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Table DS1. Means and Standard Deviations for CAPS Scores at All Time-points Over All 

Treatment Groups  

Timepoint M SD 

Baseline 63.08 18.62 

Posttreatment 33.70 21.08 

3-month FU 30.82 21.93 

6-month FU 25.58 22.13 

 
Note. CAPS = Clinician Administered PTSD Scale.  
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Table DS2. Correlations Among the Covariates at Baseline 

  AxEx BDI Diss CAPS IIP NMR 

AxEx 1 0.27 0.28 0.16 0.49 -0.48 

BDI 0.27 1 0.55 0.48 0.55 -0.6 

Diss 0.28 0.55 1 0.47 0.5 -0.38 

CAPS 0.16 0.48 0.47 1 0.31 -0.29 

IIP 0.49 0.55 0.5 0.31 1 -0.51 

NMR -0.48 -0.6 -0.38 -0.29 -0.51 1 

#CTs 0.03 0.09 0 0.22 0.01 -0.12 

 

Note. AxEx = State-trait Anger Expression Inventory; BDI = Beck Depression Inventory- II; 

Diss = Trauma Symptom Inventory Dissociation Subscale; CAPS = Clinician-administered 

PTSD Scale; IIP = Inventory of Interpersonal Problems; NMR = Negative Mood Regulation 

Scale; #CTs = number of childhood traumas. 

 



BJPO/2015/000745 
doi: 10.1192/bjpo.bp.115.000745 
 

3 
 

Table DS3. The Linear Combination of the Six Baseline Patient Characteristics That Has the 

Highest Test Statistic for Testing the Significance of the Interaction Term Between Treatment, 

Time, and the Linear Combination 

Baseline Characteristics  

GEM 

Coefficients of 

the standardized 

predictor 

Coefficients of 

the original 

predictor 

AxEx -12.77 -123.62 
BDI 2.09 20.40 
Diss 1.90 1.77 
CAPS 0.96 17.82 
IIP 7.58 4.45 
NMR -0.39 -6.17 
GEM p-value 0.0025 
GEM permutation p-value 0.0081 
 

Note. AxEx = State-trait Anger Expression Inventory; BDI = Beck Depression Inventory- II; 

Diss = Trauma Symptom Inventory Dissociation Subscale; CAPS = Clinician-administered 

PTSD Scale; IIP = Inventory of Interpersonal Problems; NMR = Negative Mood Regulation 

Scale. 
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Detailed Explanation of Moderator analysis 
 
Standard Moderator Analysis. In a randomized clinical trial RCT, what is commonly referred 
as a “standard moderator analysis” can be described as follows. Let Y denotes the outcome of 
interest at post-treatment; let A denotes the randomised treatment assignment with A=0 if a 
subjects is randomized to the control treatment condition and A=1 for the experimental 
condition; and let Z be a patient-level baseline covariate, such as age, severity of symptoms or a 
specific comorbid condition.  If the outcome Y is a continuous variable, reasonably assumed to 
follow Gaussian distribution conditional on covariates, and the subscript ‘i’ indicates the value of 
the ith patient, standard moderator analysis is based on the following linear model  
(1)                                    𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝐼𝐼𝑖𝑖

{𝐴𝐴=1} + 𝛽𝛽2𝑍𝑍𝑖𝑖 + 𝛽𝛽3𝑍𝑍𝑖𝑖𝐼𝐼𝑖𝑖
{𝐴𝐴=1} + 𝑒𝑒𝑖𝑖 , 

where Ii
{A=1}is an indicator for whether subject i received treatment A=1 or not and ε is a random 

error.  A significant interaction term (β3≠ 0) would indicate that Z moderates the effect of 
treatment A=1 compared to the effect of treatment A=0.  This is usually expressed shortly as “Z 
is a moderator of the effect of treatment on the outcome”.   

