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1. Modelled Variables
Table 1 shows all the variables used for our emulator. Overall we consider 36 quantities, the first eight
shown in the Table are only input variables and are not changed by M7/our emulator. Masses and
concentrations of different aerosol species are both inputs and outputs for the model. Additionally, we
output the water content of different aerosol size bins.

2. Logarithmic Transformation
Training and evaluating on a logarithmic scale we can achieve much better scores than in the original
units. On the test set, we achieve an 𝑅2-score of 97.4%. The predictive quality on the logarithmic scale
though does not transfer to the original scale, as we can see in the scores in Table 2.

3. Other ML Approaches
Apart from a neural network approach, we investigated other ML models to emulate the M7 module.
We looked at linear regression (LR) and different ensemble methods such as a random forest regressor
t (RF) and a gradient boosting model (GB). In Table 3 we report the test scores for linear regression, a
random forest, and a gradient boosting approach. Being linear combinations of training points, linear
regression and random forest both automatically conserve mass. Overall the random forest shows the
best accuracy among these models. We note that the random forest performs worse than the neural
network in terms of predictive accuracy, but could still be considered for future work because of the
mass conserving property.

4. Network Architectures and Losses
The network architectures used all build on the same base neural network containing two hidden layers
and ReLU activations. For enforcing hard constraints we add an additional layer at the end, either the
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correction layer for the inequality constraint of positive masses or the completion layer of the equality
constraint for mass conservation. Schematics and the combination of architectures and loss functions
are shown in Figure 1.

5. Activation Functions
We explored different activation functions for our neural architecture, Sigmoid, Tanh, ReLU, and Leaky
ReLU. We evaluated their performance (see Table 4) on the validation set and find that the ReLU-based
activations result in better MSE and 𝑅2-scores.

Table 1. Modelled variables.

VARIABLE UNIT INPUT OUTPUT

PRESSURE PA
√

TEMPERATURE K
√

REL. HUMIDITY -
√

IONIZATION RATE -
√

CLOUD COVER -
√

BOUNDARY LAYER -
√

FOREST FRACTION -
√

H2SO4 PROD. RATE 𝑐𝑚−3𝑠−1 √

H2SO4 MASS 𝜇𝑔 𝑚−3 √ √

SO4 NS MASS 𝑚𝑜𝑙𝑒𝑐. 𝑚−3 √ √

SO4 KS MASS 𝑚𝑜𝑙𝑒𝑐. 𝑚−3 √ √

SO4 AS MASS 𝑚𝑜𝑙𝑒𝑐. 𝑚−3 √ √

SO4 CS MASS 𝑚𝑜𝑙𝑒𝑐. 𝑚−3 √ √

BC KS MASS 𝜇𝑔 𝑚−3 √ √

BC AS MASS 𝜇𝑔 𝑚−3 √ √

BC CS MASS 𝜇𝑔 𝑚−3 √ √

BC KI MASS 𝜇𝑔 𝑚−3 √ √

OC KS MASS 𝜇𝑔 𝑚−3 √ √

OC AS MASS 𝜇𝑔 𝑚−3 √ √

OC CS MASS 𝜇𝑔 𝑚−3 √ √

OC KI MASS 𝜇𝑔 𝑚−3 √ √

DU AS MASS 𝜇𝑔 𝑚−3 √ √

DU CS MASS 𝜇𝑔 𝑚−3 √ √

DU AI MASS 𝜇𝑔 𝑚−3 √ √

DU CI MASS 𝜇𝑔 𝑚−3 √ √

NS CONCENTRATION 𝑐𝑚−3 √ √

KS CONCENTRATION 𝑐𝑚−3 √ √

AS CONCENTRATION 𝑐𝑚−3 √ √

CS CONCENTRATION 𝑐𝑚−3 √ √

KI CONCENTRATION 𝑐𝑚−3 √ √

AI CONCENTRATION 𝑐𝑚−3 √ √

CI CONCENTRATION 𝑐𝑚−3 √ √

NS WATER 𝑘𝑔 𝑚−3 √

KS WATER 𝑘𝑔 𝑚−3 √

AS WATER 𝑘𝑔 𝑚−3 √

CS WATER 𝑘𝑔 𝑚−3 √
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Table 2. Test metrics for different architectures and transformations. Standard refers to learning with
the standard transformation, log-scaled to the learning on logarithmitically transformed values. Base
means the usage of only the base NN, correct adds the correction procedure and complete the completion
procedure. Mass reg. and positivity reg. include the regularization terms. Best scores are bold and second
best scores are highlighted in blue .

