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Abstract

There are two parts in the appendix. We start
with the replicator dynamics for the ultimatum
game, first without the possibility to commit, and
then with the possibility to commit, where commit-
ment is perfectly observable. In the second part,
we illustrate how commitment can also work in one-
shot simultaneous move games. These illustrations
are based on Alger and Weibull (2012), and they
also show that commitment can either advance the
common good, or work against it.
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1 Replicator dynamics for the ultimatum game

1.1 Without commitment

Consider an ultimatum game, where the proposer suggests a way to split n

euros, and the responder accepts or rejects. In this version, proposals can only

be made in whole euros, so the strategy set is not a continuum.

The proposer’s choice is represented by i, which is how many euros she

allocates to the responder in her proposal. That means there are n+1 strategies,

and that the proposal would be (n− i, i), for i = 0, . . . , n, where the first number

refers to how much the proposer would get, and the second to how much the

responder would get. The frequencies with which these strategies are present

in the proposer population are given by xi, for i = 0, . . . , n. Since these are

frequencies, they must add up to 1;
∑n

i=0 xi = 1.

For the responders, we assume that if they reject a proposal in which they

get i euros, they also reject proposals in which they get less than i euros. Re-

sponders could in principle also play strategies for which this is not true, but this

assumption keeps things relatively manageable, without fundamentally changing

the dynamics. This implies that a strategy for the responder can be represented

by j, which indicates that she accepts all proposals in which she gets at least

j, for j = 0, . . . , n. The frequencies with which these strategies are present

in the responder population are given by yj , for j = 0, . . . , n. These are also

frequencies, and must add up to 1;
∑n

j=0 yj = 1.

The average payoff to proposer strategy i is how much she allocates to her-

self in her proposal, which is n − i, times the probability that the proposal is

accepted. This probability is the share of responders that start accepting at i

or less, making the payoff to proposer strategy i equal to (n− i)
∑i

j=0 yj .

The payoff to responder strategy j is 0 if she meets a proposer who proposes

i, and i is less than her threshold j, and i if she meets a proposer who proposes

i, and i is larger than or equal to her threshold j. That makes the average payoff∑n
i=j i · xi.

1.1.1 Lower thresholds beat higher thresholds for responders

The intuition that selection always favours responders with lower thresholds

follows directly from the fact that in any instance in which responders reject,

they can increase their expected payoff by switching to accepting. In other

words, it is never worse to accept more,
∑n

i=j ixi ≥
∑n

i=k ixi if j ≤ k; and
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if there are proposers that make proposals that are currently rejected, it is

strictly better to accept more,
∑n

i=j ixi >
∑n

i=k ixi if j < k and
∑k−1

i=j xi > 0.

Therefore the payoff to responders with thresholds 0 and 1 are the highest, and

the payoffs to responders with threshold n are the lowest.

1.1.2 Proposers

Which proposer strategies are doing better than average, and which are doing

worse than average, depends on the state of the responder population. Between

proposing i and proposing i − 1 for the responder, the latter is better if (n −
(i − 1))

∑i−1
j=0 yj ≥ (n − i)

∑i
j=0 yj , or, in other words, if how much you gain

by allocating more to yourself on proposals that get accepted either way, or∑i−1
j=0 yj , is less than how much you lose by having proposals rejected that

otherwise would be accepted, or (n− i)yi.
If we start with a population where all strategies are present (so xi > 0 for

all i = 0, ..., n, and yj > 0 for all j = 0, ..., n), then ever lower thresholds will

evolve in responders, and as they do, for every i > 1, there will always come a

point in time where proposing i − 1 is better, because
∑i−1

j=0 yj inevitably gets

large enough compared to (n− i)yi.

1.2 With perfectly observable commitment

Now assume, as before, that responder strategies can still be characterized by

their threshold j, but, unlike before, assume that this threshold is visible to

proposers. That means that proposer strategies now turn to ways to respond

to what they see. We assume that if proposers match a responder threshold j,

they will also match a responder threshold below j. Of course there is a richer

space of possibilities for proposer strategies now, but, again, this keeps things

relatively simple, without fundamentally changing the dynamics. A proposer

strategy therefore is characterized by a value i, which indicates that she will

match all thresholds j ≤ i, and not match thresholds j > i, to which she makes

proposals that will be rejected.

