing the theoretical Gumbel
distribution. This example is with n = 1024 and p0 = 0.1. ((Top) Erdös-Rényi, (Middle) R-MAT, and
(Bottom) Chung-Lu Model)

16



2.4. Estimating am and bm using the Extreme Value Theorem and setting m = n

Figure 17: Left figures are histogram density plots when parameters am and bm are estimated using the
Extreme Value Theorem with m = n. Solid black line represents the theoretical Gumbel distribution. Right
figures are the Q-Q plots of the simulated statistics with the line y = x representing the theoretical Gumbel
distribution. This example is with n = 128 and p0 = 0.1. ((Top) Erdös-Rényi, (Middle) R-MAT, and
(Bottom) Chung-Lu Model)
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Figure 18: Left figures are histogram density plots when parameters am and bm are estimated using the
Extreme Value Theorem with m = n. Solid black line represents the theoretical Gumbel distribution. Right
figures are the Q-Q plots of the simulated statistics with the line y = x representing the theoretical Gumbel
distribution. This example is with n = 256 and p0 = 0.1. ((Top) Erdös-Rényi, (Middle) R-MAT, and
(Bottom) Chung-Lu Model)
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Figure 19: (Left figures are histogram density plots when parameters am and bm are estimated using the
Extreme Value Theorem with m = n. Solid black line represents the theoretical Gumbel distribution. Right
figures are the Q-Q plots of the simulated statistics with the line y = x representing the theoretical Gumbel
distribution. This example is with n = 1024 and p0 = 0.1. ((Top) Erdös-Rényi, (Middle) R-MAT, and
(Bottom) Chung-Lu Model)
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2.5. Improving the L1 norm algorithm

Figure 20: Top figures Histogram density plots of 10,000 simulations using inter-quantile range, IQR, and the
median, M to standardize detection statistic. Bottom figures are the Q-Q plots of the simulation. n = 512
and p0 = 0.1. ((a) Erdös-Rényi, (b) R-MAT, and (c) Chung-Lu Model)

Table 1: (L1 norm, m < n, Median and IQR) 10,000 in-control simulations are run and the results compared
to the theoretical Gumbel distribution when m = 30 for n = 128, 256 and m = 50 for n = 512, 1024.

ER Model R-MAT Model Chung-Lu Model
Network Size p0 95% 96% 97% 98% 99% 95% 96% 97% 98% 99% 95% 96% 97% 98% 99%

128 0.050 6.55 6.90 7.52 8.56 10.09 3.81 4.05 4.45 4.71 5.14 4.25 4.49 4.92 5.39 6.36
128 0.100 4.30 4.50 5.03 5.86 6.74 3.16 3.39 3.80 4.01 4.49 3.58 3.78 4.07 4.27 5.17
128 0.300 3.26 3.48 3.88 4.26 5.31 3.51 3.70 4.02 4.46 5.40 3.35 3.52 3.88 4.26 5.03
256 0.010 7.37 7.60 8.28 8.79 9.77 4.26 4.41 4.71 5.13 6.14 4.69 4.96 5.30 5.82 6.62
256 0.100 4.13 4.35 4.65 5.06 6.11 2.41 2.56 2.77 3.03 3.86 3.35 3.53 3.76 4.12 4.88
256 0.300 3.53 3.87 4.34 4.90 5.87 3.31 3.43 3.79 4.33 4.77 3.60 4.01 4.26 4.72 5.44
512 0.010 10.53 10.73 11.53 12.18 13.16 3.14 3.27 3.41 3.59 3.83 5.43 5.69 5.94 6.52 7.02
512 0.100 3.17 3.39 3.68 4.08 4.68 3.50 3.68 3.93 4.35 4.76 2.77 2.98 3.26 3.66 4.22
512 0.300 3.18 3.47 3.79 4.16 4.87 4.24 4.57 4.71 5.01 5.76 3.14 3.27 3.51 4.08 4.74

1024 0.010 8.91 9.70 10.21 11.15 13.36 1.48 1.58 1.68 1.82 2.01 3.85 3.98 4.22 4.60 5.02
1024 0.100 3.44 3.65 3.92 4.36 5.09 8.05 8.81 9.42 9.99 10.71 2.45 2.60 2.81 3.36 3.84
1024 0.300 3.29 3.58 3.83 4.30 4.78 7.73 7.98 8.19 8.89 9.43 3.15 3.41 3.67 4.06 4.56

