
6 Appendix

6.1 Computational Details of Experiments

The implementations of all of the algorithms we used for the empirical stud-
ies are available as part of an R package. The Metropolis within Gibbs
algorithms use a multivariate uniform distribution over [zi − δ, zi + δ] as the
proposal distribution qδ, with δ tuned to target an acceptance rate within
20 and 30 percent. Similarly, the value of ε for the split HMC algorithms
was tuned to target an acceptance rate between 80 and 85 percent. The
tuned values of ε and δ for all of the configurations in Study 1 are available
in Figure 6.6, as well as Table 1 of the main text.

All experiments (except those involving Stan) were run using the Bridges
High Performance Computing System (Nystrom et al., 2015) at the Pitts-
burgh Supercomputing Center. The computing costs were supported by
XSEDE Integrated Advanced Digital Services (Towns et al., 2014). Because
of a software version incompatibility issue, we had to instead run the Stan
experiments in a different cluster computing environment called Hydra. Tim-
ing tests revealed that the Bridges supercomputer runs roughly 3.3 to 3.6
times slower than analogous runs on the Hydra computing cluster. To fa-
cilitate direct comparisons between the cluster and Bridges experiments, all
run times of the Stan algorithms were multiplied by a factor of 3.3 when
determining the comparisons shown in Figure 1. Version 2.18.2 of rstan
was used to run the experiment, and coda version 0.19-2 was used when
calculating effective sample sizes.

6.2 Details of Tuning the Algorithms

Where appropriate, we tuned the parameters of the algorithms to promote
efficient computation. Stan has a sophisticated (and computationally inten-
sive) tuning strategy for choosing its step size ε along with a mass matrixM .
For details, see Carpenter et al. (2017). For all of the non-Stan algorithms,
we used a light tuning strategy based on a sequence of short (100 iteration)
preliminary runs to iteratively select reasonable values for the parameters.
For the updates of Z, the Metropolis and Metropolis + FlyMC step sizes
were chosen to target an acceptance rate in the range [0.2, 0.3]. For the split
HMC and split HMC + FlyMC algorithms, the value of ε was determined
by targeting an acceptance rate within [0.8, 0.85]. The value of L was cho-
sen simultaneously to ensure T = Lε ≈ 2. We have found through a wide
array of preliminary experiments that these values tend to give results that
are close to optimal without taking too much tuning time. For the NUTS

1

algorithms, the value of ε chosen for the analogous split HMC algorithm was
used. The elliptical slice algorithms have no tuning parameters. The step-
size for the Metropolis τ updates was also chosen based on short preliminary
runs, targeting an acceptance rate in the range [0.2, 0.3]. The step sizes
used to update Z for split HMC, split HMC + FlyMC, Metropolis within
Gibbs, and Metropolis within Gibbs + FlyMC are provided in Figure 7 in
Section 6.6.

6.3 Measuring relative efficiency of MCMC Algorithm for
LPMs

There are two principal criteria by which to judge the efficiency of a Markov
chain for approximating a posterior distribution.

1. How efficiently does the MCMC sequence approximate the posterior
expectation of a desired function of the parameters?

2. What is the computational expense of generating this chain?

Simple metrics exist for gauging each of these criteria, which we describe
below.

For criterion 1, it is well-known that that mean estimates stemming from
a geometrically ergodic (Roberts et al., 1997) Markov chain are subject to
a Markov chain central limit theorem (CLT) (Tierney, 1994). Analogous
to the standard (independent samples) central limit theorem, for which the
variance of the estimator is inversely proportional to the raw sample size, the
variance in the Markov chain CLT is inversely proportional to the Effective
sample size (Kass et al., 1998; Ripley, 2009).

Letting θ1, θ2, . . . , θN denote N draws from a Markov chain and f denote
an arbitrary function, the effective sample size ESSf for estimating the
expectation of f(θ) is defined as

ESSf (θ1, . . . , θN) =
N

1 + 2
∑∞

t=1 ρt,f

where

ρt,f =

∫
f(θi+t)f(θi)p(θi)dθi∫

f(θi)2p(θi)dθi

denotes the t-lag autocorrelation of the function f(θ) in the Markov chain.
The effective sample size thus takes into account all possible lags of au-

tocorrelations, recognizing that highly autocorrelated chains represent fewer

2

bits of independent information than an uncorrelated analog. In practice,
estimating the effective sample size of a chain is done by estimating the au-
tocorrelations. For our purposes, we use the effective sample size estimator
implemented in the R package coda (Plummer et al., 2006).