This turns the tables. The average payoff to responder strategy j is her

threshold times the probability that a proposer will match it, which makes

j
∑n

i=j xi. The payoff to proposer strategy i is 0 if she meets a responder with

strategy j > i, and n − j if she meets a responder with strategy j ≤ i, so the

average payoff to a proposer with strategy i is
∑i

j=0(n− j)yj .
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In the case without commitment, responders with lower thresholds j always

got higher average payoffs. With perfectly observable commitment, on the other

hand, proposers with a higher i always get higher average payoffs, because in

any case in which they do not match the responder’s threshold, they can increase

their payoffs by switching to matching it.

For responders, switching from a threshold j to a threshold j+ 1 is better if

how much they gain on interactions in which their threshold would be matched

either way,
∑n

i=j+1 xi, is larger than how much they loose on interactions in

which the proposer will stop matching the threshold, which is jxj . With pro-

posers getting ever more accommodating, this will start being true at some

point, and hence the responders end up following the proposers to ever higher

thresholds.

All of this is the mirror image of the situation without commitment. The

difference between the two situations is of course that in the case without com-

mitment by the responders, proposers cannot reconsider their proposal if it is

rejected, while in the other case, responders can reconsider their intent to reject.

It will therefore be harder for responders to commit to rejection than it is, by

the nature of the game, for proposers to stick to their proposal.

2 Commitment in simultaneous move games

Also in simultaneous move games, commitment can evolve. The principle is the

same as with sequential move games. An individual that is altruistic ends up

taking an action that is not fitness maximizing, given what the other player

does. But what the other player does, might depend of your level of altruism,

even if the other player is selfish. In public goods games, the return to the

public good for the other player might increase, if your contribution increases.

The benefit of committing to giving more than one would otherwise, lies in the

increase in contribution that brings about in the other. Also the opposite is

possible; individuals can evolve spite, if committing to not contributing helps

force your partner to pick up the tab, and step up her contribution.

In order to illustrate this, we go to the framework of Alger and Weibull

(2012), where players are endowed with preferences, which can be altruistic,

selfish, or spiteful. Players choose an action from a continuum. Which action

they choose, depends on their preferences, and on what they expect the other

player to do. A Nash equilibrium between two players with given preferences is a
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combination of actions, for which both maximize their utility (they follow their

preferences), given the action of the other. Selection then acts on preferences,

where preferences that result in higher fitnesses, or material payoffs, for the

player that has them, have a selective advantage over preferences that result in

lower material payoffs for the player that has them. In this framework, there

are therefore two levels; behaviour is determined by preferences, and preferences

are selected on the basis of the material payoffs they result in.

One would perhaps expect that this would always lead to preferences that

simply align with maximizing the material payoff to oneself, but we will see that

this is not the case. Alger and Weibull (2012) find that for games with strategic

complements, altruism can evolve, and for games with strategic substitutes,

spite can evolve. This can then be combined with assortment, which can add

extra altruism, but here, we just focus on the commitment part, which we

illustrate with two examples.

In order for commitment to work, we of course need to assume that commit-

ment is recognized, and therefore we assume that the preferences are common

knowledge; both players know their own preferences, and they know the prefer-

ences of the other player.

2.1 Example 1: altruism for strategic complements

Consider a symmetric 2-player game, with the following fitness function, or

material payoffs, for player 1:

π1 (x, y) = 4 (xy)
1
2 − x2

Here, x is the action, or strategy, of player 1, y is the action of player 2, and

π1 (x, y) denotes the material payoffs to player 1 for this combination of actions.

These material payoffs may differ from the utilities that different combinations

of x and y may give the players. The game is symmetric, so the material payoffs

to player 2 are π2 (x, y) = π1 (y, x) = 4 (xy)
1
2 − y2.

