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In Section A, we included the full set of variables for our prediction problem. Section B of this
supplemental information shows the results of the performance of causal models for the remaining
targets, including Minimum Sea Level Pressure (MSLP) and Total Integrated Precipitation. Section
B also includes results for experiments with a reduced lead time of 6 hours, using both the PCI
and PCMCI methods. The feature selection baselines for comparing the performances are defined in
Section C, followed by the results for predicting the remaining targets. Finally, Section D shows the
performance of the best models, as well as the causal predictors used in the model with the best skill
on the validation set for maximum surface wind.

A. List of Variables Used as Predictors

We provide a list of all the variables chosen from the ERAS (3 hourly) dataset, including targets and
predictors, for preparing the ensemble of TC time series in Tab 1.

B. Optimal Number of Causal Features

Figures 3,4,5, & 6 show the comparison of M-PC; and M-PCMCI algorithms for the selected targets
before and after temporally aligning the time series according to the time of minimum MSLP during the
lifetime of each storms in the group. We see a clear improvement in the validation sets of the aligned
dataset for both PC1 and PCMCI for all the targets.

C. Description of Machine Learning Algorithms

In this section, we provide a description of our implementations of the machine learning algorithms
tested for this work. Prior to training the algorithms, we calculated the mean and standard deviation of
each input feature in the available training data, noting that the values were considered for the set of all
storms (and not on a per-storm basis). We then used these values to standard-scale the input features,

© The Authors(s) 2020. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.


https://orcid.org/0000-0002-0790-0314
https://orcid.org/0000-0002-5731-1040
https://orcid.org/0000-0003-3525-7773
https://orcid.org/0000-0002-0421-3893
https://orcid.org/0000-0002-0629-1772
https://orcid.org/0000-0003-1868-655X
http:// creativecommons.org/licenses/by/4.0/

2 Ganesh et al.

a b.
Performance of Causal MLR (Min. MSLP), Basin: WPAC) Performance of Causal RF (Min. MSLP), Basin: WPAC)
0.954 Non-causal MLR (Train) 0.95 5 s m mE E =E B EE
m T pu— _ELF_F
099 1T Il | ] : : - - 0.9 Non-causal RF (Train)
L -8R O0-0- oo SSTTEY ' = L
0.85d Non-causal RF (Test)
o o o 0.851 Oofopgo O 22l o O o oo
[ LSTM (Test) _ iy
[0 R ]
LSTM (Vanu)D 08
0.751 0.759 Non-causal RF (Valid)
Non-causal MLR
0.74 (\;’a"ng?zu%aesn l ® M-PCi(Train) @ M-PCt (Validation) 0.74 B M-PC1(Train) O M-PC1 (Validation)
W M-PC1 (Test) W M-PC1 (Test)
0 50 100 150 200 250 0 50 100 150 200 280

Number of Inputs Number of Inputs

0 02 04 06 08 0 0.2 0.4 0.6 0.8
PCa PCa

Figure 1. Performance of Causal ML for multiple tests by varying hyperparameter for the prediction of
Minimum MSLP by causal-MLR (a) compared to noncausal ML (Solid lines) and LSTM (dashed lines),
where as (b) shows the performance of Causal-RF compared to noncausal-RF (solid lines).
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Figure 2. Same as Figure 1 but for the prediction of Total integrated Precipitation.

per Eqn. (1).
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Multiple linear Regression - In order to benchmark the performance of multidata causal feature
selection, a plurality of multiple linear regression (MLR) algorithms were prepared, using the Scikit-
Learn implementation of the Linear Regression algorithm and its corresponding default parameters.
Each individual MLR algorithm was trained to predict one of three unscaled target variables (i.e., one
of MSLP, precipitation, or Surface Wind) using the selected, standard-scaled inputs being evaluated.

Random Forest Regression - To ensure that the benefit of causal feature selection extends to more
complex, nonlinear machine learning algorithms. We applied the same sets of input variables used
to train the causal and non-causal MLR models to a Random Forest Regressor (RF Regressor). The
implementation of the RF regression algorithm in this study utilizes that provided in the Scikit-Learn
package. Compared to the MLR models, the RF Regressor contains several trainable hyperparameters
that we can optimize for better prediction skills. Using the RandomizedSearchCV function, we tuned
the hyperparameters related to the depth of the model, minimum number of samples to split decision
trees, and the number of estimators. The best model that has the best cross-validation accuracy on the
training data is chosen for analysis.

The noncausal feature selection baselines that are used in the main manuscript are described below.
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Figure 3. Comparison of M-PC, and M-PCMCI based Causal-MLR model performance for 6 hour
predictions without time alignment and with time lags ranging from 6 hrs to 2 days for selected targets.

Random Feature Selection is a sampling method where features are chosen randomly. Random
sampling is analogous to drawing out a set of cards after shuffling without any criteria. Our implemen-
tation of this algorithm randomly selects a set of input features (size ranging from 10 to 1000) from all
possible combinations of variables and time lags.

Lagged Correlation considers the absolute correlation between the prediction targets and different
time-lagged input features. We adopted a kitchen sink approach where we obtained the correlation
values between targets and all time-lagged variables by c. These correlation values are ranked and the
features with the highest correlations are then chosen as MLR inputs. The size of these sets of features
ranges from 10 to 1000.