We should note that we have not formally proved that our proposed
HMC + FlyMC algorithm produces a geometrically ergodic Markov chain
(see Mangoubi & Smith (2017); Livingstone et al. (2019); Mangoubi & Smith
(2019) for recent progress on related problems). However, the effective sam-
ple size remains an intuitive metric for the efficiency of a Markov chain
approximation, due to its penalization of autocorrelations. Moreover, con-
servative confidence intervals based on the effective sample size can still
be constructed even when geometric ergodicity does not necessarily hold
(Rosenthal, 2017). For this reason, we feel it is still a suitable metric to use
when comparing chains.

To assess criterion 2 (the computational expense of generating a chain),
we simply measure the runtime1 of the algorithm. Although there is opportu-
nity for parallelization in some of the algorithms (e.g. simultaneous updating
of FlyMC variables), we do not take advantage of such opportunities—all our
implementations perform the various steps in series.

Overall, both criterion 1 and criterion 2 should be considered simulta-
neously when judging the efficiency of a Markov chain—a fast MCMC algo-
rithm is not necessarily accurate, and an accurate MCMC algorithm is not
necessarily fast. The most popular metric for combining these criteria is the
effective sample size per second (Gamerman & Lopes, 2006), defined by

ESS per second =
ESSf (θ1, . . . , θN)

time (in seconds) taken to compute the chain θ1, . . . , θN
,

sometimes referred to as Markov chain efficiency (de Valpine, 2018). This
metric provides a straightforward way to compare the performance of two
MCMC algorithms. If one MCMC algorithm produces twice as many ef-
fective samples per second as another, that means it is twice as efficient,
obtaining an equally accurate approximation of a desired posterior expec-
tation in roughly half the time. This begs the question—what posterior
expectation do we desire?

Typically, the posterior mean of the various parameters is the natural
choice (Carpenter et al., 2017). However, for the LPM, the posterior mean of
each latent positions is inappropriate. Due to the invariance of the likelihood

1None of the algorithms we consider here are memory-intensive. If any were, it might
also make sense to report the memory requirements.

3

under isometric transformations (e.g. rotations and reflections (Shortreed
et al., 2006)), all latent positions are guaranteed to have posterior mean of
0. If our target were the posterior means of the positions, MCMC would be
unnecessary.

A reasonable target should instead be well-identified in the model, such
as the probabilities of edges between the nodes. These values depend both
on the latent positions and the parameters of the link function. However,
there are n(n− 1)/2 such probabilities in total. For large networks, comput-
ing the effective sample size for all of them is computationally burdensome.
Moreover, many of these expected probabilities will be very close to 0 in
sparse networks, creating numerical underflow problems in practice.

To avoid having to compute the Markov efficiency for all n(n − 1)/2
unique pairs in [n]2, we instead consider a uniformly random subset of 500
dyads (sampled without replacement) for each of our empirical studies. Sub-
sampling drastically reduces the amount of computation required while still
providing a summary of how well the chain is mixing for all nodes. To avoid
the underflow problems associated with estimating the raw probabilities, we
calculate the effective sample size of estimating the log probabilities instead.
That is, for a given i, j ∈ [n]2, we consider

f(Z, γ, τ,X) = log(τxij)−
‖zi − zj‖2

2
.

as the function for which we calculate the posterior expectation. These func-
tions are much more numerically tractable than the raw probabilities, whilst
preserving strong ties with other quantities of interest (i.e. the distance
between nodes and the density parameter τ).

Finally, we can now bring all of this together to define an interpretable
quantity for reporting the relative efficiency of MCMC algorithms. Metropo-
lis within Gibbs is currently the most popular MCMC algorithm for posterior
computation of LPMs, making it the natural choice for the baseline against
which to compare other algorithms in our empirical studies. Accordingly,
we report each algorithm’s efficiency relative to Metropolis within Gibbs for
each subsampled dyad. That is, for a chain θ1, . . . , θN , we calculate

ESSf (θ1, . . . , θN)

ESSf (θ1
m, . . . , θ

N
m)
× time (in seconds) taken to compute the chain θ1

m, . . . , θ
N
m

time (in seconds) taken to compute the chain θ1, . . . , θN

for each dyad, where θ1
m, . . . , θ

N
m denotes draws according to a well-tuned

Metropolis within Gibbs algorithm exploring the same posterior.