Gumbel quantiles 2.97 3.20 3.49 3.90 4.60 2.97 3.20 3.49 3.90 4.60 2.97 3.20 3.49 3.90 4.60
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Figure 21: Top figures Histogram density plots of 10,000 simulations using mean, µ, and the standard
deviation, σ, to standardize detection statistic. Bottom figures are the Q-Q plots of the simulation. n = 512
and p0 = 0.1. ((a) Erdös-Rényi, (b) R-MAT, and (c) Chung-Lu Model)

Table 2: (L1 norm, m < n, Mean and SD) 10,000 in-control simulations are run and the results compared
to the theoretical Gumbel distribution when m = 30 for n = 128, 256 and m = 50 for n = 512, 1024.

ER Model R-MAT Model Chung-Lu Model
Network Size p0 95% 96% 97% 98% 99% 95% 96% 97% 98% 99% 95% 96% 97% 98% 99%

128 0.050 3.08 3.21 3.36 3.59 3.81 1.88 1.97 2.06 2.15 2.41 2.05 2.12 2.18 2.25 2.56
128 0.100 2.31 2.38 2.51 2.80 3.16 1.69 1.82 1.94 2.07 2.37 1.90 2.01 2.10 2.25 2.46
128 0.300 1.87 1.97 2.08 2.23 2.33 1.85 1.94 2.07 2.23 2.36 1.72 1.82 2.04 2.21 2.45
256 0.010 3.20 3.30 3.44 3.62 3.83 2.23 2.37 2.48 2.68 3.20 2.36 2.47 2.54 2.71 3.02
256 0.100 2.07 2.20 2.46 2.61 2.89 1.37 1.44 1.51 1.67 1.88 1.72 1.79 1.90 2.12 2.28
256 0.300 1.91 2.00 2.16 2.34 2.65 1.38 1.48 1.67 1.84 2.35 1.72 1.84 2.05 2.27 2.50
512 0.010 4.85 5.00 5.13 5.30 5.80 1.69 1.76 1.83 1.93 2.12 2.97 3.04 3.10 3.20 3.37
512 0.100 2.09 2.19 2.36 2.51 2.91 2.20 2.27 2.36 2.65 2.84 1.77 1.85 2.07 2.40 2.67
512 0.300 2.02 2.10 2.23 2.62 3.12 0.66 0.73 0.82 0.91 1.07 1.84 1.97 2.13 2.27 2.74

1024 0.010 4.84 5.00 5.15 5.43 5.98 1.19 1.24 1.37 1.45 1.54 2.47 2.53 2.67 2.85 3.12
1024 0.100 2.26 2.42 2.49 2.70 3.11 4.25 4.37 4.51 4.64 4.83 1.65 1.73 1.82 1.96 2.22
1024 0.300 2.00 2.12 2.31 2.53 2.84 0.57 0.60 0.63 0.69 0.74 1.92 2.11 2.34 2.43 2.73

Gumbel quantiles 2.97 3.20 3.49 3.90 4.60 2.97 3.20 3.49 3.90 4.60 2.97 3.20 3.49 3.90 4.60
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Figure 22: ((a) Erdös-Rényi, and (c) Chung-Lu Model) Top figures Histogram density plots of 10,000 simu-
lations using inter-quantile range, IQRm, and the median, Mm to estimate parameters, µm and σm. Bottom
figures are the Q-Q plots of the simulation for Count Networks.

Figure 23: ((a) Erdös-Rényi, and (c) Chung-Lu Model) Top figures Histogram density plots of 10,000 simu-
lations using standard deviation and the mean to estimate parameters, µm and σm. Bottom figures are the
Q-Q plots of the simulation for Count Networks.
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Table 3: (L1 norm, m < n, median and IQR) 10,000 in-control simulations are run and the results compared
to the theoretical Gumbel distribution when m = 30 for n = 128, 256 and m = 50 for n = 512, 1024 for
count networks.

