Appendix 2: Further mathematical derivations
The distribution function for B–V when B and V are uncorrelated; α = 1
The mathematical derivations in this appendix are included mainly to provide a basis for the simulations and simulation results presented in Figures 1-11 in the main text, and Figures 12-14 in this appendix. This appendix also yields additional insights to the analysis in the paper, in particular by rewriting earlier formulations in terms of conditional probabilities. 
To derive the distribution for B – V = Z, call the cdf of the random variable B, F(B), and denote its pdf by f(B). Considering the cdf for realized positive values of Z (cases where the forest is saved), conditional on H, this is found as the convolution

  (A1)                       . 

Substituting B = Z+V in (11) and taking its derivative with respect to Z (= B-V), we find the conditional pdf for Z for given H, as follows:

 (A2)                                            .  
Figure 12 shows a simulation of the pdf given that B and V are both independent and normal, and given EB = 1 = H, EV = 0.5, σB  = 1, σV  =1, for α = 1. 
[image: C:\Users\Sauleh\Dropbox\VariousCollaborations\Main\StrandAll\StrandForest\PDFComp.emf]
Figure 12: The pdf for Z = B-V; α = 1, zero correlation

The mean (first moment) of this distribution is given by

    (A3)                                 
which can be simplified as follows (assuming that f, g are continuous and integrable):

           
This leads to 

  (A3a)   .
Note that 

   (A4)                                               
is simply the expected value of V, conditional on H. We then also have from (A3a):

  (A3b)                                         .  




 is here an increasing function of H. Intuitively, when the payment H from buyer to seller increases, additional forest–saving projects are induced with gradually higher V levels (constrained only by V  H), thus increasing ,  but bounded above by its unconditional expectation, EV. Thus  must be a decreasing function of H, and must always have value less than the unconditional expectation of B, EB; and value higher than EB – EV (both unconditional).
By a similar procedure we can derive the conditional variance of B–V for given H, with result:

 (A5)       .
Figures 13-14 now provide simulations of EZ and the standard deviation on Z as functions of H, respectively.
[image: C:\Users\Sauleh\Dropbox\VariousCollaborations\Main\StrandAll\StrandForest\ExpValDiff.emf]
Figure 13: EZ (= E(B–V)) under parametric variation of H; α = 1, zero correlation
[image: C:\Users\Sauleh\Dropbox\VariousCollaborations\Main\StrandAll\StrandForest\StdDevDiff.emf]
Figure 14: Standard Deviation of Z = B–V under parametric variation in H; α = 1, zero correlation


Positive correlation between B and V; α = 1
We will now study cases where B and V can be correlated, for α = 1, focusing on joint normal distributions for B and V. The buyer then solves the following optimization problem, setting h(B,V) to be the joint multivariate normal distribution

(1a)                        
This equation now replaces (1). If B and V are independent, then h(B,V) = f(B)g(V) and the equation (1a) above simplifies to (1) in our paper. When B and V are correlated, we need to apply (1a). It is here easiest to integrate over B first (we can switch the order of the integral since we assume integrable, continuous functions) 

(A6)                        

(A7)                        
Now let ρ represent the correlation between B and V. 

(A8)                        
Now maximizing with respect to H:

(A9)                      

We find, solving for H:

       (A10)                                    
Note that when EB = EV, H does not change with changes in correlation, and is equal to EB:

[bookmark: _GoBack](A11)                                    
We can take the second order condition for (A9) to obtain a second order condition

(A12)                      

When EB = EV = H, a necessary (and sufficient) condition for the second order condition to hold is . 
The intuition is straightforward: when α = 1. Having correlated B and V does not allow any room for increasing expected total payoff by strategically changing H. Setting H = EB = EV allows the optimal welfare solution.

However, payoff under incomplete information decreases linearly in ρ when EB = EV for :

(A13)                 

Intuitively, H stays the same for all values of correlation. Further, this payoff is written as the composition of a difference of random variables. An increase in correlation leads to a decrease in the variance of a difference in bivariate, correlated, normal random variables. Note that the rate of this change is dependent on . 
We now consider the positively correlated case for the payoff under complete information.  Note that payoff under complete information is given by:

A(14)                                              

The distribution m(B – V) has mean (EB – EV) and standard deviation . Thus higher correlation reduces the uncertainty for this distribution. This will make the payoff under full information decrease with increasing correlation, because the integral is over values where B – V > 0. Higher uncertainty in this difference is the same as lower correlation between the random variables, and means more opportunities for trade to happen. 

A direct result is that when EB = EV, and when , both payoffs under full and incomplete information go to zero. 

Positive correlation between B and V; α = 0
We will now study cases where B and V can be correlated, given α = 0, still focusing on joint normal distributions for B and V. The buyer then solves the following optimization problem, setting h(B,V) to be the joint multivariate normal distribution

(A15)                        
(A15) now replaces (1). When B and V are independent, h(B,V) = f(B)g(V) and(A15) simplifies to (1) for α = 0. When B and V are instead correlated, further analysis must be based on (A15). It is here easiest to integrate over B first (we can switch the order of the integral since we assume integrable, continuous functions) 

(A16)                        

(A17)                        
Now let ρ represent the correlation between B and V. 

(A18)                        
Maximizing with respect to H yields:

(A19)                      

We then get the relationship:

       (A20)                                    
Note that when EB = EV, the relationship can be rewritten as:

(A21)                                                                                 
We can from (A19) obtain a second order condition for this problem, which takes the same form as (A12).

When EB = EV = H, necessary and sufficient conditions for the second order condition to hold are g’(H) < 0 and  . 
We now look at the positively correlated case for the payoff under full information.  Note that payoff under full information is given by:





The distribution   has a mean of and standard deviation . Thus, increasing correlation reduces the uncertainty for this distribution. 
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Through Simulation

Exact Mathematical Formulation
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Exact Mathematical Formulation
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