
Appendices

A. SAVAR details

In this section we provide more details on the dynamical and statistical properties of SAVAR models. We

start by showing the need of adding some constraint on how W is defined as well as more details on

the noise. Then we describe the model with a forcing term (used for the experiment with a non-

stationary trend). The next subsections describe SAVAR as a vector autoregressive process of order 1,

which is the form used in the formal proofs of propositions 3.1 and 3.2 as well as in the last part of this

appendix, where the autocovariance function of the SAVAR model is derived.

A.1. Rescaling of weight term

()iW defines the contribution of the -th grid point to the i -th mode. Scaling W by a scalar  does

not have any effect on the model, due to the inverse mapping of W  . Suppose that =W W , then

max

=1

max

=1

= () ,

= () ,

t t t

t t t

W
W

W W











 












 

 





y y

y y





 (18)

which is equivalent to equation (16).

A.2. Noise term

The SAVAR model’s grid level noise term takes the form = W D W D   y x y . To avoid

overparametrization our definition requires some constraints on the weights W . While rescaling W

does not have an effect at the grid-level dynamics, as shown above, it does effect the noise’s strength 

in the mode-level process. We, therefore, add some constraints to W. Let again =W W , then

2

(,) = .cov W D W




 

x  (19)

Consequently, by constraining the values of W , for example
2|| || =1iw , the only free

parameter is  .

A.3. SAVAR with a forcing term

One can add a forcing term to the model yielding

max

=1 =1 =1

= () ,
N N L

i ij j

t t t t

i j

y u w y b






       (20)

where
tb denotes the influence of the forcing term in the -th point at time t . The matrix form is given

by

max

=1

= () .t t t tW W








  y y b  (21)

For the non-stationarity experiment we used = (,)t oW t b as described in Section 4.1.1.

A.4. SAVAR as a process of order 1

SAVAR definitions from eqs. (16) and (17) can be rewritten into a process of order 1. To this end let

max
L

t


y be the vector obtained by concatenating ty , ...,

max
t y and max

N

t


x the vector

obtained by concatenating tx , ...,
max

t x . In terms of these extended variables the processes read

1

1

= ,

= ,

t y t t

t x t t

A

A













y y

x x
 (22)

where t is obtained by concatenating t with max(1)L   zeros, t by concatenating t with

max(1)N   zeros, and
yA and xA are the block matrices

max max

max max

(1) (2) (1) ()

0 0 0

= ,0 0 0

0 0 0

(1) (2) (1) ()

0 0 0

= 0 0 0 .

0 0 0

L

y L

L

N

x N

N

W W W W W W W W

A

A

 

 

        
 
 
 
 
 
 
 

     
 
 
 
 
 
 
 

I

I

I

I

I

I

A.5. Autocovariance function of SAVAR

For simplicity we assume a stationary SAVAR process with mean zero. From equation (22) the covariance

of ty at lag 0 , denoted by (0) , is given by

1 1

1 1 1

(0) = []

(0) = [()()]

(0) = [()()] 2 () ().

t t

y t t y t t

y t y t y t t t t

A A

A A A

 

  

 

  



   

   

y y

y y

y y y

 (23)

By assuming stationarity we have that

1 1 1(0) = [()()] 2 () ()

(0) = [()()] 2 () ()

(0) = (0) .

y t y t y t t t t

y t y t y t t t t

y y

A A A

A A A

A A

  

  

    

   

   y

y y y

y y y (24)

Using the vectorization operator (() = () ())vec ABC C A vec B it is possible to express a

close-term solution in terms of ((0))vec  where  denotes the Kronecker product. Then, from Eq.

(24),

1

((0)) = () ((0)) ()

((0)) = (()) (),

y y

L y y

vec A A vec vec

vec A A vec

    

    

y

yI
 (25)

where nI is the identity matrix.

The autocovariance of ty at time lag  , denoted () for = 0 , is

 () = (0).yA  (26)

This can be shown by finding (1) from multiplying ty and 1ty and taking the expectation.

1 1 1

1 1 1

() = (())

(1) = () ()

(1) = (0).

t t y t t t

y t t t t

y

A

A

A





  

  



  

  

y y y y

y y y

Then (26) follows by induction.

B. Proofs

In this section we prove Propositions 3.1 and 3.2 stated in the main text. We start with a detailed

discussion that further clarifies the connection between the processes at grid- and mode-level, see eqs.

(16) and (17) respectively.