4

6.4 Full Conditional Distributions

Sections 6.4.1 and 6.4.2 provide the details of the targeted joint distribution
as well as the relevant conditional distributions and algorithmic steps for
split HMC + FlyMC and split HMC, respectively.

6.4.1 Split HMC + FlyMC

The full joint distribution of all observed data and parameters for our split
HMC + FlyMC strategy can be decomposed as

p(A,U,Z, θ, τ, γ2 | x, a∗, b∗, α, β,Ω) = p(U |γ2, A,Ω)p(A | Z, θ, τ, γ2, x)p(Z | γ2,Ω)
(1)

× p(θ | τ, x)p(τ | α, β)p(γ2 | a∗, b∗), (2)

where x ∈ [C]n×n denotes the observed covariates, a∗, b∗ ∈ R+ denote the
hyperparameters for the inverse gamma prior on γ2, α, β ∈ RC+ denote the
hyperparameters for the beta prior(s) on τ , and Ω denotes the prior co-
variance for the latent positions Z before the re-parametrization. The full
expression for each of the components in the decomposition is

p(A | Z, θ, τ, x) =

 ∏
(i,j)∈EA

τxij

 exp

(
−1

2

d∑
`=1

ZT·`LAZ·`

) ∏
θij=1
Aij=0

(
1− exp

(
−1

2
‖zi − zj‖2

))

p(Z | γ2,Ω) =
1

(2π)nd/2γnddet (Ω)d
exp

(
− 1

2γ2

d∑
`=1

ZT·`Ω
−1Z·`

)

p(γ2 | a∗, b∗) =
ba∗∗

Γ(a∗)
(γ2)−a∗−1 exp

(
− b∗
γ2

)
p(θ | τ, x) =

∏
(i,j)∈A

τ
θij
xij

(
1− τxij

)1−θij
p(τ | α, β) =

C∏
c=1

Γ(αc + βc)

Γ(αc)Γ(βc)
ταc−1
c (1− τc)βc−1

p(U |γ2, A,Ω) =
det
(

1
γ2

Ω−1 + LA

)d
(2π)nd/2

exp

(
−1

2

d∑
`=1

UT·`

(
1

γ2
Ω−1 + LA

)−1

U·`

)
where det(·) denotes the determinant of a matrix and Γ(·) denotes the
Gamma function. To perform MCMC on this distribution, we alternate
through the following conditional updates

5

1. Use split HMC described in Algorithm 1 to update (Z,U) according
to the conditional posterior density p(U,Z | A, θ, γ2,Ω) defined by

p(U,Z | A, θ, γ2,Ω) ∝ exp

(
−1

2

d∑
`=1

ZT·`

(
1

γ2
Ω−1 + LA

)
Z·` + UT·`

(
1

γ2
Ω−1 + LA

)−1

U·`

)

×
∏
θij=1
Aij=0

(
1− exp

(
−1

2
‖zi − zj‖2

))

Note that in this case, the mass matrix for HMC is given by

M =

(
1

γ2
Ω−1 + LA

)
which amounts to having it adaptively updated according to γ2.

2. Apply the Metropolis-Hastings to update each of θij for which Aij = 0
according to the conditional posterior density p(θ | τ, x) defined by

p(θij = 0 | Aij = 0, τxij) =
1− τxij

1− τxij exp
(
−1

2‖zi − zj‖2
) .

Recall that because p(θij = 0 | Aij = 1, τxij) = 0, the θij for which
Aij = 1 need not be updated—they are known to be fixed at one.

3. Apply a Gibbs updates to update each entry in τ according to the beta
conditional posterior densities

p(τc|θ, αc, βc) =
Γ(αc + βc + Θ0

c + Θ1
c)

Γ(αc + Θ0
c)Γ(βc + Θ1

c)
ταc+Θ1

c−1
c (1− τc)βc+Θ0

c−1

where Θc
0 and Θc

1 are defined as in the main text, reproduced below
for easy access.