If the outcome cannot be reasonably assumed to be normally distributed conditional on 
the covariates, then a generalized linear model (GLM) is applied, where the linear predictor on 
the right hand side of (1) would model a link function g(Y) of the outcome, rather than the 
outcome Y itself.  For example, in the case of binary outcome (e.g., remission or non-remission) 
the link function g would be logit, i.e., 𝑔𝑔(𝑌𝑌) = log 𝑃𝑃(𝑌𝑌=1)

𝑃𝑃(𝑌𝑌=0)
⁡and the GLM model would be logistic 

regression. 
If the RCT has more than 2 treatment conditions, as it is in the study presented in the 

main paper, instead of one indicator for treatment, there will be (k-1) treatment indicators where 
k is the number of treatment conditions in the RCT.  In our study k=3, i.e., A=0, 1 and 2, thus 
instead of (1) the appropriate model is: 
(2)                                 𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝐼𝐼𝑖𝑖

{𝐴𝐴=1} + 𝛽𝛽2𝐼𝐼𝑖𝑖
{𝐴𝐴=2} + 𝛽𝛽3𝑍𝑍𝑖𝑖 + 𝛽𝛽4𝑍𝑍𝑖𝑖𝐼𝐼𝑖𝑖

{𝐴𝐴=1} + 𝛽𝛽5𝑍𝑍𝑖𝑖𝐼𝐼𝑖𝑖
{𝐴𝐴=2} + 𝑒𝑒𝑖𝑖 . 

In this case Z is a moderator of treatment effect if model (2) is better than model (2*) 
(2*)                               𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝐼𝐼𝑖𝑖

{𝐴𝐴=1} + 𝛽𝛽2𝐼𝐼𝑖𝑖
{𝐴𝐴=2} + 𝛽𝛽3𝑍𝑍𝑖𝑖 + 𝑒𝑒𝑖𝑖 , 

usually compared based on a χ2 likelihood ratio test (LRT)on k-1 degrees of freedom or based on 
Analysis of Variance (ANOVA) F test. 
 In RTCs where the outcome Y is assessed over time (as in our study – at immediately 
post-treatment, at 3 months follow up and 6 months follow up), the standard moderator analysis 
includes time and is based on a “standard longitudinal moderator model”, which in the case of 
only two treatment conditions is 
(3)           𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝐼𝐼𝑖𝑖

{𝐴𝐴=1} + 𝛽𝛽2𝑍𝑍𝑖𝑖 + 𝛽𝛽3𝑡𝑡 + 𝛽𝛽4𝑍𝑍𝑖𝑖𝐼𝐼𝑖𝑖
{𝐴𝐴=1} + 𝛽𝛽5𝑡𝑡𝐼𝐼𝑖𝑖

{𝐴𝐴=1} + 𝛽𝛽6𝑍𝑍𝑖𝑖𝑡𝑡 + 𝛽𝛽7𝑍𝑍𝑖𝑖𝑡𝑡𝐼𝐼𝑖𝑖
{𝐴𝐴=1} +

                            𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑖𝑖 , 
 
where erroriincludes random subject effects (e.g., intercepts and slopes) plus a random error. 
Generalized linear mixed effects models are typically used to fit models similar to (3).   The 
significance of the 3-way interaction term β7 would indicate that the comparison between 
treatment A=0 and A=1 with respect to the course of the outcome Y over time depends on Z.  If 
β7 is not different from 0, then one can look at the coefficient of the interaction between Z and 
the treatment indicator – a significantly different from zero  β4 would indicate that Z moderates 
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the effect of treatment on the average outcome, but does not moderate how the effect of 
treatment changes over time.  
 

The specific longitudinal mixed effects model for the outcome Y (CAPS scores) at the 
time points post-treatment, 3m FU and 6m FU employed in this study with 3 treatment 
conditions is  
(4)   𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝐼𝐼𝑖𝑖

{𝐴𝐴=𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 } + 𝛽𝛽2𝐼𝐼𝑖𝑖
{𝐴𝐴=𝐸𝐸𝐸𝐸} + 𝛽𝛽3𝑍𝑍𝑖𝑖 + 𝛽𝛽4𝑡𝑡 + 𝛽𝛽5𝑍𝑍𝑖𝑖𝐼𝐼𝑖𝑖

{𝐴𝐴=𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 } + 𝛽𝛽6𝑍𝑍𝑖𝑖𝐼𝐼𝑖𝑖
{𝐴𝐴=𝐸𝐸𝐸𝐸} +

             𝛽𝛽7𝑡𝑡𝐼𝐼𝑖𝑖
{𝐴𝐴=𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 } + 𝛽𝛽8𝑡𝑡𝐼𝐼𝑖𝑖

{𝐴𝐴=𝐸𝐸𝐸𝐸} + 𝛽𝛽9𝑍𝑍𝑖𝑖𝑡𝑡 + 𝛽𝛽10𝑍𝑍𝑖𝑖𝑡𝑡𝐼𝐼𝑖𝑖
{𝐴𝐴=𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴} + 𝛽𝛽11𝑍𝑍𝑖𝑖𝑡𝑡𝐼𝐼𝑖𝑖

{𝐴𝐴=𝐸𝐸𝐸𝐸} + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑖𝑖 . 
 
