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1. Number of generations13 

 14 

Figure S1 – comparison between shorter runs (30 generations) and longer runs (60 generations). 15 
(a) Average normalised payoff for each learning algorithm relative to the average 10,000 16 

individual long-sighted learners, where the colour indicates the mechanism, and the shape the 17 
length of the run. (b) The effect of task difficulty: normalised payoff for each mechanism relative 18 

to average payoff of 10,000 individual long-sighted learners, where the colour indicates the 19 
learning algorithm, and the shape the length of the run, for easy tasks (s=5) and hard tasks 20 

(s=0.1). The points plot the values in the final generation, averaged over 500 repeated 21 
simulations, averaged over all other parameter combinations with bars indicating two standard 22 

errors. 23 
2. Payoff matrix distribution 24 

 25 

Figure S2 – 1,000,000 samples drawn from a typical payoff distribution. The options for each 26 
step would be associated with payoff distributions like these.   27 
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3. Learning algorithms do not always find the optimal solution 28 

Note that although (i) os only affects the received payoffs from os+1 and os+2 and (ii) 29 

the long-sighted learner can take this into account, this does not mean the long-30 

sighted learner makes optimal decisions. This is for two reasons. First, like all 31 

learning algorithms, the long-sighted learner progresses through the steps in a random 32 

order and this may prevent it from fully utilising its ability to recognize interactions. 33 

For instance, if it were to progress “backwards” through the steps (i.e. from step ns to 34 

1) it could not use its ability to plan ahead by choosing the value for os on the basis of 35 

the perceived best combination of os, os+1 and os+2. Second, even if it progresses 36 

through steps in order (i.e. from step 1 to ns) it can make suboptimal decisions 37 

because although it can choose a value for os on the basis of what appears to be the 38 

best possible combination of os, os+1 and os+2, it cannot be sure this is optimal without 39 

knowing how the values for os+1 and os+2 go on to affect os+3 and os+4, and so on. 40 

Long-sighted learners are not guaranteed to make optimal decisions although they can 41 

choose values for the current step os based on the best combination of os+1 and os+2, 42 

because what appears to be the best combination may not be so, depending on the 43 

structure of the payoff matrix.  44 

For example, depending on how much foresight an agent has and depending on how 45 

constrained the steps are, an agent would underperform on this matrix: 46 

[  1,   1,   1,   1] 47 

[  3,   1,   1,   1] 48 

[10,   0,   0,   0] 49 

[  0,   0,   0, 50] 50 

A long-sighted learner will, first, check all the combinations of options for steps 1, 2, 51 

and 3, and pick, for the first step, the option that, out of all the combinations, achieves 52 

the highest combined payoff. In this case, in a medium difficulty task (s=1), the best 53 

combination of the first three options is o1=1, o2=1, o3=1, resulting in a collective 54 

payoff of 14.  55 

[  1,   1,   1,   1]  56 

[  3,   1,   1,   1]   57 



[10,   0,   0,   0]  58 

[  0,   0,   0, 50]   59 

Next, it will assess every combination of options for steps 2, 3, and 4, and choose the 60 

best option, given that it has already picked option 1 for step 1. In this case, the best 61 

combination of steps is o2= 1, o3=1, o4=4, with a collective payoff of 13.00617. Note 62 

that because the agent’s first choice was option 1, this highly penalised the payoff of 63 

option 4 for the last step. This agent will go on to choose option 1 for step 3, and 64 

option 4 for step 4, resulting with the final repertoire [1,1,1,4] with a total payoff of 65 

14.00617. 66 

The following show the final received payoffs, with the choice in red: 67 

 [1,    1,          1,          1] 68 

 [3,    0.6065, 0.1353, 0.0111] 69 

 [10,  0,          0,          0] 70 

 [0,    0,          0,          0.00617] 71 

The best repertoire, in this case, is [4,4,4,4], with a total payoff of 52. Because the 72 

long-sighted learner makes its first choice just based on the first three steps, it takes a 73 

sub-optiomal path that it cannot recover from.   74 



4. Payoff biased recombination 75 

 76 

Figure S3 – comparison between the recombination learning mechanism implemented (agents 77 
pick x random models, then copy step by step proportional to the models’ payoff) and “payoff 78 
biased” recombination, wherein agents pick x models based on their payoff, then copy step by 79 

step at random. Normalised by best individual in the first generation. Average payoff for the two 80 
mechanisms over each of the three learning algorithms, averaged over 300 repeat simulations, 81 

and all other simulation parameters. We found practically no difference between the two 82 
conditions. 83 
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5. Modulating task difficulty 86 