ER Model Chung-Lu Model
Network size λ0 95% 96% 97% 98% 99% η 95% 96% 97% 98% 99%

128 0.2 4.913 4.941 4.984 5.024 5.093 0.133 4.913 4.941 4.984 5.024 5.093
128 1 5.964 5.980 5.991 6.012 6.041 0.333 5.964 5.980 5.991 6.012 6.041
128 3 6.115 6.122 6.130 6.146 6.166 1 6.115 6.122 6.130 6.146 6.166
256 0.2 5.091 5.113 5.133 5.168 5.234 0.133 5.091 5.113 5.133 5.168 5.234
256 1 5.530 5.553 5.577 5.602 5.631 0.333 5.530 5.553 5.577 5.602 5.631
256 3 6.061 6.069 6.079 6.090 6.109 1 6.061 6.069 6.079 6.090 6.109
512 0.2 8.263 8.274 8.295 8.318 8.350 0.133 8.263 8.274 8.295 8.318 8.350
512 1 7.885 7.902 7.932 7.958 8.035 0.333 7.885 7.902 7.932 7.958 8.035
512 3 8.890 8.912 8.934 8.966 9.010 1 8.890 8.912 8.934 8.966 9.010

1024 0.2 9.026 9.036 9.048 9.069 9.105 0.133 9.026 9.036 9.048 9.069 9.105
1024 1 7.859 7.880 7.901 7.922 7.976 0.333 7.859 7.880 7.901 7.922 7.976
1024 3 9.283 9.295 9.307 9.324 9.354 1 9.283 9.295 9.307 9.324 9.354

Gumbel quantiles 2.970 3.199 3.491 3.902 4.600 2.970 3.199 3.491 3.902 4.600

Table 4: (L1 norm, m < n, mean and SD) 10,000 in-control simulations are run and the results compared
to the theoretical Gumbel distribution when m = 30 for n = 128, 256 and m = 50 for n = 512, 1024 for
count networks.

ER Model Chung-Lu Model
Network size λ0 95% 96% 97% 98% 99% η 95% 96% 97% 98% 99%

128 0.2 2.583 2.722 2.872 3.115 3.516 0.133 4.913 4.941 4.984 5.024 5.093
128 1 1.926 2.021 2.154 2.309 2.645 0.333 5.964 5.980 5.991 6.012 6.041
128 3 1.838 1.924 2.030 2.186 2.531 1 6.115 6.122 6.130 6.146 6.166
256 0.200 2.184 2.321 2.480 2.633 2.887 0.133 5.091 5.113 5.133 5.168 5.234
256 1 1.851 1.965 2.114 2.302 2.572 0.333 5.530 5.553 5.577 5.602 5.631
256 3 1.852 1.947 2.099 2.301 2.515 1 6.061 6.069 6.079 6.090 6.109
512 0.2 2.274 2.393 2.515 2.716 3.137 0.133 8.263 8.274 8.295 8.318 8.350
512 1 2.045 2.152 2.279 2.503 2.827 0.333 7.885 7.902 7.932 7.958 8.035
512 3 1.985 2.103 2.257 2.414 2.900 1 8.890 8.912 8.934 8.966 9.010

1024 0.200 2.053 2.195 2.335 2.503 2.890 0.133 9.026 9.036 9.048 9.069 9.105
1024 1 1.938 2.051 2.177 2.431 2.742 0.333 7.859 7.880 7.901 7.922 7.976
1024 3 2.070 2.199 2.373 2.552 2.764 1 9.283 9.295 9.307 9.324 9.354

Gumbel quantiles 2.970 3.199 3.491 3.902 4.600 2.970 3.199 3.491 3.902 4.600
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Figure 24: Binary network. Detection and False alarm rates with n = 256 and 512 and m < n. Number of
anomalous subgraph varies from 3%, 4%, 5%, and 6% for n = 256 and 3%, 4%, 5%, and 6% for n = 512.
Detection rates are solid lines while false alarm rates are dashed lines. Background connectivity, p0 = 0.01.
(Erdös-Rényi, R-MAT, and Chung-Lu Model)