Standard Log-Scaled

Architecture Base +Correct +Complete +Mass Loss +Positivity Loss Base +Correct +Complete +Mass Loss

R2 0.763 0.771 0.738 0.730 0.709 − − − −
R2 log − − − − − 0.974 0.974 0.959 0.984
RMSE 0.402 0.401 0.403 0.433 0.459 115431 115431 260706 21057757
Mass Bias SO4 1.1 · 10−5 8.5 · 10−5 0.00 8.6 · 10−6 1.0 · 10−3 1.2 · 100 1.2 · 100 0.00 1.1 · 10−3

Mass Bias BC 3.8 · 10−5 1.4 · 10−4 0.00 3.4 · 10−5 3.6 · 10−4 2.6 · 10−4 2.6 · 10−4 0.00 3.2 · 10−4

Mass Bias OC 3.3 · 10−5 6.0 · 10−5 0.00 1.1 · 10−5 6.4 · 10−4 3.8 · 10−4 1.4 · 10−4 0.00 8.0 · 10−5

Mass Bias DU 1.0 · 10−6 3.9 · 10−5 0.00 2.8 · 10−7 1.5 · 10−5 1.0 · 10−3 2.2 · 10−4 0.00 8.5 · 10−5

Mass Violation 3.7 · 10−4 1.1 · 10−3 0.00 1.4 · 10−4 2.4 · 10−3 4.0 · 102 4.0 · 102 0.00 3.2 · 10−1

Neg. Fraction 0.134 0.00 0.146 0.144 0.0894 0.0807 0.00 0.0812 0.061
Neg. Mean 0.00151 0.00 0.00170 0.00169 0.000081 0.00921 0.00 0.108 0.00115

Table 3. Test metrics for different other ML models.

Accuracy Mass Conservation Positivity

Architecture R2 R2 log RMSE Bias SO4 Bias BC Bias OC Bias DU RMSE Neg. Fraction Neg. Mean

LR +2.10e-1 -4.19e+0 +6.95e-1 -4.21e-18 -1.03e-16 -1.08e-16 +1.03e-17 +4.16e-16 +1.92e-1 -1.32e-2
RF +7.07e-1 -7.30e-1 +4.66e-1 +9.90e-17 -4.78e-16 -6.19e-17 -9.27e-19 +3.85e-16 +1.31e-1 -7.28e-4
GB +6.66e-1 -2.95e-1 +4.76e-1 +1.90e-5 +1.75e-5 +1.45e-5 -8.56e-5 +1.14e-2 +1.27e-1 -1.25e-3

Table 4. Validation scores for different activation functions.

ACTIVATION FUNCTION MSE 𝑅2

SIGMOID 0.442 74.2
TANH 0.446 73.4
RELU 0.395 78.9
LEAKY RELU 0.395 78.7

6. Parameters for Regularization
The neural network’s success is very sensitive to changes in the parameters of both mass and positivity
regularizers. The parameters we found to work the best in this scenario are 𝛼 = [10−7, 2 · 104, 2 ·
103, 10−1] and 𝛽 = [10−11, 107, 107, 103, 10−8, 101] for the training with linear transformed values
and 𝛼 = [10−8, 103, 104, 105] for log-transformation. 𝛽 was tuned for the different variable groups
(SO4, BC, OC, DU, NUM, WAT) and not each variable independently, which could lead to further
improvement.

7. Transformation for Constraining
For clarity and simplicity, we omit the fact that we need to back-transform the variables before cal-
culating masses and negative fraction in the main paper. The more technically precise formulation is
introduced here. Let 𝜇𝑥 , 𝜎𝑥 ∈ R32 be the mean and standard deviation vectors over all training input
data and 𝜇𝑦 , 𝜎𝑦 ∈ R28 the mean over all training output data. Then we set the function 𝑔 : R28 ↦→ R28
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Figure 1. Different architectures and loss functions used for comparison..

as the back transformation for the output data, 𝑔(𝑦) = 𝑦 ∗ 𝜎𝑦 + 𝜇𝑦 and ℎ : R32 ↦→ R32 as the back
transformation for the input data, ℎ(𝑥) = 𝑥 ∗ 𝜎𝑥 + 𝜇𝑥 . With that, the loss terms are defined as:

L(mass) (𝑦𝜃 ) :=
∑︁
𝑠∈𝑆

𝛼𝑠 |
∑︁
𝑖∈𝐼𝑠

𝑔(𝑦 (𝑖)
𝜃
) |, (1)

for the mass conservation and

L(pos) (𝑦𝜃 ) :=
𝑛∑︁
𝑖=0

𝛽𝑖𝑅𝑒𝐿𝑈 (−(𝑔(𝑦 (𝑖)
𝜃
) + ℎ(𝑥𝑖)))2 (2)

for the positivity term.
The same applies for hard-constraining. The equations for that are:

𝑦
(𝑖)
𝜃

= ReLU((𝑔( �̃� (𝑖)
𝜃
) + ℎ(𝑥𝑖))) − ℎ(𝑥𝑖)

and

𝑦
( 𝑗)
𝜃

= (−
∑︁

𝑖∈𝐼𝑠\{ 𝑗 }
𝑔(𝑦 (𝑖)

𝜃
) − 𝜇𝑦 𝑗

)/𝜎𝑦 𝑗
.

8. Metrics Development
In Figure 2 we show the development of MSE, 𝑅2-score, average mass conservation violation, and
overall negative fraction for different losses throughout training. We can observe that the accuracies
expressed in MSE and 𝑅2-score develop very similar for all loss types. Adding the mass violation term
we can see an improvement in mass conservation, especially for later layers, adding the positivity term
we can see a decrease in negative fraction for all the epochs. It is also noticeable, that the negative
fraction shows high variability between different epochs.
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Figure 2. Development of MSE, 𝑅2-score, mass conservation violation and negative fraction over the
course of training epochs, measured on the validation set..

Table 5. Scores for classification neural network, calculated on test set.

Variable SO4 NS SO4 KS SO4 AS BC KS BC AS OC KS OC AS DU AS NUM NS NUM KS NUM AS

Accuracy 0.986 0.962 0.999 0.960 0.999 0.962 0.999 0.999 0.989 0.984 0.959
Precision 0.954 0.931 0.999 0.914 0.999 0.908 0.999 1.000 0.972 0.755 0.919
Recall 0.990 0.988 1.000 0.972 1.000 0.968 1.000 1.000 0.989 0.844 0.768

Table 6. 𝑅2 scores on the test set for each variable. For our neural network that learns the log-
transformed tendencies we consider the 𝑅2 score on the log-transformed values, for the neural network
trained on standardized values we consider the 𝑅2 in original units.

SO4 Black Carbon Organic Carbon

Variable H2SO4 NS KS AS CS KS AS CS CI KS AS CS CI

Log. (𝑅2) 0.999 0.993 0.981 0.993 0.992 0.979 0.995 0.990 0.997 0.984 0.997 0.994 0.998
Stand. (𝑅2) 0.983 0.877 0.652 0.875 0.292 0.837 0.844 0.000 0.867 0.616 0.669 0.200 0.710

9. Results for Classification
To enable log-transformed learning we need to combine our regression neural network with a classi-
fication network. The classification network predicts whether a tendency is positive or negative. The
scores for this binary classification task can be found in Table 5. Note that this classification problem is
highly imbalanced and could be improved by using techniques for this case.
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Table 7. Same as table above for additional variables.

Dust Number particles Water content

Variable AS CS AI CI NS KS AS CS KI AI CI NS KS AS CS

Log. (𝑅2) 0.995 0.996 0.995 0.996 0.993 0.997 0.998 0.997 0.997 0.977 0.983 0.979 0.982 0.979 0.982
Stand. (𝑅2) 0.872 0.966 0.945 0.966 0.900 0.663 0.874 0.932 0.949 0.936 0.940 0.979 0.978 0.928 0.954

10. Individual Scores and Plots
In Table 6 and 7 we present the 𝑅2 scores for all predicted variables individually, using the base neural
network for logarithmic transformed or standardized values. Figure 3 and 4 show plots for all predicted
variables.



Environmental Data Science 7

Figure 3. Predicted test values by emulator versus true values from M7 model. Trained on logarithmi-
cally transformed quantities and plotted in the logarithmic scale.
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Figure 4. Predicted test values by emulator versus true values from M7 model. Trained on standardized
quantities and plotted standardized.
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