 87 

Figure S4 - the effect of sigma on payoffs – penalties as a function of the difference between 88 
subsequence options. The higher the difference between current and previous option, the higher 89 

the penalty to payoff. 90 
We explored a series of values for the standard deviation in order to understand how 91 

step dependency affects difficulty (Fig. S5). We used the payoffs from each of the 92 

learning algorithms to verify that our way of modulating difficulty is effective – if the 93 

task is easy, then all three learning algorithms should achieve similarly high payoffs, 94 

while if the task is difficult we expect long-sighted learners to perform much better 95 

than near-sighted learners. For this explorative analysis we assumed no 96 

intergenerational learning. Instead, each population consisted of one generation of 97 

individual learners building a repertoire, and we compared payoff distributions across 98 

near-, mid-, and long-sighted learners. As expected, when the standard deviation was 99 

high we saw little improvement between near-, mid-, and long-sighted learners, 100 

indicating that the task was easy and did not require advanced knowledge of the 101 

dependency structure. When the standard deviation was low, however, there was a 102 

high increase in performance between each learning algorithm, suggesting that 103 

learners with limited information about the dependency structure struggled to keep up 104 

with long-sighted learners who had full knowledge, which we would expect to be the 105 

case for a difficult task.  106 
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 107 

Figure S5 – average payoffs and standard errors for 1000 repeats of agents who learn 108 
individually using each of the three learning algorithms, for varying values of the standard 109 

deviation. For each of the 1000 repeats a new payoff matrix is generated, and for every payoff 110 
matrix a near-, mid-, and long-sighted learner learns a repertoire for each of the 7 values of the 111 

standard deviation.  112 
 113 
  114 



6. “Donut” dependencies 115 
 116 
In the dependency structure we present in the main paper, payoffs from the first step 117 
are not penalized, and payoffs from the second step are penalized less, which can 118 
skew the payoff distribution. This is partly intentional – we were interested in 119 
problems characterized by path dependency, where initial choices affect the possible 120 
choices made later on – and partly for convenience. In order to check that this choice 121 
does not skew the results in any meaningful way, we have run additional simulations 122 
using a set-up in which step dependencies are “donut” shaped, i.e. the last two steps 123 
affects the payoffs from the first and second step. We ran a subset of the simulations 124 
under these conditions and have found very similar results to the results presented in 125 
the main paper, and no qualitative differences 126 
  127 

 128 

Figure S6 – comparison between regular simulations presented in the main paper and “donut” 129 
dependencies, where the last two steps affect the first two. (a) Average normalised payoff for 130 

each learning algorithm relative to the average 10,000 individual long-sighted learners, where the 131 
colour indicates the mechanism, and the shape the dependency structure. (b) The effect of task 132 

difficulty: normalised payoff for each mechanism relative to average payoff of 10,000 individual 133 
long-sighted learners, where the colour indicates the learning algorithm, and the shape the 134 
dependency structure, for easy tasks (s=5) and hard tasks (s=0.1). Results from a subset of 135 

parameters (nm = 2). The points plot the values in the final generation (after 30 runs), averaged 136 
over 200 repeated simulations, averaged over all other parameter combinations with bars 137 

indicating two standard errors. We found no qualitative differences between the two conditions.   138 
 139 
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 141 

Figure S7 – between-run variability: payoffs for 15 runs of the simulation for the recombination 142 
only mechanism, with populations of 500 agents each, np = 2, s = 0.1, over 100 generations. Every 143 

point indicates the payoff for one individual, with different colours for different runs of the 144 
simulation, and the black line follows the mean payoff for all runs.   145 



7. Perfect learners 146 

147 

 148 

Figure S8 – (top left) overall results, (top right) the effect of task difficulty, (bottom left) the 149 
number of models and (bottom right) the number of agents on a grid of 5 steps, each with 5 150 

options: normalised payoff for each mechanism relative to the optimal solution, with the shape 151 
indicating the mechanism and the colour indicating the learning algorithm. The points plot the 152 

values in the final round (after 30 generations), averaged over 500 repeated simulations, 153 
averaged over all other parameter combinations, with bars indicating two standard errors.  154 
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8. Demographics 155 

The number of models had a very minor effect on payoff for the combined 156 

mechanism for any of the three learning algorithms (Fig. S8). All learners using 157 

refinement alone performed worse than the combined learners, therefore recombining 158 

information from more sources and then refining is a more effective strategy than 159 

simply refining. When recombining alone, however, the number of models matters 160 

more and performance increased somewhat with the number of agents recombined 161 

from, although this effect diminished as the number of models increased beyond 5. 162 