XALI takes the training dataset to build a random forest regression model using Python’s scikit-
learn library. By using this baseline method, we explore whether the use of feature importance (when
nonlinear relationships between variables and targets are included) can result in a better selection of
features. The Gini feature importance as measured by the trained random forest regressors provides
an objective means to rank and select the most informative input variables. Input variables are ranked
from most important to least important based on Gini impurity-based feature importances. The top-
ranked features are then chosen to train the MLR models. Alternative feature importance methods, e.g.,
permutation feature importance or absolute Shapley values, are left for future work.

LSTM Neural Network - We prepared three Long Short-Term Memory (LSTM) recurrent neural
networks as baselines, training the LSTM models on standard-scaled input data and configuring each
LSTM to predict one of the standard-scaled target variables (i.e., one of MSLP, precipitation, or Surface
Wind). We implemented each LSTM as a sequential model using PyTorch; their architecture includes
an LSTM layer, a dropout layer, a linear hidden layer, and a linear output layer. As we targeted standard
scaled outputs, the output of the network needed to represent positive and negative values. To do this,
we set the output activation function to the identity function and we set the hidden layer activation
function to hyperbolic tangent. We selected the Adam optimizer and mean-square error loss for our
training, and proceeded to conduct a hyperparameter search using the Optuna framework. The study
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Figure 4. Performance of PC\ and PCMCI models with time aligned inputs for the prediction of Max-
imum Wind (a), the relationship between hyper-parameters, inputs, and performance (b, c).

employed 10 trials that tested LSTM and hidden layers 50-100 units wide, dropout rates between 0.0
and 0.5, and learning rates between le—4 and le—3. We note that we set the number of units in the
LSTM layer and the hidden layer to be equal to each other in all conducted trials.

D. Comparison of Feature Selection Baselines

A comparison of the performance of Causal MLR to the performance of MLR models based on other
feature selection baselines for the targets, Minimum MSLP and Total Integrated Precipitation are shown
in Figures 7 and 8 respectively.

The Mean Square Error (MSE) and Mean Absolute Error (MAE) of the best model prediction of
Maximum Surface Winds, MSLP and Total integrated Precipitation on both the training, validation and
test sets for the best ML models. All metrics signify a good performance for Causal-ML with far less
number of inputs compared to the number of inputs from the best models using the Non-causal-RF and
Non-causal MLR methods. For the best ML models used, MSE are listed in Table 2 and MAE are listed
Table 3.

E. Optimal Causal Predictors

The predictors and time lags for the best causal-MLR model with time-aligned inputs for the prediction
of maximum wind speeds 1-day in advance are shown in Table 4.
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Figure 5. Same as the previous figure, but for the prediction of total integrated precipitation.
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Figure 6. Same as the previous figure, but for the prediction of Minimum MSLP.
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Targets
(500 km radii)

Vertical pressure levels(hPa)

1000, 975, 950, 925, 900, 850, 800, 700,
600, 500, 400, 300, 250, 200, 150, 100, 50

1000, 975, 925, 850,
700, 600, 500, 400, 300, 250, 200, 150, 100

1000, 925, 850, 800,
700, 600, 500, 400,
300, 250, 200, 100, 50

1000, 925, 850, 700,
600, 500, 400, 300, 250, 200

Predictors :

Inner core
(200 km
Radii)

and

Outer Core
(200 to 800

kl;g;()l" Single levels

Predictors

Outer Core Vertical Wind Shear

(200 — 800 km
radii)

Table 1. List of variables used from ERAS dataset.

Minimum Sea Level Maximum Wind Speed at 10 m
Pressure (Pmin) (V10)

Total Integrated
Precipitation
(Precip.)

Variable list

Relative Vorticity,
Relative humidity, Geo-potential Height

Vertical Velocity

Horizontal Divergence

Equivalent Potential Temperature

Dew Point Temperature — 2 m,

Temperature — 2 m,

Convective available potential energy,

Sea Surface Temperature,

Total column water vapor,

Total column cloud ice water,

Total column cloud liquid water,

Total column super-cooled liquid water,

Total column cloud rain water,

Vertical integral of divergence of cloud frozen
water flux,

Vertical integral of divergence of cloud liquid
water flux,

Vertical integral of divergence of mass flux,
Vertical integral of divergence of moisture flux,
Vertical integral of divergence of total energy flux,
Vertical integral of potential and internal energy,
Vertical integral of potential internal and latent
energy,

Vertical integral of thermal energy,

Vertical integral of total energy,

Vertically integrated moisture divergence,
Mean vertically integrated moisture divergence,
Instantaneous moisture flux,

Instantaneous surface sensible heat flux,

Mean surface latent heat flux,

Mean surface sensible heat flux,

Surface latent heat flux,

Surface sensible heat flux.

