Appendix A Gradients for Linear Approximation Cases

As an illustration, we consider the case where a linear approximation is adopted as the physics-
based model, i.e, f,(z)=Az+ f(z), and the decoder ®  is simply an identity matrix of
appropriate dimension. Following the derivation of gradients with repect to @ and z(t,) given by [46],

the gradients under the physics-informed regime can be expressed as the solution of the following

differential equation:
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where the first term is an approximate solution obtained from linear physics-based portion of Al and

the second term F, accounts for the difference between the linear approximation and the true

solution. Suppose the training time steps are t =1,,t,...,{;, then we can repeat the process and the

gradient obtained through back-propagation is:
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The first term of the R.H.S. is brought by the linearized physics-based model and it can be directly back-
N
propagated, while only the discrepancy terms Zi:lFNN (ti) need to be estimated, which makes the

estimated gradients also an approximation to the real ones. As a result from this, the combined

gradients are restricted in a regime that is closer to the true function’s gradients.