Θ0
c = |

{
(i, j) ∈ [n]2 : θij = 1 and xij = c

}
|

Θ1
c = |

{
(i, j) ∈ [n]2 : θij = 0 and xij = c

}
|.

4. Apply a Gibbs update to γ2 according to the inverse gamma conditional
density

p(γ2|a∗, b∗, Z,Ω) =

(
b∗ + 1

2

∑d
`=1 Z

T
·`Ω
−1Z·`

)a∗+nd
2

Γ(a∗ + nd
2) (γ2)a∗+nd

2
+1

exp

−
(
b∗ + 1

2

∑d
`=1 Z

T
·`Ω
−1Z·`

)
γ2

.
6

Note that this expression above arises only after marginalizing the
momentum variables U . Typically, after such a marginal update in
MCMC, the U parameter would need to be updated according to its
conditional distribution. In practice, this is not necessary, as U is not
one of the target parameters (moreover, the Gibbs update is immedi-
ately applied again in the following Step 1).

6.4.2 Split HMC

The full joint distribution of all observed data and parameters for our split
HMC strategy can be decomposed as

p(A,U,Z, τ, γ2 | x, a∗, b∗, α, β,Ω) = p(U |γ2, A,Ω)p(A | Z, τ, γ2, x)p(Z | γ2,Ω)

× p(τ | α, β)p(γ2 | a, b),

where x ∈ [C]n×n denotes the observed covariates, a∗, b∗ ∈ R+ denote the
hyperparameters for the inverse gamma prior on γ2, α, β ∈ RC+ denote the
hyperparameters for the beta prior(s) on τ , and Ω denotes the prior co-
variance for the latent positions Z before the re-parametrization. The full
expression for each of the components in the decomposition is

p(A | Z, τ, γ2, x) =

 ∏
(i,j)∈EA

τxij

 exp

(
−1

2

d∑
`=1

ZT·`LAZ·`

) ∏
(i,j)/∈EA

(
1− τxij exp

(
−1

2
‖zi − zj‖2

))

p(Z | γ2,Ω) =
1

(2π)nd/2γnddet (Ω)d
exp

(
− 1

2γ2

d∑
`=1

ZT·`Ω
−1Z·`

)

p(γ2 | a∗, b∗) =
ba∗∗

Γ(a∗)
(γ2)−a∗−1 exp

(
− b∗
γ2

)
p(τ | α, β) =

C∏
c=1

Γ(αc + βc)

Γ(αc)Γ(βc)
ταc−1
c (1− τc)βc−1

p(U |γ2, A,Ω) =
det
(

1
γ2

Ω−1 + LA

)d
(2π)nd/2

exp

(
−1

2

d∑
`=1

UT·`

(
1

γ2
Ω−1 + LA

)−1

U·`

)

where det(·) denotes the determinant of a matrix and Γ(·) denotes the
Gamma function. To perform MCMC on this distribution, we alternate
through the following conditional updates

7

1. Use split HMC described in Algorithm 1 to update (Z,U) according
to the conditional posterior density p(U,Z | A, γ2,Ω) defined by

p(U,Z | A, γ2,Ω) ∝ exp

(
−1

2

d∑
`=1

ZT·`

(
1

γ2
Ω−1 + LA

)
Z·` + UT·`

(
1

γ2
Ω−1 + LA

)−1

U·`

)

×
∏

(i,j)/∈EA

(
1− τxij exp

(
−1

2
‖zi − zj‖2

))
Note that in this case, the mass matrix for HMC is given by

M =

(
1

γ2
Ω−1 + LA

)
which amounts to having it adaptively updated according to γ2.

2. Apply a random walk Metropolis to update each entry in τ using its
posterior conditional distribution

p(τc | A, xij , αc, βc) ∝ ταc+ζ1c−1
c (1− τc)βc−1

∏
xij=c
Aij=0

(
1− τxij exp

(
−1

2
‖zi − zj‖2

))

where ζ1
c is defined as

ζ1
c = |

{
(i, j) ∈ [n]2 : Aij = 1 and xij = c

}
|.