1000 hPa - 200 hPa, 1000 hPa — 300 hPa, 1000
hPa — 500 hPa,

1000 hPa — 700 hPa, 1000 hPa — 850 hPa,

850 hPa — 200 hPa, 850 hPa — 250 hPa,

850 hPa — 300 hPa, 850 hPa — 500 hPa,

925 hPa — 200 hPa, 925 hPa — 250 hPa.
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ML Models Training (No. of features) Validation Test
Target Pmin (hPa) | V10 (ms™T) | Precip x10~3 (km?) | Pmin V10 Precip | Pmin V10 | Precip
Causal RF 13.45(26) 3.49(17) 35.45(123) 28.05 6.24 63.3 24.03 6.26 92.1
Causal MLR 24.67(17) 5.2(31) 61.38 (90) 253 5.62 59.01 21.89 5.87 92.79
All 15.68 (3978) | 3.91(3978) 46.25 (3978) 34.92 7.58 100.03 24.39 6.54 | 102.16
Non-causal RF Lagged 8.80 (480) 2.3 (560) 37.8 (80) 29.22 6.23 82.12 21.04 5.65 93.2
Random 8.57 (870) 2.27(770) 27.94 (970) 38.51 7.8 105.23 27.15 7.19 | 105.77
All 2.43 (3978) | 0.66 (3978) 7.87 (3978) 373.54 | 398.33 | 33370.94 | 105.74 | 31.03 | 338.29
Lagged 15.64 (440) 12.04 (40) 60.60 (120) 31.09 14.77 91.40 17.20 | 11.83 | 85.70
Non-causal MLR | o dom | 19.05 (420) | 5.58 (130) 58.23 (290) 4187 | 820 | 9768 | 29.88 | 7.81 | 1105
XAI 16.93 (240) 3.84(420) 55.34 (140) 30.90 6.05 80.32 19.92 6.38 90.7
LSTM 27.55(3978) | 6.49 (3978) 179.76 (3978) 44.00 8.80 199.29 39.44 8.02 | 206.12
Table 2. MSE.
ML Models Training (No. of features) Validation Test
Target Pmin (hPa) | V10 (ms~") | Precip %1073 (km?) | Pmin V10 | Precip | Pmin V10 | Precip
Causal RF 2.55(26) 1.42 (17) 0.14 (123) 3.87 1.94 | 0.19 3.62 1.97 0.23
Causal MLR 3.49(17) 1.77 (31) 0.19 (90) 3.62 1.84 | 0.19 3.49 1.89 0.23
All 2.81(3978) 1.50 (3978) 0.16 (3978) 4.11 2.17 0.23 3.65 1.99 0.24
Non-causal RF Lagged 2.04 (480) 1.12 (560) 0.14 (80) 3.78 1.95 0.22 341 1.85 0.23
Random 2.07 (870) 1.12 (770) 0.12 (970) 4.43 2.2 0.25 3.94 2.1 0.25
All 1.21 (3978) | 0.63 (3978) 0.07 (3978) 1042 | 6.15 0.85 7.71 4.44 0.44
Lagged | 2.90(440) | 1.54(40) 0.17 (120) 374 [ 207 022 | 311 | 170 | 021
Non-causal MLR | o dom | 337 (420) | 1.56(130) 0.19 (290 511 | 232 | 024 | 414 | 217 | 024
XAl 3.03 (240) 1.76 (420) 0.17 (140) 4.07 1.97 0.22 3.4 1.93 0.22
LSTM 3.90 (3978) 1.97 (3978) 0.34 (3978) 4.85 2.29 0.35 4.74 222 0.36
Table 3. MAE (lower values means better models)
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Figure 7. Comparison of the performance of Training, Validation and Test sets of MLR models that
used different feature selection methods for predicting minimum MSLP.
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Causally linked predictors from best ML model for Maximum Wind Speed (10 m)
Time lags Single level Multiple level
In nours Others
interval) Inner Outer Inner Outer
1. Convective 1. Vertical 1. Divergence - 1. 1. Minimum
Available Potential integral of 850 hPa Divergence — |SLP
Energy thermal 925 hPa
energy, 2. Maximum
2. Total column 2. Relative |Wind Speed
cloud ice water 2. Vertical humidity —
3. Instantaneous integral of 950 hPa
Sensible heat flux potential
24 . internal and
4. Vertically latent energy
integrated divergence
of mass flux 3. Vertical
integral of
5. Total column total energy
water vapor
6. Instantaneous
moisture flux
1. Divergence —
850 hPa, 1. Relative L.
27 2. Relative Vorticity - 700 | & ™™™
humidity —1000 hPa
hPa
30 1. Instantaneous
moisture flux
1. Relative 1.
33 humidity — 500 hPa | Geopotential
2. Relative height — 800
humidity — 100 hPa |hPa
36 1. Convective Available 1. Vertical velocity
Potential Energy - 1000 hPa
1. Equivalent .
39 1. Vertical velocity | Potential ;h\ég:‘;%ﬁgo _
— 1000 hPa Temperature - 700 hPa
400 hPa
. 1. Vertical
42 1300 Erdence | shear 1000 -
850 hPa
1. Divergence
57 -200 hPa
1. Relative
66 humidity —1000
hPa

Table 4. List of 31 causally linked predictors for Maximum wind (1 day lead-time) at significant time lags
with best model using PC