Recall that N LW  maps from = L
 to im() = NW  , where and

respectively are the spaces in which the grid-level variables ty and mode-level variables tx take their

values. As long as <N L , i.e., as long as there are fewer modes than grid points (which we assume

throughout) the matrix W necessarily has a nonzero kernel and can therefore not be inverted. We

therefore work with its Moore-Penrose pseudo-inverse L NW   , that always exists and that maps

from to im()W   . As stated below Eq. (16), the rows of W are linearly independent by

assumption. This implies = NWW  I and rank () = rank () =W W N . Note that
LW W  I . Further,

= im()W and decomposes as = im() ker ()W W  . This can be made manifest by means of

the matrices

1 2= , = LP W W P W W I

with the properties 1 2 = LP P I , 2

1 1=P P , 2

2 2=P P , and 1 2 2 1= = 0PP P P . These matrices respectively

are projectors to the subspaces im()W  and ker ()W that can be used to uniquely decompose any

v into 1 2=v v v with
1 1= im()v vP W  and 2 2= ker ()v vP W .

Further, this decomposition of is consistent with dynamics described by the grid-level

process (16). That is to say, the process ty be can accordingly decomposed as (1) (2)=t t ty y y into two

individual processes that do not mix over time. These are (1)

1= im()t tP W y y and

(2)

2= ker()t tP Wy y with the dynamics

max
(1) (1) (1) (1)

1 1 1

=1

(2) (2) (2)

2 2 2

= () with (,),

= with (,).

t t t t

t t t

W W P W D W PD P

P P D P






    

  

  

   y x y

y y

y y

y

This follows from Eq. (16) by using 1 =WP W , 2 = 0WP ,
1 =PW W  , and

2 = 0PW  . Note that (2)

ty is a

mere white noise process.

The connection between the grid-level process ty and the mode-level process tx can now be

understood in the following way: First, tx has the same distribution as (1)=t tW Wy y . Second, W 

tx has

the same distribution as (1)

ty . The processes ty and tx are therefore in a one-to-one correspondence

up to the additive independent white noise process (2)

ty at grid-level. While this already gives strong

intuitive indication in favour of the propositions, their formal proofs now follow.

The proposition 3.1 states that a SAVAR process as in Eq. (16) is stable if and only if the

corresponding VAR process (17) is stable. In particular, the choice of W does not influence stability.

Proof of Proposition 3.1:

We begin by rewriting both processes into processes of order 1 as shown in Appendix A Section A.4.

Stability of the SAVAR process in Eq. (16) (the VAR process in Eq. (17)) then means that all eigenvalues of

yA (of xA) have modulus strictly smaller than one. The proposition can therefore be proven by showing

that
yA and xA have the same nonzero eigenvalues.

One direction of this equivalence, namely that all nonzero eigenvalues of xA are also nonzero

eigenvalues of
yA , follows readily: Let xv be a nonzero eigenvector of xA with eigenvalue 0  , i.e.,

= 0x x xA v v  . A calculation then shows

max max max

() = () = () .y x x x xA W v W A v W v      I I I

Here,  denotes the Kronecker product such that
max

()W 

  I is a block diagonal matrix with max

copies of W  on its diagonal. This identifies
max

() xW v

  I as eigenvector of
yA with eigenvalue  .

The other direction of the equivalence, namely that all nonzero eigenvalues of
yA are also

nonzero eigenvalues of xA , is more complicated. For this purpose we first split up
yA as

(1) (2)=y y yA A A , where (1)

yA and (2)

yA respectively correspond to the processes (1)

ty and (2)

ty

introduced above. This can be achieved by extending the projection matrices 1P and 2P to the enlarged

space max max=
L 

, namely

 1 1 2 2
max max

= , = .P P P P  I I

These are block diagonal matrices (with max copies of, respectively, 1P and 2P on their diagonal) that

still obey the projector properties 1 2
max

= LP P  I , 2

1 1=P P , 2

2 2=P P , and
1 2 2 1= = 0PP P P . Then

 1 2 1 2 1 1 2 2= () () = ,y y y yA P P A P P P A P P A P  

where 1 2 2 1= = 0y yP A P P A P follows from
1 2 2 1= = 0PP P P together with

2 2= = 0PW WP . This shows

that the desired decomposition indeed exists with
(1)

1 1=y yA P A P and
(2)

2 2=y yA P A P . By inspection
(2)

yA

is found to be lower triagonal with only zeros on its diagonal, hence all its eigenvalues are zero.