We recommend updating each entry individually, using a uniform pro-
posal centered at its current value with step-size tuned to obtain an
acceptance rate within 20 and 30 percent. This is the strategy we used
throughout the article.

3. Apply a Gibbs update to update γ2 according to the inverse gamma
conditional density

p(γ2|a∗, b∗, Z,Ω) =

(
b∗ + 1

2

∑d
`=1 Z

T
·`Ω
−1Z·`

)a∗+nd
2

Γ(a∗ + nd
2) (γ2)a∗+nd

2
+1

exp

−
(
b∗ + 1

2

∑d
`=1 Z

T
·`Ω
−1Z·`

)
γ2

.
Note that this expression above arises only after marginalizing the
momentum variables U . Typically, after such a marginal update in
MCMC, the U parameter would need to be updated according to its
conditional distribution. In practice, this is not necessary, as U is not
one of the target parameters (moreover, the Gibbs update is immedi-
ately applied again in the following Step 1).

8

6.5 Algorithm Performance as Latent Space Dimension Grows

Figure 6 below is the analog to Figure 3 in the main text, showing how
our algorithms perform for various dimensions of the latent space (d = 2,
d = 4, and d = 8). These results were obtained as a follow-up companion to
the original Study 1, as suggested by an anonymous reviewer. All networks
considered consist of n = 500 nodes, with the simulation set-up otherwise
similar to Study 1.

The main difference is that we did not hold γ2 fixed as d increased like
we did for n in Study 1. Recall that in Gaussian latent position model with
unit isotropic Gaussian latent positions, the expected number of neighbours
of a random node is given by

E(

n∑
i=1

Aij) = nτ

(
1 +

2

γ2

)−d/2
.

As such, the expected density of the networks would change drastically as d.
Instead, we adjusted γ2 along with d to ensure the quantity

κ =

(
1 +

2

γ2

)d/2
stayed fixed for each network sparsity regime. We chose κ = 3 and κ = 11
because for d = 2, these correspond to the values of γ2 = 1.0 and γ2 = 0.2
considered in Study 1.

Inspecting Figure 6, there does not appear to be a clear upward trend
in any of the regimes. Though the HMC-based methods still appear to
outperform Metropolis within Gibbs, the difference does not appear to grow
reliably with d. At first, this may seem to be a surprising result; HMC-based
methods are known to perform especially well on high-dimensional posterior
distributions, relative to random walk-based methods. For this reason, one
might expect our split HMC algorithms to perform relatively better as d
increased, much like they did as n increased.

However, there is a difference in geometry between the growing n regime
and the growing d regime for LPMs. Though its size stays fixed with n,
the class of isometric transformations under which the posterior distribution
remains invariant grows with d. As such, posteriors over higher dimensional
latent positions tend to be less constrained, with the latent positions them-
selves being poorly identified. It is plausible that the benefits of the gradient
information is dampened as d grows. At the very least, the benefits do not
appear to increase with d in this study.

9

τ = 0.8, κ = 11 τ = 0.8, κ = 3

τ = 0.2, κ = 11 τ = 0.2, κ = 3

2 4 8 2 4 8

0.1

1.0

10.0

100.0

0.1

1.0

10.0

100.0

Dimension of Latent Space

Eff
ec
tiv

e
sa
m
pl
e
siz

e
pe

rs
ec
on

d
(r
ela

tiv
e
to

M
et
ro
po

lis
-w

ith
in
-G

ib
bs
)

split HMC split HMC + FlyMC

Figure 6: Boxplots showing the relative efficiency of Split HMC + FlyMC
and Split HMC relative to Metropolis within Gibbs across 500 dyads in each
network.

6.6 Additional Figures and Tables

τ = 0.8, γ2 = 0.2 τ = 0.8, γ2 = 1.0

τ = 0.2, γ2 = 0.2 τ = 0.2, γ2 = 1.0

50 100 200 500 50 100 200 500

0.0
0.5
1.0
1.5
2.0
2.5

0.0
0.5
1.0
1.5
2.0
2.5

Number of Nodes

St
ep

Siz
e(
ε
or
δ)

Metropolis
within Gibbs

Metropolis within
Gibbs + FlyMC split HMC split HMC

+ FlyMC

Figure 7: Four panels depicting the tuned step size parameters used by
Metropolis within Gibbs, split HMC, and their FlyMC counterparts for fit-
ting the 16 different networks considered in Study 1. Each panel displays the
step size parameter (δ for Metropolis methods and ε for HMC methods) used
for the 50, 100, 200, and 500 node networks generated using the parameter
values featured in the panel heading. Point color, point shape, line color,
and line shape are used to distinguish the algorithms.

