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Appendix 

A. 2nd set of analytical solutions 

For homophily rewiring, as before let the network exposure term be X, let the prior term be 

Z, let the outcome be Y, and let the average out-degree for each node be n. If we rewire (1-

p)*100% of the ties to perfectly homophilous others, then the new exposure term for an actor 

i would become 
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where Zj represents the behavior of actor i’s original network neighbors, Zi represents the 

behavior of actor i’s new network neighbors (who hold exactly the same behavior as actor i). 
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As a result, the new correlation between network exposure and the prior, after rewiring 

becomes 
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Similarly, the new correlation between network exposure and the outcome after rewiring 

becomes   
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Finally, as before the threshold of partial correlation𝑟𝑋𝑌|𝑍 -- #r , can be calculated to be 
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where t# is the critical value of t to invalidate inference, and res.df represents the residual 

degrees of freedom. 

Thus to invalidate the observed inference we need to randomly rewire 100(1-p)% of ties in 

order to get 
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As we can see, we can now represent the new partial correlation in terms of p (the percentage 

of ties retained), the original correlations in the observed data, and the average out-degree n. 

We can also write p as a function of other variables, but the formula is too complicated, so we 

do not provide it here.  
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For the anti-homophily rewiring we follow the same setup and let network exposure be X, the 

prior term be Z, the outcome be Y, and the average out-degree for each node  be n. If we rewire 

(1-p)*100% of the ties of the nodes to the most dissimilar others, then assuming Z is centered 

at 0, which only affects the value of the new network exposure term X but not the correlation 

we are interested in, the new exposure term for actor i would become 
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As a result, after rewiring the new correlation between network exposure and the prior become 
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Similarly, after rewiring, the new correlation between network exposure and the outcome 

become 
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Finally, as before the threshold for partial correlation𝑟𝑋𝑌|𝑍 -- #r , can be calculated to be 
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where t# is the critical value of t to invalidate inference, and res.df represents the residual 

degrees of freedom. 

Thus to invalidate the observed inference we need to randomly rewire 100(1-p)% of ties in 

order to get 
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As we can see we can now represent the new partial correlation in terms of p (the percentage 

of ties retained), the original correlations in the observed data, and the average out-degree n. 
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We can also write p as a function of other variables, but the formula is too complicated, so we 

do not provide it here. 
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B. Upper bound 

Here we establish upper bound of social influence effects using estimation from homophily 

effects. 

Estimated selection model 
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Here, Z represents a network relationship. The term Similarityij can be a composite measure of 

multiple attributes such as a cosine similarity: 
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, where xi is the vector of attributes for person i. 

Then the relative magnitude of the standardized coefficient 2  represents the magnitude of 

relational balance, which is 2
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Here X is a set of control variables, and the relative magnitude of standardized coefficient 2

represents the magnitude of relational balance in the selection model, which is 2
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
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. 

Then assuming that influence operates no faster than selection (which can be tested using 

empirical data), the upper-bound of 2
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If 2  is over-estimated due to omitted variable bias, this upper bound can be useful in terms of 

determining the magnitude of bias. 

It would be interesting to have multiple empirical data sets to test two things: (1) if the 
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homophily effect is the upper bound for social influence effects; (2) if homophily effects and 

social influence effects are indeed correlated. 
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C. Anti-homophily rewiring example 

Here we give an anti-homophily rewiring example, N = 100. Density = 0.1, 𝑟𝑋𝑌  > 0.2. The prior 

term is a binary variable. Each point is a result of 1000 simulations. The analytical solutions in 

this case fit much better to the simulation results, compared with cases where the prior term is 

normally distributed. 

 

 

 

 

 

Figure S1: Anti-homophily rewiring example (better fit) 
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D. Homophily rewiring example 

Here we provide some extra simulation examples for homophily rewiring, where they show 

fitting between analytical solutions and simulation results would be worse if we had a smaller 

or denser network. Example 1 in Figure S2 shows results for homophily rewiring when network 

is smaller, N = 50 instead of 100. Density = 0.1. Example 2 in Figure S3 shows results for 

homophily rewiring when network is denser, density = 0.2 instead of 0.1. N = 100. 

 

 

 

 

 

Figure S2: homophily rewiring example when network is smaller 

 

 

 

 

 

 

Figure S3: homophily rewiring example when network is dense
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