Figure 1A depicts these material payoffs. For the red lines, we fixed the

action y of player 2, varied the action x of player 1, and plotted the corres-

ponding material payoffs for both players; for player 1 on the horizontal axis,

and for player 2 on the vertical axis. If player 1 increases x, then that always

increases the material payoff of player 2. The effect on her own material payoffs

depends on the current combination of x and y. For x < y1/3, increasing x also

increases the material payoff of player 1. For x > y1/3, increasing x decreases
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Figure 1: Commitment to altruism in games with strategic comple-
ments. (A) Given a choice for y by player 2, player 1 can choose x’s that result
in material payoffs on a red curve. Given a choice for x by player 1, player 2
can choose y’s that result in material payoffs on a blue curve. If both play-
ers are selfish, and maximize their own material payoffs, (B) depicts the Nash
equilibrium between them. If player 1 is altruistic, and player 2 is selfish, (C)
depicts the Nash equilibrium between them. Player 1 now ends up with higher
material payoffs than in (B), because her altruism induces player 2 to increase
y. Ever higher levels of altruism evolve, until further increases in altruism do
not lead to higher material payoffs. (D) depicts the Nash equilibrium between
two individuals that have the equilibrium level of altruism.

her own material payoff. For the four red lines, y is fixed at 1, 1 1
6 , 1 1

3 , and 1 1
2 ,

respectively.

The blue lines do the same, but from the perspective of player 2. We fixed the

action x of player 1, varied the action y of player 2, and plotted the corresponding

material payoffs for both players. For the four blue lines, y is fixed at 1, 1 1
6 ,

1 1
3 , and 1 1

2 , respectively, and player 2 maximizes her own material payoffs at

intermediate values of y.

If both players are selfish, their utilities are determined only by how much
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material payoff they get themselves. A selfish utility function for player 1 would

be

u1 (x, y) = π1 (x, y) ,

while for player 2, it would be the mirror image. In Figure 1B, this is repres-

ented by indifference curves, which are vertical straight lines for player 1, and

horizontal straight lines for player 2. Maximizing player 1’s material payoff,

given an action of player 2, would amount to finding the rightmost point on a

red curve, and maximizing player 2’s material payoff, given an action of player

1, would amount to finding the highest point on a blue curve. In a Nash equilib-

rium between two selfish players, they would both maximize their own material

payoff, given the action of the other.

If a player is altruistic, it would attach a positive weight to the material

payoff of the other player. For player 1, an altruistic utility function would be

u1 (x, y) = π1 (x, y) + α1π2 (x, y) .

In this example, if player 2 remains selfish, but player 1 changes to an altruistic

preference (for instance, one with α1 = 1
3 , as in Figure 1C), it will prefer to

increase its x, as long as the increase in material payoffs to the other player is

at least three times the decrease in material payoffs to herself. Because of the

strategic complementarity, this increase in x will induces player 2, who is still

selfish, to increase y. In the equilibrium between an altruistic player 1 and a

selfish player 2, player 1 gets a material payoff that is higher than the material

payoff that a selfish player 1 would get (see Figure 1C). The selfish player 2

it is matched with gets even higher payoffs, but that is not hat matters; what

matters is how a selfish player 1 and an altruistic player 1 compare, when both

meet a selfish player 2. Given that the altruistic player 1 does better, altruism

can invade.

Mutants with increased levels of altruism can invade, and will take over, as

long as the resident has an altruism level below 1
3 . Past that point, even more

altruistic mutants start getting lower material payoffs. At the equilibrium level

of altruism, neither of the players would want to change their behaviour, given

their preferences (Fig 1D), and evolution would not change their preferences.
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2.2 Example 2: spite for strategic substitutes

Consider a symmetric 2-player game, with the following material payoff function

for player 1:

π1 (x, y) = 8 (x+ y)
1
2 −
√

2x2

Here, x is the action, or strategy, of player 1, and y is the action of player 2. The

game is symmetric, so the material payoffs to player 2 are π2 (x, y) = π1 (y, x) =

8 (x+ y)
1
2 −
√

2y2.

Figure 2A depicts these material payoffs. For the red lines, we fixed the

action y of player 2, varied the action x of player 1, and plotted the corresponding

material payoffs for both players; for player 1 on the horizontal axis, and for

player 2 on the vertical axis. If player 1 increases x, then that always increases

the material payoff of player 2. The effect on her own material payoffs depends

on the current x and y. For low x, increasing x also increases the material payoff

of player 1. For high x, increasing x further decreases her own material payoff.

For the four red lines, y is fixed at 0.8, 0.9, 1, and 1.1, respectively.

The blue lines do the same, but from the perspective of player 2. We fixed the

action x of player 1, varied the action y of player 2, and plotted the corresponding

material payoffs for both players. For the four blue lines, y is fixed at 0.8, 0.9,

1, and 1.1, respectively, and player 2 maximizes her own material payoffs at

intermediate values of y.