Figure 25: Binary network. Detection and False alarm rates with n = 256 and 512 and m < n. Number of
anomalous subgraph varies from 3%, 4%, 5%, and 6% for n = 256 and 3%, 4%, 5%, and 6% for n = 512.
Detection rates are solid lines while false alarm rates are dashed lines. Background connectivity, p0 = 0.1.
(Erdös-Rényi, R-MAT, and Chung-Lu Model)
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3. Evaluating algorithm performance

Figure 26: (Erdös-Rényi, R-MAT, and Chung-Lu Model) Detection and False alarm rates with n = 128 and
1024. Number of anomalous subgraph nodes varies from 3%, 4%, 5%, and 6% of the network size for n =
256 and 3%, 4%, 5%, and 6% of the network size for n = 1024. Detection rates are solid lines while false
alarm rates are dashed lines. Background connectivity, p0 = 0.01

4. Applying anomaly detection algorithms to Count Networks

4.1. Evaluating statistical properties of the algorithms in count networks when there is no
anomaly

4.1.1. Statistical properties of the Chi-square algorithm
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Figure 27: Top figures are histogram density plots of the chi-square statistic based on 10,000 simulations
with chi-square distribution overlaid. n = 128 and λ0 = 1. Bottom figures are the corresponding Q-Q
plots.((a) Erdös-Rényi, and (b) Chung-Lu Models)

Figure 28: Top figures are histogram density plots of the chi-square statistic based on 10,000 simulations
with chi-square distribution overlaid. n = 512 and λ0 = 1. Bottom figures are the corresponding Q-Q
plots.((a) Erdös-Rényi, and (b) Chung-Lu Models)

4.1.2. Statistical properties of the L1 norm algorithm

Estimating am and bm using historical data
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Figure 29: Top figures are histogram density plots of the chi-square statistic based on 10,000 simulations
with chi-square distribution overlaid. n = 1024 and λ0 = 1. Bottom figures are the corresponding Q-Q
plots.((a) Erdös-Rényi, and (b) Chung-Lu Models)
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Figure 30: Top figures are histogram density plots of the L1 norm statistics based on 10,000 simulations
using MOM estimation and m < n with Gumbel distribution overlaid. n = 128 and λ0 = 1. Bottom figures
are the corresponding Q-Q plots ((a) Erdös-Rényi, and (b) Chung-Lu Models).

Figure 31: Top figures are histogram density plots of the L1 norm statistics based on 10,000 simulations
using MOM estimation and m = n with Gumbel distribution overlaid. n = 128 and λ0 = 1. Bottom figures
are the corresponding Q-Q plots ((a) Erdös-Rényi, and (b) Chung-Lu Models)
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Figure 32: Top figures are histogram density plots of the L1 norm statistics based on 10,000 simulations
using MOM estimation and m < n with Gumbel distribution overlaid. n = 512 and λ0 = 1. Bottom figures
are the corresponding Q-Q plots ((a) Erdös-Rényi, and (b) Chung-Lu Models).

Figure 33: Top figures are histogram density plots of the L1 norm statistics based on 10,000 simulations
using MOM estimation and m = n with Gumbel distribution overlaid. n = 512 and λ0 = 1. Bottom figures
are the corresponding Q-Q plots ((a) Erdös-Rényi, and (b) Chung-Lu Models)
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Figure 34: Top figures are histogram density plots of the L1 norm statistics based on 10,000 simulations
using MOM estimation and m < n with Gumbel distribution overlaid. n = 1024 and λ0 = 1. Bottom figures
are the corresponding Q-Q plots ((a) Erdös-Rényi, and (b) Chung-Lu Models).

Figure 35: Top figures are histogram density plots of the L1 norm statistics based on 10,000 simulations
using MOM estimation and m = n with Gumbel distribution overlaid. n = 1024 and λ0 = 1. Bottom figures
are the corresponding Q-Q plots ((a) Erdös-Rényi, and (b) Chung-Lu Models)
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Estimating am and bm using the Extreme Value Theorem

Figure 36: Top figures are histogram density plots of the L1 norm statistics based on 10,000 simulations
using the Extreme Value Theorem and m < n with Gumbel distribution overlaid. n = 128 and λ0 = 1.
Bottom figures are the corresponding Q-Q plots ((a) Erdös-Rényi, and (b) Chung-Lu Models).