Now let
yv be a nonzero eigenvector of

yA with eigenvalue 0  , i.e., = 0y y yA v v  . Using

1 2=y y yv Pv P v ,
(1) (2)=y y yA A A , and left-multiplying = 0y y yA v v  with

1P and
2P we then find

(1)

1 1 1

(2)

2 2 2

= = ,

= = .

y y y y y

y y y y y

PA v A Pv Pv

P A v A P v P v





This shows that)ia 1 = 0yPv or)ib 1 yPv is an eigenvector of (1)

yA with eigenvalue  and)iia

2 = 0yP v or)iib 2 yP v is an eigenvector of (2)

yA with eigenvalue  . Since all eigenvalues of (2)

yA are

zero)iib cannot hold and thus)iia must be the true, i.e., 2 = 0yP v . But then 1 0yPv  so)ia cannot

hold and)ib must be true, i.e., 1=y yv Pv is an eigenvector of (1)

yA with eigenvalue  . A calculation

now shows

max max max max max max

max

1 1
max

(1)

max

max

() = ()() () () ()

= ()

= ()

= () ,

x y y y

A
N x

y y

y y

y

A W v W W W A W W v

W P A Pv

W A v

W v

     









 



     







I

I I I I I I

I

I

I

which identifies
max

() yW vI as eigenvector of xA with eigenvalue  .

Proposition 3.2 states that given
yA it is possible to identify xA up to similarity. Similarly, given

xA it is possible to identify xA up to similarity.

Proof of Proposition 3.2:

Given
yA we find () ()y W W    for all max1    unambiguously. Similarly, given xA we find

() ()x     for all max1    unambiguously. It is therefore sufficient to show that given ()y  it

is possibile to identify ()x  up to similarity, and that given ()x  it is possibile to identify ()y  up

to similarity.

Recall that = L decomposes as = im() ker()W W  and that 1P projects to im()W  .

The equality
1 1() = ()y yP P   thus shows that ()y  maps im()W  to a subspace of itself while it

maps ker ()W to zero. Now choose a basis 1, , Ne e of im()W  as well as a basis 1, , L Nf f  of

ker()W , and let GL(,)S L be the matrix that changes the basis of to the basis

1 1, , , , ,N L Ne e f f  . Then

,1

, ,

() 0
() =

0 0

y N L N

y

L N N L N L N

S S





  

 
  

 

for some () N N

y 
  and where

,0n m
 denotes the n m -dimensional matrix with all zero entries.

Further

  
1

1

,

,

()
= 0 , = ,

0
L N N

N L N

W
WS W SW



 





 
   

 

with GL(,)W N . Note that W  is invertible because of rank() =W N .

To show that ()x  can be determined up to similarity from ()y  we first observe

1 1 1() = () = () = ()() .x y y yW W WS S S SW W W            

This shows that ()x  is similar to ()y  , so we have to prove that ()y  can be determined up to

similarity from ()y  . For this purpose let GL(,)T N be such that
1()()yT T    is in Jordan

normal form and let T be the block diagonal matrix ,= diag(,)L N L NT T  
 I . Then

1

,1

, ,

()() 0
() ()() =

0 0

'

y N L N

y

L N N L N L N

T T
TS TS








  

  
   

 
 (27)

is in Jordan normal form too. Now let GL(,)U L be such that 1()yU U  is in Jordan normal

form with the individual Jordan blocks being ordered such that a block 1J with eigenvalue 1 is before

(i.e., to the upper left of) a block 2J with eigenvalue 2 if any of the following three conditions holds:

)i 1 2| |>| |  .)ii 1 2| |=| |  and 1 2= > 0  .)iii 1 2=  and 1J is larger than 2J . These

conditions determine
() 1() ()J

y yU U     uniquely, which is why
() ()J

y  can be found from

()y  by bringing the latter to Jordan normal from and then reordering the blocks appropriately. From

Eq. (27) we further know that ()y  has at least L N one-dimensional Jordan blocks with eigenvalue

0 . Hence, by definition of the imposed ordering of Jordan blocks,
() ()J

y  necessarily is of the block

diagonal from

()

,()

, ,

() 0
() = .

0 0

J

y N L NJ

y

L N N L N L N


 

  

 
   

 

Now recall that any two Jordan normal forms of the same matrix can be obtained from each other by

reordering the Jordan blocks, i.e., any two Jordan normal forms of the same matrix are similar. This

means there is GL(,)V L such that

1 1 1 ()() ()() = () ()() = () .J

y y yVTS VTS V TS TS V      

Due to the block diagonal form of both
() ()J

y  and
1() ()()yTS TS  , the matrix V too can be

chosen to be block diagonal, namely = diag(,)L NV V 
 I . The previous equation then implies

1 ()()() = () .J

y yV T V T       

This shows that () ()J

y   is similar to ()y  and hence also similar to ()x  . Since () ()J

y   can be

determined uniquely from ()y  as explained above, ()x  can be determined from ()y  up to

similarity.