If both players are selfish, their utilities are determined only by how much

material payoff they get themselves. A selfish utility function for player 1 would

be

u1 (x, y) = π1 (x, y) ,

while for player 2, it would be the mirror image. In Figure 2B, this is repres-

ented by indifference curves, which are vertical straight lines for player 1, and

horizontal straight lines for player 2. Maximizing player 1’s material payoff,

given an action of player 2, would amount to finding the rightmost point on a

red curve, and maximizing player 2’s material payoff, given an action of player

1, would amount to finding the highest point on a blue curve. In a Nash equilib-

rium between two selfish players, they would both maximize their own material

payoff, given the action of the other.

If a player is spiteful, it would attach a negative weight to the material payoff
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Figure 2: Commitment to spite in games with strategic substitutes.
(A) Given a choice for y by player 2, player 1 can choose x’s that result in
material payoffs on a red curve. Given a choice for x by player 1, player 2 can
choose y’s that result in material payoffs on a blue curve. If both players are
selfish, and maximize their own material payoffs, (B) depicts the Nash equilib-
rium between them. If player 1 is spiteful, and player 2 is selfish, (C) depicts
the Nash equilibrium between them. Player 1 now ends up with higher material
payoffs than in (B), because her spite induces player 2 to increase y. Ever higher
levels of spite evolve, until further increases in spite do not lead to higher ma-
terial payoffs. (D) depicts the Nash equilibrium between two individuals that
have the equilibrium level of spite.

of the other player. For player 1, a spiteful utility function is the same as an

altruistic utility function, but with a negative altruism parameter α:

u1 (x, y) = π1 (x, y) + α1π2 (x, y) .

In this example, if player 2 remains selfish, but player 1 changes to a spiteful

preference (for instance, one with α1 = − 1
5 , as in Figure 2C), it will prefer to

decrease its x, as long as the decrease in material payoffs to the other player

is at least five times the decrease in material payoffs to herself. Because of the
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strategic substitutability, this decrease in x will induces the other player, who

is still selfish, to make up for that, and increase y. In the equilibrium between

a spiteful player 1 and a selfish player 2, player 1 gets a material payoff that is

higher than the material payoff that a selfish player 1 would. Given that the

spiteful player 1 does better, spite can invade.

Mutants with increased levels of spite can invade, and will take over, as long

as the resident has an α above − 1
5 . Past that point, even more spiteful mutants

start getting lower material payoffs. At the equilibrium level of spite, neither of

the players would want to change their behaviour, given their preferences (Fig

2D), and evolution would not change their level of spite.

2.3 Math notes for example 1

Assume that player 1 has altruism level α1, and player 2 has altruism level α2.

That implies that player 1 maximizes her utility if the derivative of her utility

to x is zero:

d (π1 (x, y) + α1π2 (x, y))

dx
= 0

2 (1 + α1)
(y
x

) 1
2 − 2x = 0

(1 + α1)
(y
x

) 1
2

= x

(1 + α1) y
1
2 = x

3
2

(1 + α1)
2
3 y

1
3 = x

The contribution x of player 1 is increasing in her level of altruism α1, and it is

also increasing in the contribution y of the other player.

Similarly, player 2 maximizes her utility if

(1 + α2)
2
3 x

1
3 = y

In a fixed point (x, y), where both maximize their utility given the choice the

other, both of these need to hold. That makes the equation for x
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(1 + α1)
2
3 (1 + α2)

2
9 x

1
9 = x

(1 + α1)
2
3 (1 + α2)

2
9 = x

8
9

(1 + α1)
3
4 (1 + α2)

1
4 = x

Similarly, in Nash equilibrium, player 2 plays

(1 + α1)
1
4 (1 + α2)

3
4 = y

This leads to material payoffs to player 1, as functions of their altruism levels:

4 ((1 + α1) (1 + α2))
1
2 − (1 + α1)

3
2 (1 + α2)

1
2

Now we can set the derivative to α1 to zero, to see which level of altruism

maximizes fitness, or material payoffs.