10

Figure 8: Four panels depicting the marginal joint posterior of τ and γ2

for the 16 different networks considered in Study 1. Each panel displays
draws from the joint posterior for the 50, 100, 200, and 500 node networks
generated using the panel heading parameter values. The draws for different
sized networks are differentiated by color, with a black point used to indicate
the ground truth values of τ and γ2.

References

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betan-
court, M., Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A
probabilistic programming language. Journal of statistical software, 76 (1).

de Valpine, P. (2018). How we make mcmc comparisons. https:
//nature.berkeley.edu/~pdevalpine/MCMC_comparisons/nimble_
MCMC_comparisons.html. Accessed: 2020-04-24.

Gamerman, D., & Lopes, H. F. (2006). Markov chain Monte Carlo: stochas-
tic simulation for Bayesian inference. CRC Press.

Kass, R. E., Carlin, B. P., Gelman, A., & Neal, R. M. (1998). Markov
chain Monte Carlo in practice: a roundtable discussion. The American
Statistician, 52 (2), 93–100.

Livingstone, S., Betancourt, M., Byrne, S., & Girolami, M. (2019). On
the geometric ergodicity of Hamiltonian Monte Carlo. Bernoulli , 25 (4A),
3109–3138.

11

https://nature.berkeley.edu/~pdevalpine/MCMC_comparisons/nimble_MCMC_comparisons.html
https://nature.berkeley.edu/~pdevalpine/MCMC_comparisons/nimble_MCMC_comparisons.html
https://nature.berkeley.edu/~pdevalpine/MCMC_comparisons/nimble_MCMC_comparisons.html

Mangoubi, O., & Smith, A. (2017). Rapid mixing of Hamiltonian
Monte Carlo on strongly log-concave distributions. arXiv preprint
arXiv:1708.07114 .

Mangoubi, O., & Smith, A. (2019). Mixing of Hamiltonian Monte Carlo
on strongly log-concave distributions 2: Numerical integrators. In The
22nd International Conference on Artificial Intelligence and Statistics,
(pp. 586–595).

Nystrom, N. A., Levine, M. J., Roskies, R. Z., & Scott, J. R. (2015). Bridges:
a uniquely flexible HPC resource for new communities and data analytics.
In Proceedings of the 2015 XSEDE Conference: Scientific Advancements
Enabled by Enhanced Cyberinfrastructure, (pp. 1–8).

Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). Coda: convergence
diagnosis and output analysis for mcmc. R news, 6 (1), 7–11.

Ripley, B. D. (2009). Stochastic simulation, vol. 316. John Wiley & Sons.

Roberts, G., Rosenthal, J., et al. (1997). Geometric ergodicity and hybrid
markov chains. Electronic Communications in Probability , 2 , 13–25.

Rosenthal, J. S. (2017). Simple confidence intervals for mcmc without clts.
Electron. J. Statist., 11 (1), 211–214.
URL https://doi.org/10.1214/17-EJS1224

Shortreed, S., Handcock, M. S., & Hoff, P. (2006). Positional estimation
within a latent space model for networks. Methodology , 2 (1), 24–33.

Tierney, L. (1994). Markov chains for exploring posterior distributions. the
Annals of Statistics, (pp. 1701–1728).

Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A.,
Hazlewood, V., Lathrop, S., Lifka, D., Peterson, G. D., et al. (2014).
XSEDE: accelerating scientific discovery computing in science & engineer-
ing, 16 (5): 62–74, sep 2014. URL https://doi. org/10.1109/mcse.

12

https://doi.org/10.1214/17-EJS1224

	Appendix
	Computational Details of Experiments
	Details of Tuning the Algorithms
	Measuring relative efficiency of MCMC Algorithm for LPMs
	Full Conditional Distributions
	Split HMC + FlyMC
	Split HMC

	Algorithm Performance as Latent Space Dimension Grows
	Additional Figures and Tables