There was an interaction between inheritance mechanism, learning algorithm, and the 163 

number of models on performance: Long-sighted learners consistently (i.e. regardless 164 

of the number of models) performed better in the recombination only mechanism than 165 

in the combined mechanism, but with mid-sighted learners the recombination-only 166 

mechanism was superior to the combined mechanism only when the number of 167 

models was 5 or more, and for lower values the combined mechanism produced the 168 

best performance. With near-sighted learners the pattern is the reverse to long-sighted 169 

learners – the combined inheritance mechanism outperforms recombination-only for 170 

all numbers of models. 171 

  172 

Figure S9 – the effect of (left) the number of models and (right) the number of agents: 173 
normalised payoff for each inheritance mechanism relative to the average payoff of 10,000 174 
individual long-sighted learners, with the shape indicating the mechanism and the colour 175 

indicating the learning algorithm, across four values for the number of models (1, 2, 5, and 10). 176 
By definition, refinement alone involves purely copying from one model. The points plot the 177 

values in the final round (after 60 generations), averaged over 500 repeated simulations, 178 
averaged over all other parameter combinations (s and na), with bars indicating two standard 179 

errors. 180 
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Similarly, the total number of agents in the population did not affect payoff 181 

considerably for either the combined mechanism, or the refinement alone mechanism 182 

(Fig. S6 right). For recombination only, however, an increase in the number of agents 183 

was associated with an increase in payoff, particularly for near-sighted learners, 184 

suggesting that the agents with the least knowledge about dependencies benefitted the 185 

most from the collective knowledge of the population. Therefore, learners using 186 

recombination show a clear increase in payoff with population size (and this increase 187 

is steady, Fig. S6), while learners using the combined mechanism, if anything, seem 188 

to decrease in payoff in a larger population.  Again, there was an interaction between 189 

inheritance mechanism, learning algorithm, and the number of agents – agents using 190 

the recombination only mechanism performed consistently better than the agents 191 

using the other mechanisms when they were long-sighted learners, but near-sighted 192 

and mid-sighted learners in the recombination only mechanism only exceeded agents 193 

using the other inheritance mechanisms for large population sizes. When the 194 

population size was small, agents using the combined mechanism actually performed 195 

better.  196 



9. Mutation 197 

In addition to the stochasticity inherent to both recombination and refinement, we 198 

assumed learning is imperfect by implementing error as a mutation rate that 199 

determines how often agents mistakenly learn. In every round, for every agent, each 200 

step choice can be replaced with a different, randomly selected choice, with a 201 

probability equal to the mutation rate m. However, mutation rate only considerably 202 

affected the results when very high (Fig. S7). We see a considerable dip in payoffs for 203 

m = 0.1, which for a repertoire of 10 steps translates into an average of one mutated 204 

step every round for every agent. Interestingly, agents in the recombination only 205 

mechanism suffer much more because of mutation than agents in the other 206 

mechanisms, suggesting refinement provides a mechanism that mitigates errors to a 207 

certain extent.  208 

 209 

Figure S10 – the effect of mutation rate: normalised payoff for each inheritance mechanism 210 
relative to the average payoff of 10,000 long-sighted individual learners, where the shape 211 

indicates the mechanism and the colour indicates the learning algorithm, across five values of the 212 
mutation rate (m = [0, 0.0001, 0.001, 0.01, 0.1]), on the log10 scale for ease of visualisation.  The 213 

points plot the values in the final round (after 30 generations), averaged over 200 repeated 214 
simulations, and averaged over all other parameter combinations (s, na, and np), with bars 215 

indicating two standard errors.  216 
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10. Diversity 217 

In addition to the diversity measure mentioned in the main manuscript, we explored 218 

three different measures of diversity, finding very similar patterns. The distance 219 

between two repertoires is measured as the average of the difference between choices 220 

at each step. For instance, the difference between repertoires r1 = [a,b,c] and r2 = 221 

[x,y,z] is |"#$|%	|'#(|%|)#*|
+

. Evenness (Pielou’s evenness index) is a population-level 222 

measure that quantifies the flatness of a distribution. It is a measure used in 223 

quantifying species evenness in ecological communities based on the Shannon– 224 

Wiener diversity index, given by:  225 

𝐽 = 	
−	∑ 𝑝1	𝑙𝑛	𝑝14

1#5

ln	(𝑆)  226 

where S is the number of species present in a sample, and pi is the relative frequency 227 

of species i in the sample. In our case, we are applying it step by step to measure the 228 

distribution of options, so for each step, S is the number of possible options and pi is 229 

the number of repertoires that contain pi for that step. This results in nt values for J, 230 

which we averaged for the figure below. Finally, we measured how many distinct 231 

repertoires exist in the population at the end of the simulation.  232 



 233 

Figure S11 – distributions of repertoire distance, evenness, and number of repertoires at the end 234 
of 30 rounds, averaged over 100 simulation repeats and all parameter combinations for near-, 235 

mid-, and long-sighted learners, for the three inheritance mechanisms.  236 
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 239 

Figure S12 – One example run of 5 steps, each with 5 options, comparing a perfect (optimal) 240 
repertoire to the repertoires in the population after 30 runs for the combined and the 241 

recombination mechanism for 100 agents. Recombination maintains more variation in the 242 
population (here, near-sighted learners and long-sighted learners converge on two distinct 243 

repertoires, one more frequent than the other), while agents using the combined mechanism 244 
converge on a repertoire that is too uniform (i.e. the same option was chosen for all the steps) 245 
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