2

(
1 + α2

1 + α1

) 1
2

− 3

2
(1 + α1)

1
2 (1 + α2)

1
2 = 0

2 (1 + α1)
− 1

2 =
3

2
(1 + α1)

1
2

2 =
3

2
(1 + α1)

α1 =
4

3
− 1 =

1

3

In this case, the optimal level of altruism for player 1 is independent of the

level of altruism that player 2 has. That makes α = 1
3 the evolutionary stable

equilibrium level of altruism.

2.4 Math notes for example 2

Assume that player 1 has altruism level α1, and player 2 has altruism level α2.

That implies that player 1 maximizes her utility if
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d (π1 (x, y) + α1π2 (x, y))

dx
= 0

4 (1 + α1) (x+ y)
− 1

2 − 2
√

2x = 0

2 (1 + α1) (x+ y)
− 1

2 =
√

2x

4 (1 + α1)
2

(x+ y)
−1

= 2x2

2 (1 + α1)
2

= x2 (x+ y)

We will leave this an implicit solution, but from the equation, we can see that

the contribution x of player 1 is increasing in her level of altruism α1, and

decreasing in the contribution y of the other player.

Similarly, player 2 maximizes her utility if

2 (1 + α2)
2

= y2 (x+ y)

In a fixed point (x, y), where both maximize their utility given the choice of the

other, both of these need to hold, and therefore

2 (1 + α1)
2

2 (1 + α2)
2 =

x2 (x+ y)

y2 (x+ y)

1 + α1

1 + α2
=
x

y

y =

(
1 + α2

1 + α1

)
x

That makes the equation for x

2 (1 + α1)
2

= x2
(
x+

(
1 + α2

1 + α1

)
x

)
2 (1 + α1)

2
= x3

(
2 + α1 + α2

1 + α1

)
2

(
(1 + α1)

3

2 + α1 + α2

)
= x3

(1 + α1)

(
2

2 + α1 + α2

) 1
3

= x
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Similarly, in Nash equilibrium, player 2 plays

(1 + α2)

(
2

2 + α1 + α2

) 1
3

= y

This leads to material payoffs to player 1, as functions of their altruism levels:

8

(
(1 + α1)

(
2

2 + α1 + α2

) 1
3

+ (1 + α2)

(
2

2 + α1 + α2

) 1
3

) 1
2

−
√

2

(
(1 + α1)

(
2

2 + α1 + α2

) 1
3

)2

=

8

(
(2 + α1 + α2)

(
2

2 + α1 + α2

) 1
3

) 1
2

−
√

2

(
(1 + α1)

(
2

2 + α1 + α2

) 1
3

)2

=

8
(

(2 + α1 + α2)
2
3 (2)

1
3

) 1
2 −
√

2

(
(1 + α1)

(
2

2 + α1 + α2

) 1
3

)2

=

219/6 (2 + α1 + α2)
1
3 − 27/6 (1 + α1)

2
(2 + α1 + α2)

− 2
3 =

27/6
[
4 (2 + α1 + α2)

1
3 − (1 + α1)

2
(2 + α1 + α2)

− 2
3

]
=

Now we can set the derivative to α1 to zero, to see which level of altruism

maximizes fitness, or material payoffs.

4

3
(2 + α1 + α2)

− 2
3 − 2 (1 + α1) (2 + α1 + α2)

− 2
3 +

2

3
(1 + α1)

2
(2 + α1 + α2)

− 5
3 = 0

Because this is symmetric, there will be an equilibrium where α1 = α2, so we

can rewrite this as
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4

3
(2 + 2α)

− 2
3 − 2 (1 + α) (2 + 2α)

− 2
3 +

2

3
(1 + α)

2
(2 + 2α)

− 5
3 = 0

4

3
∗ 2−

2
3 (1 + α)

− 2
3 − 2 ∗ 2−

2
3 (1 + α)

1
3 +

2

3
∗ 2−

5
3 (1 + α)

1
3 = 0

4

3
(1 + α)

− 2
3 − 2 (1 + α)

1
3 +

1

3
(1 + α)

1
3 = 0

4

3
(1 + α)

− 2
3 − 5

3
(1 + α)

1
3 = 0

4 (1 + α)
− 2

3 − 5 (1 + α)
1
3 = 0

4− 5 (1 + α) = 0

α = −1

5

References

Ingela Alger and Jörgen W Weibull. A generalization of Hamilton’s rule—love

others how much? Journal of Theoretical Biology, 299:42–54, 2012.

14