Figure 37: Top figures are histogram density plots of the L1 norm statistics based on 10,000 simulations
using the Extreme Value Theorem and m = n with Gumbel distribution overlaid. n = 128 and λ0 = 1.
Bottom figures are the corresponding Q-Q plots ((a) Erdös-Rényi, and (b) Chung-Lu Models)
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Figure 38: Top figures are histogram density plots of the L1 norm statistics based on 10,000 simulations
using the Extreme Value Theorem and m < n with Gumbel distribution overlaid. n = 512 and λ0 = 1.
Bottom figures are the corresponding Q-Q plots ((a) Erdös-Rényi, and (b) Chung-Lu Models).

Figure 39: Top figures are histogram density plots of the L1 norm statistics based on 10,000 simulations
using the Extreme Value Theorem and m = n with Gumbel distribution overlaid. n = 512 and λ0 = 1.
Bottom figures are the corresponding Q-Q plots ((a) Erdös-Rényi, and (b) Chung-Lu Models)
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Figure 40: Top figures are histogram density plots of the L1 norm statistics based on 10,000 simulations
using the Extreme Value Theorem and m < n with Gumbel distribution overlaid. n = 1024 and λ0 = 1.
Bottom figures are the corresponding Q-Q plots ((a) Erdös-Rényi, and (b) Chung-Lu Models).

Figure 41: Top figures are histogram density plots of the L1 norm statistics based on 10,000 simulations
using the Extreme Value Theorem and m = n with Gumbel distribution overlaid. n = 1024 and λ0 = 1.
Bottom figures are the corresponding Q-Q plots ((a) Erdös-Rényi, and (b) Chung-Lu Models)
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4.2. Evaluating the performance of the chi-square and L1 norm algorithms in count networks

False alarms rates

Table 5: Comparison of false alarm rates for the three cases, χ2 algorithm, L1 norm using Extreme Value
Theorem and m < n, and L1 norm using Extreme Value Theorem and m = n. 95th percentile was used for
signaling threshold.

Network order chi-square L1 norm m < n L1 norm m = n
ER model λ0 = 0.2 λ0 = 1 λ0 = 3 λ0 = 0.2 λ0 = 1 λ0 = 3 λ0 = 0.2 λ0 = 1 λ0 = 3

128 0.11 0.06 0.08 0.04 0.02 0.04 0.06 0.04 0.05
256 0.10 0.06 0.07 0.04 0.02 0.01 0.08 0.07 0.04
512 0.08 0.05 0.08 0.01 0.02 0.00 0.06 0.04 0.04

1024 0.07 0.07 0.11 0.01 0.01 0.01 0.04 0.06 0.04
Chung-Lu model η0 = 0.133 η0 = 0.333 η0 = 1 η0 = 0.133 η0 = 0.333 η0 = 1 η = 0.133 η0 = 0.333 η0 = 1

128 0.36 0.35 0.47 0.00 0.04 0.01 0.09 0.06 0.04
256 0.55 0.63 0.28 0.03 0.16 0.01 0.09 0.16 0.02
512 0.45 0.46 0.65 0.01 0.16 0.00 0.03 0.19 0.00

1024 0.66 0.70 0.53 0.01 0.01 0.08 0.03 0.01 0.25

Detection rates for the ER model

Figure 42: Detection rates for count networks with n = 128. Number of anomalous subgraph varies from
2% to 10% of n = 128. (Erdös-Rényi Model)
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Figure 43: Detection rates for count networks with n = 512. Number of anomalous subgraph varies from
2% to 10% of n = 512. (Erdös-Rényi Model)

Figure 44: Detection rates for count networks with n = 1024. Number of anomalous subgraph varies from
2% to 10% of n = 1024. (Erdös-Rényi Model)
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Detection rates for the Chung-Lu model

Figure 45: Detection rates for count networks with n = 128. Number of anomalous subgraph varies from
2% to 12% of n = 128. (Chung-Lu Model)

Figure 46: Detection rates for count networks with n = 512. Number of anomalous subgraph varies from
2% to 12% of n = 512. (Chung-Lu Model)
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Figure 47: Detection rates for count networks with n = 1024. Number of anomalous subgraph varies from
2% to 12% of n = 1024. (Chung-Lu Model)
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