The opposite direction of the proposition now follows readily. A calculation gives

1
, ,

, , , ,

1
, , ,

, , , ,

, 1

,

() 0 ()() 0
=

0 0 0 0

0 () 0 () 0
=

0 0 0 0

0 ()
= ()

0

x N L N y N L N

L N N L N L N L N N L N L N

N L N y N L N N L N

L N N L N L N N L N L N L N N L N

N L N

y

L N N L N

W W

W W

W W
T T

 






 

     


  

      


 

 

     
    

   

     
    

   

  
 

 

I I

I

1

,

,

1

, ,1 1

, ,

0

0

0 0
= () .

0 0

N L N

L N N L N

N L N N L N

y

L N N L N L N N L N

W W
T T



 



  

   

 
  
 

       
      

         

I

I I

This shows that ()y  is similar to
,((),0)x L N L Ndiag    , which is known uniquely once ()x  is

known.

C. Algorithms

C.1. Mapped-PCMCI

Algorithm 1 describes an implementation of Mapped-PCMCI using a modified version of Varimax (12)

and multivariate linear regression, MLR (9). Note that since all entries of Ŵ are nonzero, when using it

to map ̂ to the grid space, many grid points will be connected to each other. To address this problem,

we suggest a slight modification of the Varimax algorithm (Varimax+) that determines whether each

loading’s value statistically differs from 0 (see algorithm 3).

For a more detailed explanation of the method see Section 2.3.

Algorithm 1 Mapped-PCMCI

1: procedure (,
ˆˆ(,)Y h YY  )

2: ˆ =W Varimax ()Y

3: ˆ ˆ=X WY

4: ˆ ˆ(,) PCMCI ()X

5: ̂ MLR ˆˆ(,)X

6: ˆ ˆ=Y W W 

7: ˆ ˆ
Y Y

8: return: ˆ ˆ(,)Y Y

C.2. Matching permutation

Algorithm 2 offers an approach for the problem given by the fact that the rows of Ŵ can be permuted

in relation to .W Therefore we need to look for a permutation to find a suitable order that allows us to

compare W and Ŵ . Here we reorder the rows of Ŵ to increase the Pearson correlation coefficient

between the rows of W and Ŵ . This algorithm outputs one of the many solutions to the problem. Let

 be the true order of the weights, = (1, ,)I , the algorithm reads

Algorithm 2 Finding a matching permutation

1: procedure (ˆ, ,W W) ˆ

2: ˆ = ()

3: = {}

4: for i do

5:
* ˆ= argmax | (,) |i j

jj  w w

6: *ˆ =i j

7: *= { }j

8: return: ˆ

C.3. Varimax
+

The Varimax rotation is an algorithm that rotates loadings resulting from PCA to simplify its

interpretation. It maximizes the sum of the variances of the squared loadings. As a result most of the

values of those loadings are pushed towards zero. More information of PCA and Varimax can be found

in Sec. 2.2.1. Varimax+ aims to assess which values of the resulting loadings are statistically different

from 0 and which are not.

Starting from the original dataset (Y), n_rep datasets of n_sam samples (
iY) are generated

using random sampling with replacement (Bootstrap). The Varimax algorithm is applied to each of

those sets, and then the resulting loadings iW are ordered to match the order of the estimated loadings

of Y , Ŵ . This reordering is done with Algorithm 2 (Find_Permutation). Finally, for each variable (grid-

point)  in each of the {1, , }k N permuted Varimax loading distributions, we test whether the

value 0 lies inside that permuted distribution at a given alpha level  . If that hypothesis cannot be

rejected, then that grid point in the estimated weights (ˆ
kW) for that Varimax component is set to 0 .

Algorithm 3 Varimax+

1: procedure (ˆ,n_rep,n_samY W)

2: = {}  Set of estimated W from bootstrap data

3: ˆ Varimax()W Y

4: while n_repi  do

5: Bootstrap(,n_sam)iY Y

6: Varimax()i iW Y

7:
per

ˆFind_Permutation(,)i iW W W

8:
per

iW 

9: = 1i i 

10: for  and {1, , }k N do  for every grid location among all estimated

per
W

11: p_val p value of 0 wrt. k k 

12: if p_val >k  then

13: ˆ = 0kW

14: return: Ŵ