Testing whether Z is a moderator of treatment effects was based on the comparison of (4) against 
model  
(4*)   𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝐼𝐼𝑖𝑖

{𝐴𝐴=𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 } + 𝛽𝛽2𝐼𝐼𝑖𝑖
{𝐴𝐴=𝐸𝐸𝐸𝐸} + 𝛽𝛽3𝑍𝑍𝑖𝑖 + 𝛽𝛽4𝑡𝑡 + 𝛽𝛽5𝑍𝑍𝑖𝑖𝐼𝐼𝑖𝑖

{𝐴𝐴=𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 } + 𝛽𝛽6𝑍𝑍𝑖𝑖𝐼𝐼𝑖𝑖
{𝐴𝐴=𝐸𝐸𝐸𝐸} +

                     𝛽𝛽7𝑡𝑡𝐼𝐼𝑖𝑖
{𝐴𝐴=𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 } + 𝛽𝛽8𝑡𝑡𝐼𝐼𝑖𝑖

{𝐴𝐴=𝐸𝐸𝐸𝐸} + 𝛽𝛽9𝑍𝑍𝑖𝑖𝑡𝑡 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑖𝑖  
using LRT (a 2 degrees of freedom χ2test).  Each of the individual six baseline predictors is 
subjected to moderator analysis using the comparison of models (4) and (4*).  The p-values of 
the LRT are reported in Table 1 of the main text.   
 
Finding the GEM 
Let denote the six baseline predictors by X1, X2, X3, X4, X5 and X6.  We are looking for a linear 
combination (Z) of these variables  

𝑍𝑍 = 𝛼𝛼1𝑋𝑋1 + 𝛼𝛼2𝑋𝑋2 + 𝛼𝛼3𝑋𝑋3 + 𝛼𝛼4𝑋𝑋4 + 𝛼𝛼5𝑋𝑋5 + 𝛼𝛼6𝑋𝑋6, 
such that the test statistics for comparing model (4) against model (4*) (χ2(2) LRT) has the 
largest value, and equivalently, has the smallest p-value.  This linear combination was 
determined numerically using the function stats::optim and  BB::spg in R.35 
 
GEM p-value 
The GEM approach seeks to determine a linear combination of predictors that maximizes the 
evidence of an interaction effect. If there are no interaction effects between predictors and 
treatment indicators, then the GEM approach would tend to generate anti-conservative p-values 
when testing for an interaction in the estimated GEM models. A straightforward remedy to this 
problem is to generate GEMs from many “permuted” data sets(i.e., sets) obtained by randomly 
permuting the treatment labels among the data points. For each permuted data set, a solution for 
the linear combination is obtained; then a GEM corresponding to this solution is constructed and 
a p-value for the interaction of that GEM with treatment can be computed. Thus, a valid p-value 
for testing for an interaction effect can be calculated by 

Permutation p-value = {Proportion of permuted p-values < original p-value.} 

In our case, we obtain the permuted p-values for the LRT to compare models (4) and (4*).  
 
Testing for difference between the average outcome under a given treatment vs. the 
average outcome under treatment decisions based on BP 
 
Notice that the average outcome under a treatment decision based on BP is obtained from the 
outcomes of patients in levels 1 and 2 of BR treated with SC/Ex and the outcomes of patients in 
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levels 3 and 4 of BP treated with STAIR/SC.  The average outcome under a decision to treat 
everyone with SC/Ex is the obtained from the outcomes of all patients (levels 1, 2, 3 and 4 of 
BP) treated with SC/Ex.  Thus the comparison between the average outcomes of the decision 
“treat everyone with SC/Ex” vs. the decision “treat everyone according to BP” is the difference 
between the average outcomes of subjects in levels 3 and 4 of BR treated with SC/Ex and the 
average outcomes of subjects in levels 3 and 4 of BR treated with STAIR/SC.  In other words, 
we are looking at the outcomes only of subjects in levels 3 and 4 of BR (subjects who do better 
on STAIR/SC. The test is a test for comparison of the efficacies of STAIR/SC and SC/Ex among 
subjects in levels 3 and 4 of BR.  


